/* * Copyright (c) 2010 IITP RAS * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation; * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * * Author: Pavel Boyko * * Classical hidden terminal problem and its RTS/CTS solution. * * Topology: [node 0] <-- -50 dB --> [node 1] <-- -50 dB --> [node 2] * * This example illustrates the use of * - Wifi in ad-hoc mode * - Matrix propagation loss model * - Use of OnOffApplication to generate CBR stream * - IP flow monitor */ #include "ns3/boolean.h" #include "ns3/command-line.h" #include "ns3/config.h" #include "ns3/constant-position-mobility-model.h" #include "ns3/flow-monitor-helper.h" #include "ns3/internet-stack-helper.h" #include "ns3/ipv4-address-helper.h" #include "ns3/ipv4-flow-classifier.h" #include "ns3/on-off-helper.h" #include "ns3/propagation-delay-model.h" #include "ns3/propagation-loss-model.h" #include "ns3/string.h" #include "ns3/udp-echo-helper.h" #include "ns3/uinteger.h" #include "ns3/yans-wifi-channel.h" #include "ns3/yans-wifi-helper.h" using namespace ns3; /** * Run single 10 seconds experiment * * \param enableCtsRts if true, enable RTS/CTS for packets larget than 100 bytes. * \param wifiManager WiFi manager to use. */ void experiment(bool enableCtsRts, std::string wifiManager) { // 0. Enable or disable CTS/RTS UintegerValue ctsThr = (enableCtsRts ? UintegerValue(100) : UintegerValue(2200)); Config::SetDefault("ns3::WifiRemoteStationManager::RtsCtsThreshold", ctsThr); // 1. Create 3 nodes NodeContainer nodes; nodes.Create(3); // 2. Place nodes somehow, this is required by every wireless simulation for (uint8_t i = 0; i < 3; ++i) { nodes.Get(i)->AggregateObject(CreateObject()); } // 3. Create propagation loss matrix Ptr lossModel = CreateObject(); lossModel->SetDefaultLoss(200); // set default loss to 200 dB (no link) lossModel->SetLoss(nodes.Get(0)->GetObject(), nodes.Get(1)->GetObject(), 50); // set symmetric loss 0 <-> 1 to 50 dB lossModel->SetLoss(nodes.Get(2)->GetObject(), nodes.Get(1)->GetObject(), 50); // set symmetric loss 2 <-> 1 to 50 dB // 4. Create & setup wifi channel Ptr wifiChannel = CreateObject(); wifiChannel->SetPropagationLossModel(lossModel); wifiChannel->SetPropagationDelayModel(CreateObject()); // 5. Install wireless devices WifiHelper wifi; wifi.SetStandard(WIFI_STANDARD_80211b); wifi.SetRemoteStationManager("ns3::" + wifiManager + "WifiManager"); YansWifiPhyHelper wifiPhy; wifiPhy.SetChannel(wifiChannel); WifiMacHelper wifiMac; wifiMac.SetType("ns3::AdhocWifiMac"); // use ad-hoc MAC NetDeviceContainer devices = wifi.Install(wifiPhy, wifiMac, nodes); // uncomment the following to have athstats output // AthstatsHelper athstats; // athstats.EnableAthstats(enableCtsRts ? "rtscts-athstats-node" : "basic-athstats-node" , // nodes); // uncomment the following to have pcap output // wifiPhy.SetPcapDataLinkType (WifiPhyHelper::DLT_IEEE802_11_RADIO); // wifiPhy.EnablePcap (enableCtsRts ? "rtscts-pcap-node" : "basic-pcap-node" , nodes); // 6. Install TCP/IP stack & assign IP addresses InternetStackHelper internet; internet.Install(nodes); Ipv4AddressHelper ipv4; ipv4.SetBase("10.0.0.0", "255.0.0.0"); ipv4.Assign(devices); // 7. Install applications: two CBR streams each saturating the channel ApplicationContainer cbrApps; uint16_t cbrPort = 12345; OnOffHelper onOffHelper("ns3::UdpSocketFactory", InetSocketAddress(Ipv4Address("10.0.0.2"), cbrPort)); onOffHelper.SetAttribute("PacketSize", UintegerValue(1400)); onOffHelper.SetAttribute("OnTime", StringValue("ns3::ConstantRandomVariable[Constant=1]")); onOffHelper.SetAttribute("OffTime", StringValue("ns3::ConstantRandomVariable[Constant=0]")); // flow 1: node 0 -> node 1 onOffHelper.SetAttribute("DataRate", StringValue("3000000bps")); onOffHelper.SetAttribute("StartTime", TimeValue(Seconds(1.000000))); cbrApps.Add(onOffHelper.Install(nodes.Get(0))); // flow 2: node 2 -> node 1 /** \internal * The slightly different start times and data rates are a workaround * for \bugid{388} and \bugid{912} */ onOffHelper.SetAttribute("DataRate", StringValue("3001100bps")); onOffHelper.SetAttribute("StartTime", TimeValue(Seconds(1.001))); cbrApps.Add(onOffHelper.Install(nodes.Get(2))); /** \internal * We also use separate UDP applications that will send a single * packet before the CBR flows start. * This is a workaround for the lack of perfect ARP, see \bugid{187} */ uint16_t echoPort = 9; UdpEchoClientHelper echoClientHelper(Ipv4Address("10.0.0.2"), echoPort); echoClientHelper.SetAttribute("MaxPackets", UintegerValue(1)); echoClientHelper.SetAttribute("Interval", TimeValue(Seconds(0.1))); echoClientHelper.SetAttribute("PacketSize", UintegerValue(10)); ApplicationContainer pingApps; // again using different start times to workaround Bug 388 and Bug 912 echoClientHelper.SetAttribute("StartTime", TimeValue(Seconds(0.001))); pingApps.Add(echoClientHelper.Install(nodes.Get(0))); echoClientHelper.SetAttribute("StartTime", TimeValue(Seconds(0.006))); pingApps.Add(echoClientHelper.Install(nodes.Get(2))); // 8. Install FlowMonitor on all nodes FlowMonitorHelper flowmon; Ptr monitor = flowmon.InstallAll(); // 9. Run simulation for 10 seconds Simulator::Stop(Seconds(10)); Simulator::Run(); // 10. Print per flow statistics monitor->CheckForLostPackets(); Ptr classifier = DynamicCast(flowmon.GetClassifier()); FlowMonitor::FlowStatsContainer stats = monitor->GetFlowStats(); for (std::map::const_iterator i = stats.begin(); i != stats.end(); ++i) { // first 2 FlowIds are for ECHO apps, we don't want to display them // // Duration for throughput measurement is 9.0 seconds, since // StartTime of the OnOffApplication is at about "second 1" // and // Simulator::Stops at "second 10". if (i->first > 2) { Ipv4FlowClassifier::FiveTuple t = classifier->FindFlow(i->first); std::cout << "Flow " << i->first - 2 << " (" << t.sourceAddress << " -> " << t.destinationAddress << ")\n"; std::cout << " Tx Packets: " << i->second.txPackets << "\n"; std::cout << " Tx Bytes: " << i->second.txBytes << "\n"; std::cout << " TxOffered: " << i->second.txBytes * 8.0 / 9.0 / 1000 / 1000 << " Mbps\n"; std::cout << " Rx Packets: " << i->second.rxPackets << "\n"; std::cout << " Rx Bytes: " << i->second.rxBytes << "\n"; std::cout << " Throughput: " << i->second.rxBytes * 8.0 / 9.0 / 1000 / 1000 << " Mbps\n"; } } // 11. Cleanup Simulator::Destroy(); } int main(int argc, char** argv) { std::string wifiManager("Arf"); CommandLine cmd(__FILE__); cmd.AddValue( "wifiManager", "Set wifi rate manager (Aarf, Aarfcd, Amrr, Arf, Cara, Ideal, Minstrel, Onoe, Rraa)", wifiManager); cmd.Parse(argc, argv); std::cout << "Hidden station experiment with RTS/CTS disabled:\n" << std::flush; experiment(false, wifiManager); std::cout << "------------------------------------------------\n"; std::cout << "Hidden station experiment with RTS/CTS enabled:\n"; experiment(true, wifiManager); return 0; }