import numpy as np import matplotlib.pyplot as plt from astropy.convolution import Gaussian1DKernel, convolve plt.figure(3).clf() # Generate fake data rng = np.random.default_rng(963) x = np.arange(1000).astype(float) y = np.sin(x / 100.) + rng.normal(0., 1., x.shape) y[::3] = np.nan # Create kernel g = Gaussian1DKernel(stddev=50) # Convolve data z = convolve(y, g) # Plot data before and after convolution plt.plot(x, y, label='Data') plt.plot(x, z, label='Convolved Data', linewidth=2) plt.legend(loc='best') plt.show()