Moffat2D#
- class astropy.modeling.functional_models.Moffat2D(amplitude=1, x_0=0, y_0=0, gamma=1, alpha=1, **kwargs)[source]#
Bases:
Fittable2DModel
Two dimensional Moffat model.
- Parameters:
- amplitude
python:float
Amplitude of the model.
- x_0
python:float
x position of the maximum of the Moffat model.
- y_0
python:float
y position of the maximum of the Moffat model.
- gamma
python:float
Core width of the Moffat model.
- alpha
python:float
Power index of the Moffat model.
- amplitude
- Other Parameters:
- fixed
python:dict
, optional A dictionary
{parameter_name: boolean}
of parameters to not be varied during fitting. True means the parameter is held fixed. Alternatively thefixed
property of a parameter may be used.- tied
python:dict
, optional A dictionary
{parameter_name: callable}
of parameters which are linked to some other parameter. The dictionary values are callables providing the linking relationship. Alternatively thetied
property of a parameter may be used.- bounds
python:dict
, optional A dictionary
{parameter_name: value}
of lower and upper bounds of parameters. Keys are parameter names. Values are a list or a tuple of length 2 giving the desired range for the parameter. Alternatively, themin
andmax
properties of a parameter may be used.- eqcons
python:list
, optional A list of functions of length
n
such thateqcons[j](x0,*args) == 0.0
in a successfully optimized problem.- ineqcons
python:list
, optional A list of functions of length
n
such thatieqcons[j](x0,*args) >= 0.0
is a successfully optimized problem.
- fixed
See also
Notes
Model formula:
\[f(x, y) = A \left(1 + \frac{\left(x - x_{0}\right)^{2} + \left(y - y_{0}\right)^{2}}{\gamma^{2}}\right)^{- \alpha}\]Note that if \(\alpha\) is 1, the
Moffat2D
profile is aLorentz2D
profile. In that case, the integral of the profile is infinite.Attributes Summary
Moffat full width at half maximum.
This property is used to indicate what units or sets of units the evaluate method expects, and returns a dictionary mapping inputs to units (or
None
if any units are accepted).Names of the parameters that describe models of this type.
Methods Summary
evaluate
(x, y, amplitude, x_0, y_0, gamma, alpha)Two dimensional Moffat model function.
fit_deriv
(x, y, amplitude, x_0, y_0, gamma, ...)Two dimensional Moffat model derivative with respect to parameters.
Attributes Documentation
- alpha = Parameter('alpha', value=1.0)#
- amplitude = Parameter('amplitude', value=1.0)#
- fwhm#
Moffat full width at half maximum. Derivation of the formula is available in this notebook by Yoonsoo Bach.
- gamma = Parameter('gamma', value=1.0)#
- input_units#
- param_names = ('amplitude', 'x_0', 'y_0', 'gamma', 'alpha')#
Names of the parameters that describe models of this type.
The parameters in this tuple are in the same order they should be passed in when initializing a model of a specific type. Some types of models, such as polynomial models, have a different number of parameters depending on some other property of the model, such as the degree.
When defining a custom model class the value of this attribute is automatically set by the
Parameter
attributes defined in the class body.
- x_0 = Parameter('x_0', value=0.0)#
- y_0 = Parameter('y_0', value=0.0)#
Methods Documentation