/* * Copyright (c) 2016 SEBASTIEN DERONNE * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation; * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * * Author: Sebastien Deronne */ #include "ns3/boolean.h" #include "ns3/command-line.h" #include "ns3/config.h" #include "ns3/double.h" #include "ns3/enum.h" #include "ns3/internet-stack-helper.h" #include "ns3/ipv4-address-helper.h" #include "ns3/ipv4-global-routing-helper.h" #include "ns3/log.h" #include "ns3/mobility-helper.h" #include "ns3/multi-model-spectrum-channel.h" #include "ns3/on-off-helper.h" #include "ns3/packet-sink-helper.h" #include "ns3/packet-sink.h" #include "ns3/rng-seed-manager.h" #include "ns3/spectrum-wifi-helper.h" #include "ns3/ssid.h" #include "ns3/string.h" #include "ns3/udp-client-server-helper.h" #include "ns3/uinteger.h" #include "ns3/wifi-acknowledgment.h" #include "ns3/yans-wifi-channel.h" #include "ns3/yans-wifi-helper.h" #include // This is a simple example in order to show how to configure an IEEE 802.11ax Wi-Fi network. // // It outputs the UDP or TCP goodput for every HE MCS value, which depends on the MCS value (0 to // 11), the channel width (20, 40, 80 or 160 MHz) and the guard interval (800ns, 1600ns or 3200ns). // The PHY bitrate is constant over all the simulation run. The user can also specify the distance // between the access point and the station: the larger the distance the smaller the goodput. // // The simulation assumes a configurable number of stations in an infrastructure network: // // STA AP // * * // | | // n1 n2 // // Packets in this simulation belong to BestEffort Access Class (AC_BE). // By selecting an acknowledgment sequence for DL MU PPDUs, it is possible to aggregate a // Round Robin scheduler to the AP, so that DL MU PPDUs are sent by the AP via DL OFDMA. using namespace ns3; NS_LOG_COMPONENT_DEFINE("he-wifi-network"); int main(int argc, char* argv[]) { bool udp{true}; bool downlink{true}; bool useRts{false}; bool useExtendedBlockAck{false}; double simulationTime{10}; // seconds double distance{1.0}; // meters double frequency{5}; // whether 2.4, 5 or 6 GHz std::size_t nStations{1}; std::string dlAckSeqType{"NO-OFDMA"}; bool enableUlOfdma{false}; bool enableBsrp{false}; int mcs{-1}; // -1 indicates an unset value uint32_t payloadSize = 700; // must fit in the max TX duration when transmitting at MCS 0 over an RU of 26 tones std::string phyModel{"Yans"}; double minExpectedThroughput{0}; double maxExpectedThroughput{0}; Time accessReqInterval{0}; CommandLine cmd(__FILE__); cmd.AddValue("frequency", "Whether working in the 2.4, 5 or 6 GHz band (other values gets rejected)", frequency); cmd.AddValue("distance", "Distance in meters between the station and the access point", distance); cmd.AddValue("simulationTime", "Simulation time in seconds", simulationTime); cmd.AddValue("udp", "UDP if set to 1, TCP otherwise", udp); cmd.AddValue("downlink", "Generate downlink flows if set to 1, uplink flows otherwise", downlink); cmd.AddValue("useRts", "Enable/disable RTS/CTS", useRts); cmd.AddValue("useExtendedBlockAck", "Enable/disable use of extended BACK", useExtendedBlockAck); cmd.AddValue("nStations", "Number of non-AP HE stations", nStations); cmd.AddValue("dlAckType", "Ack sequence type for DL OFDMA (NO-OFDMA, ACK-SU-FORMAT, MU-BAR, AGGR-MU-BAR)", dlAckSeqType); cmd.AddValue("enableUlOfdma", "Enable UL OFDMA (useful if DL OFDMA is enabled and TCP is used)", enableUlOfdma); cmd.AddValue("enableBsrp", "Enable BSRP (useful if DL and UL OFDMA are enabled and TCP is used)", enableBsrp); cmd.AddValue( "muSchedAccessReqInterval", "Duration of the interval between two requests for channel access made by the MU scheduler", accessReqInterval); cmd.AddValue("mcs", "if set, limit testing to a specific MCS (0-11)", mcs); cmd.AddValue("payloadSize", "The application payload size in bytes", payloadSize); cmd.AddValue("phyModel", "PHY model to use when OFDMA is disabled (Yans or Spectrum). If OFDMA is enabled " "then Spectrum is automatically selected", phyModel); cmd.AddValue("minExpectedThroughput", "if set, simulation fails if the lowest throughput is below this value", minExpectedThroughput); cmd.AddValue("maxExpectedThroughput", "if set, simulation fails if the highest throughput is above this value", maxExpectedThroughput); cmd.Parse(argc, argv); if (useRts) { Config::SetDefault("ns3::WifiRemoteStationManager::RtsCtsThreshold", StringValue("0")); } if (dlAckSeqType == "ACK-SU-FORMAT") { Config::SetDefault("ns3::WifiDefaultAckManager::DlMuAckSequenceType", EnumValue(WifiAcknowledgment::DL_MU_BAR_BA_SEQUENCE)); } else if (dlAckSeqType == "MU-BAR") { Config::SetDefault("ns3::WifiDefaultAckManager::DlMuAckSequenceType", EnumValue(WifiAcknowledgment::DL_MU_TF_MU_BAR)); } else if (dlAckSeqType == "AGGR-MU-BAR") { Config::SetDefault("ns3::WifiDefaultAckManager::DlMuAckSequenceType", EnumValue(WifiAcknowledgment::DL_MU_AGGREGATE_TF)); } else if (dlAckSeqType != "NO-OFDMA") { NS_ABORT_MSG("Invalid DL ack sequence type (must be NO-OFDMA, ACK-SU-FORMAT, MU-BAR or " "AGGR-MU-BAR)"); } if (phyModel != "Yans" && phyModel != "Spectrum") { NS_ABORT_MSG("Invalid PHY model (must be Yans or Spectrum)"); } if (dlAckSeqType != "NO-OFDMA") { // SpectrumWifiPhy is required for OFDMA phyModel = "Spectrum"; } double prevThroughput[12]; for (uint32_t l = 0; l < 12; l++) { prevThroughput[l] = 0; } std::cout << "MCS value" << "\t\t" << "Channel width" << "\t\t" << "GI" << "\t\t\t" << "Throughput" << '\n'; int minMcs = 0; int maxMcs = 11; if (mcs >= 0 && mcs <= 11) { minMcs = mcs; maxMcs = mcs; } for (int mcs = minMcs; mcs <= maxMcs; mcs++) { uint8_t index = 0; double previous = 0; uint8_t maxChannelWidth = frequency == 2.4 ? 40 : 160; for (int channelWidth = 20; channelWidth <= maxChannelWidth;) // MHz { for (int gi = 3200; gi >= 800;) // Nanoseconds { if (!udp) { Config::SetDefault("ns3::TcpSocket::SegmentSize", UintegerValue(payloadSize)); } NodeContainer wifiStaNodes; wifiStaNodes.Create(nStations); NodeContainer wifiApNode; wifiApNode.Create(1); NetDeviceContainer apDevice; NetDeviceContainer staDevices; WifiMacHelper mac; WifiHelper wifi; std::string channelStr("{0, " + std::to_string(channelWidth) + ", "); if (frequency == 6) { wifi.SetStandard(WIFI_STANDARD_80211ax); channelStr += "BAND_6GHZ, 0}"; Config::SetDefault("ns3::LogDistancePropagationLossModel::ReferenceLoss", DoubleValue(48)); } else if (frequency == 5) { wifi.SetStandard(WIFI_STANDARD_80211ax); channelStr += "BAND_5GHZ, 0}"; } else if (frequency == 2.4) { wifi.SetStandard(WIFI_STANDARD_80211ax); channelStr += "BAND_2_4GHZ, 0}"; Config::SetDefault("ns3::LogDistancePropagationLossModel::ReferenceLoss", DoubleValue(40)); } else { std::cout << "Wrong frequency value!" << std::endl; return 0; } std::ostringstream oss; oss << "HeMcs" << mcs; wifi.SetRemoteStationManager("ns3::ConstantRateWifiManager", "DataMode", StringValue(oss.str()), "ControlMode", StringValue(oss.str())); // Set guard interval and MPDU buffer size wifi.ConfigHeOptions("GuardInterval", TimeValue(NanoSeconds(gi)), "MpduBufferSize", UintegerValue(useExtendedBlockAck ? 256 : 64)); Ssid ssid = Ssid("ns3-80211ax"); if (phyModel == "Spectrum") { /* * SingleModelSpectrumChannel cannot be used with 802.11ax because two * spectrum models are required: one with 78.125 kHz bands for HE PPDUs * and one with 312.5 kHz bands for, e.g., non-HT PPDUs (for more details, * see issue #408 (CLOSED)) */ Ptr spectrumChannel = CreateObject(); SpectrumWifiPhyHelper phy; phy.SetPcapDataLinkType(WifiPhyHelper::DLT_IEEE802_11_RADIO); phy.SetChannel(spectrumChannel); mac.SetType("ns3::StaWifiMac", "Ssid", SsidValue(ssid)); phy.Set("ChannelSettings", StringValue(channelStr)); staDevices = wifi.Install(phy, mac, wifiStaNodes); if (dlAckSeqType != "NO-OFDMA") { mac.SetMultiUserScheduler("ns3::RrMultiUserScheduler", "EnableUlOfdma", BooleanValue(enableUlOfdma), "EnableBsrp", BooleanValue(enableBsrp), "AccessReqInterval", TimeValue(accessReqInterval)); } mac.SetType("ns3::ApWifiMac", "EnableBeaconJitter", BooleanValue(false), "Ssid", SsidValue(ssid)); apDevice = wifi.Install(phy, mac, wifiApNode); } else { YansWifiChannelHelper channel = YansWifiChannelHelper::Default(); YansWifiPhyHelper phy; phy.SetPcapDataLinkType(WifiPhyHelper::DLT_IEEE802_11_RADIO); phy.SetChannel(channel.Create()); mac.SetType("ns3::StaWifiMac", "Ssid", SsidValue(ssid)); phy.Set("ChannelSettings", StringValue(channelStr)); staDevices = wifi.Install(phy, mac, wifiStaNodes); mac.SetType("ns3::ApWifiMac", "EnableBeaconJitter", BooleanValue(false), "Ssid", SsidValue(ssid)); apDevice = wifi.Install(phy, mac, wifiApNode); } RngSeedManager::SetSeed(1); RngSeedManager::SetRun(1); int64_t streamNumber = 150; streamNumber += wifi.AssignStreams(apDevice, streamNumber); streamNumber += wifi.AssignStreams(staDevices, streamNumber); // mobility. MobilityHelper mobility; Ptr positionAlloc = CreateObject(); positionAlloc->Add(Vector(0.0, 0.0, 0.0)); positionAlloc->Add(Vector(distance, 0.0, 0.0)); mobility.SetPositionAllocator(positionAlloc); mobility.SetMobilityModel("ns3::ConstantPositionMobilityModel"); mobility.Install(wifiApNode); mobility.Install(wifiStaNodes); /* Internet stack*/ InternetStackHelper stack; stack.Install(wifiApNode); stack.Install(wifiStaNodes); Ipv4AddressHelper address; address.SetBase("192.168.1.0", "255.255.255.0"); Ipv4InterfaceContainer staNodeInterfaces; Ipv4InterfaceContainer apNodeInterface; staNodeInterfaces = address.Assign(staDevices); apNodeInterface = address.Assign(apDevice); /* Setting applications */ ApplicationContainer serverApp; auto serverNodes = downlink ? std::ref(wifiStaNodes) : std::ref(wifiApNode); Ipv4InterfaceContainer serverInterfaces; NodeContainer clientNodes; for (std::size_t i = 0; i < nStations; i++) { serverInterfaces.Add(downlink ? staNodeInterfaces.Get(i) : apNodeInterface.Get(0)); clientNodes.Add(downlink ? wifiApNode.Get(0) : wifiStaNodes.Get(i)); } if (udp) { // UDP flow uint16_t port = 9; UdpServerHelper server(port); serverApp = server.Install(serverNodes.get()); serverApp.Start(Seconds(0.0)); serverApp.Stop(Seconds(simulationTime + 1)); for (std::size_t i = 0; i < nStations; i++) { UdpClientHelper client(serverInterfaces.GetAddress(i), port); client.SetAttribute("MaxPackets", UintegerValue(4294967295U)); client.SetAttribute("Interval", TimeValue(Time("0.00001"))); // packets/s client.SetAttribute("PacketSize", UintegerValue(payloadSize)); ApplicationContainer clientApp = client.Install(clientNodes.Get(i)); clientApp.Start(Seconds(1.0)); clientApp.Stop(Seconds(simulationTime + 1)); } } else { // TCP flow uint16_t port = 50000; Address localAddress(InetSocketAddress(Ipv4Address::GetAny(), port)); PacketSinkHelper packetSinkHelper("ns3::TcpSocketFactory", localAddress); serverApp = packetSinkHelper.Install(serverNodes.get()); serverApp.Start(Seconds(0.0)); serverApp.Stop(Seconds(simulationTime + 1)); for (std::size_t i = 0; i < nStations; i++) { OnOffHelper onoff("ns3::TcpSocketFactory", Ipv4Address::GetAny()); onoff.SetAttribute("OnTime", StringValue("ns3::ConstantRandomVariable[Constant=1]")); onoff.SetAttribute("OffTime", StringValue("ns3::ConstantRandomVariable[Constant=0]")); onoff.SetAttribute("PacketSize", UintegerValue(payloadSize)); onoff.SetAttribute("DataRate", DataRateValue(1000000000)); // bit/s AddressValue remoteAddress( InetSocketAddress(serverInterfaces.GetAddress(i), port)); onoff.SetAttribute("Remote", remoteAddress); ApplicationContainer clientApp = onoff.Install(clientNodes.Get(i)); clientApp.Start(Seconds(1.0)); clientApp.Stop(Seconds(simulationTime + 1)); } } Simulator::Schedule(Seconds(0), &Ipv4GlobalRoutingHelper::PopulateRoutingTables); Simulator::Stop(Seconds(simulationTime + 1)); Simulator::Run(); // When multiple stations are used, there are chances that association requests // collide and hence the throughput may be lower than expected. Therefore, we relax // the check that the throughput cannot decrease by introducing a scaling factor (or // tolerance) double tolerance = 0.10; uint64_t rxBytes = 0; if (udp) { for (uint32_t i = 0; i < serverApp.GetN(); i++) { rxBytes += payloadSize * DynamicCast(serverApp.Get(i))->GetReceived(); } } else { for (uint32_t i = 0; i < serverApp.GetN(); i++) { rxBytes += DynamicCast(serverApp.Get(i))->GetTotalRx(); } } double throughput = (rxBytes * 8) / (simulationTime * 1000000.0); // Mbit/s Simulator::Destroy(); std::cout << mcs << "\t\t\t" << channelWidth << " MHz\t\t\t" << gi << " ns\t\t\t" << throughput << " Mbit/s" << std::endl; // test first element if (mcs == 0 && channelWidth == 20 && gi == 3200) { if (throughput * (1 + tolerance) < minExpectedThroughput) { NS_LOG_ERROR("Obtained throughput " << throughput << " is not expected!"); exit(1); } } // test last element if (mcs == 11 && channelWidth == 160 && gi == 800) { if (maxExpectedThroughput > 0 && throughput > maxExpectedThroughput * (1 + tolerance)) { NS_LOG_ERROR("Obtained throughput " << throughput << " is not expected!"); exit(1); } } // Skip comparisons with previous cases if more than one stations are present // because, e.g., random collisions in the establishment of Block Ack agreements // have an impact on throughput if (nStations == 1) { // test previous throughput is smaller (for the same mcs) if (throughput * (1 + tolerance) > previous) { previous = throughput; } else if (throughput > 0) { NS_LOG_ERROR("Obtained throughput " << throughput << " is not expected!"); exit(1); } // test previous throughput is smaller (for the same channel width and GI) if (throughput * (1 + tolerance) > prevThroughput[index]) { prevThroughput[index] = throughput; } else if (throughput > 0) { NS_LOG_ERROR("Obtained throughput " << throughput << " is not expected!"); exit(1); } } index++; gi /= 2; } channelWidth *= 2; } } return 0; }