Simplex¶
- class astropy.modeling.optimizers.Simplex[source]¶
Bases:
Optimization
Neald-Mead (downhill simplex) algorithm.
This algorithm [1] only uses function values, not derivatives. Uses
scipy.optimize.fmin
.References
[1]Nelder, J.A. and Mead, R. (1965), “A simplex method for function minimization”, The Computer Journal, 7, pp. 308-313
Attributes Summary
Methods Summary
__call__
(objfunc, initval, fargs, **kwargs)Run the solver.
Attributes Documentation
- supported_constraints = ['bounds', 'fixed', 'tied']¶
Methods Documentation
- __call__(objfunc, initval, fargs, **kwargs)[source]¶
Run the solver.
- Parameters:
- objfunc
python:callable()
objection function
- initvalpython:iterable
initial guess for the parameter values
- fargs
python:tuple
other arguments to be passed to the statistic function
- kwargs
python:dict
other keyword arguments to be passed to the solver
- objfunc