/* * Copyright (c) 2016 SEBASTIEN DERONNE * * SPDX-License-Identifier: GPL-2.0-only * * Author: Sebastien Deronne */ #include "ns3/boolean.h" #include "ns3/command-line.h" #include "ns3/config.h" #include "ns3/double.h" #include "ns3/enum.h" #include "ns3/he-phy.h" #include "ns3/internet-stack-helper.h" #include "ns3/ipv4-address-helper.h" #include "ns3/ipv4-global-routing-helper.h" #include "ns3/log.h" #include "ns3/mobility-helper.h" #include "ns3/multi-model-spectrum-channel.h" #include "ns3/on-off-helper.h" #include "ns3/packet-sink-helper.h" #include "ns3/packet-sink.h" #include "ns3/spectrum-wifi-helper.h" #include "ns3/ssid.h" #include "ns3/string.h" #include "ns3/udp-client-server-helper.h" #include "ns3/udp-server.h" #include "ns3/uinteger.h" #include "ns3/wifi-acknowledgment.h" #include "ns3/yans-wifi-channel.h" #include "ns3/yans-wifi-helper.h" #include // This is a simple example in order to show how to configure an IEEE 802.11ax Wi-Fi network. // // It outputs the UDP or TCP goodput for every HE MCS value, which depends on the MCS value (0 to // 11), the channel width (20, 40, 80 or 160 MHz) and the guard interval (800ns, 1600ns or 3200ns). // The PHY bitrate is constant over all the simulation run. The user can also specify the distance // between the access point and the station: the larger the distance the smaller the goodput. // // The simulation assumes a configurable number of stations in an infrastructure network: // // STA AP // * * // | | // n1 n2 // // Packets in this simulation belong to BestEffort Access Class (AC_BE). // By selecting an acknowledgment sequence for DL MU PPDUs, it is possible to aggregate a // Round Robin scheduler to the AP, so that DL MU PPDUs are sent by the AP via DL OFDMA. using namespace ns3; NS_LOG_COMPONENT_DEFINE("he-wifi-network"); int main(int argc, char* argv[]) { bool udp{true}; bool downlink{true}; bool useRts{false}; bool use80Plus80{false}; bool useExtendedBlockAck{false}; Time simulationTime{"10s"}; meter_u distance{1.0}; double frequency{5}; // whether 2.4, 5 or 6 GHz std::size_t nStations{1}; std::string dlAckSeqType{"NO-OFDMA"}; bool enableUlOfdma{false}; bool enableBsrp{false}; int mcs{-1}; // -1 indicates an unset value uint32_t payloadSize = 700; // must fit in the max TX duration when transmitting at MCS 0 over an RU of 26 tones std::string phyModel{"Yans"}; double minExpectedThroughput{0}; double maxExpectedThroughput{0}; Time accessReqInterval{0}; CommandLine cmd(__FILE__); cmd.AddValue("frequency", "Whether working in the 2.4, 5 or 6 GHz band (other values gets rejected)", frequency); cmd.AddValue("distance", "Distance in meters between the station and the access point", distance); cmd.AddValue("simulationTime", "Simulation time", simulationTime); cmd.AddValue("udp", "UDP if set to 1, TCP otherwise", udp); cmd.AddValue("downlink", "Generate downlink flows if set to 1, uplink flows otherwise", downlink); cmd.AddValue("useRts", "Enable/disable RTS/CTS", useRts); cmd.AddValue("use80Plus80", "Enable/disable use of 80+80 MHz", use80Plus80); cmd.AddValue("useExtendedBlockAck", "Enable/disable use of extended BACK", useExtendedBlockAck); cmd.AddValue("nStations", "Number of non-AP HE stations", nStations); cmd.AddValue("dlAckType", "Ack sequence type for DL OFDMA (NO-OFDMA, ACK-SU-FORMAT, MU-BAR, AGGR-MU-BAR)", dlAckSeqType); cmd.AddValue("enableUlOfdma", "Enable UL OFDMA (useful if DL OFDMA is enabled and TCP is used)", enableUlOfdma); cmd.AddValue("enableBsrp", "Enable BSRP (useful if DL and UL OFDMA are enabled and TCP is used)", enableBsrp); cmd.AddValue( "muSchedAccessReqInterval", "Duration of the interval between two requests for channel access made by the MU scheduler", accessReqInterval); cmd.AddValue("mcs", "if set, limit testing to a specific MCS (0-11)", mcs); cmd.AddValue("payloadSize", "The application payload size in bytes", payloadSize); cmd.AddValue("phyModel", "PHY model to use when OFDMA is disabled (Yans or Spectrum). If 80+80 MHz or " "OFDMA is enabled " "then Spectrum is automatically selected", phyModel); cmd.AddValue("minExpectedThroughput", "if set, simulation fails if the lowest throughput is below this value", minExpectedThroughput); cmd.AddValue("maxExpectedThroughput", "if set, simulation fails if the highest throughput is above this value", maxExpectedThroughput); cmd.Parse(argc, argv); if (useRts) { Config::SetDefault("ns3::WifiRemoteStationManager::RtsCtsThreshold", StringValue("0")); Config::SetDefault("ns3::WifiDefaultProtectionManager::EnableMuRts", BooleanValue(true)); } if (dlAckSeqType == "ACK-SU-FORMAT") { Config::SetDefault("ns3::WifiDefaultAckManager::DlMuAckSequenceType", EnumValue(WifiAcknowledgment::DL_MU_BAR_BA_SEQUENCE)); } else if (dlAckSeqType == "MU-BAR") { Config::SetDefault("ns3::WifiDefaultAckManager::DlMuAckSequenceType", EnumValue(WifiAcknowledgment::DL_MU_TF_MU_BAR)); } else if (dlAckSeqType == "AGGR-MU-BAR") { Config::SetDefault("ns3::WifiDefaultAckManager::DlMuAckSequenceType", EnumValue(WifiAcknowledgment::DL_MU_AGGREGATE_TF)); } else if (dlAckSeqType != "NO-OFDMA") { NS_ABORT_MSG("Invalid DL ack sequence type (must be NO-OFDMA, ACK-SU-FORMAT, MU-BAR or " "AGGR-MU-BAR)"); } if (phyModel != "Yans" && phyModel != "Spectrum") { NS_ABORT_MSG("Invalid PHY model (must be Yans or Spectrum)"); } if (use80Plus80 || (dlAckSeqType != "NO-OFDMA")) { // SpectrumWifiPhy is required for 80+80 MHz and OFDMA phyModel = "Spectrum"; } double prevThroughput[12] = {0}; std::cout << "MCS value" << "\t\t" << "Channel width" << "\t\t" << "GI" << "\t\t\t" << "Throughput" << '\n'; int minMcs = 0; int maxMcs = 11; if (mcs >= 0 && mcs <= 11) { minMcs = mcs; maxMcs = mcs; } for (int mcs = minMcs; mcs <= maxMcs; mcs++) { uint8_t index = 0; double previous = 0; uint8_t maxChannelWidth = frequency == 2.4 ? 40 : 160; int minGi = enableUlOfdma ? 1600 : 800; for (int channelWidth = 20; channelWidth <= maxChannelWidth;) // MHz { const auto is80Plus80 = (use80Plus80 && (channelWidth == 160)); const std::string widthStr = is80Plus80 ? "80+80" : std::to_string(channelWidth); const auto segmentWidthStr = is80Plus80 ? "80" : widthStr; for (int gi = 3200; gi >= minGi;) // Nanoseconds { if (!udp) { Config::SetDefault("ns3::TcpSocket::SegmentSize", UintegerValue(payloadSize)); } NodeContainer wifiStaNodes; wifiStaNodes.Create(nStations); NodeContainer wifiApNode; wifiApNode.Create(1); NetDeviceContainer apDevice; NetDeviceContainer staDevices; WifiMacHelper mac; WifiHelper wifi; std::string channelStr("{0, " + segmentWidthStr + ", "); StringValue ctrlRate; auto nonHtRefRateMbps = HePhy::GetNonHtReferenceRate(mcs) / 1e6; std::ostringstream ossDataMode; ossDataMode << "HeMcs" << mcs; if (frequency == 6) { ctrlRate = StringValue(ossDataMode.str()); channelStr += "BAND_6GHZ, 0}"; Config::SetDefault("ns3::LogDistancePropagationLossModel::ReferenceLoss", DoubleValue(48)); } else if (frequency == 5) { std::ostringstream ossControlMode; ossControlMode << "OfdmRate" << nonHtRefRateMbps << "Mbps"; ctrlRate = StringValue(ossControlMode.str()); channelStr += "BAND_5GHZ, 0}"; } else if (frequency == 2.4) { std::ostringstream ossControlMode; ossControlMode << "ErpOfdmRate" << nonHtRefRateMbps << "Mbps"; ctrlRate = StringValue(ossControlMode.str()); channelStr += "BAND_2_4GHZ, 0}"; Config::SetDefault("ns3::LogDistancePropagationLossModel::ReferenceLoss", DoubleValue(40)); } else { NS_FATAL_ERROR("Wrong frequency value!"); } if (is80Plus80) { channelStr += std::string(";") + channelStr; } wifi.SetStandard(WIFI_STANDARD_80211ax); wifi.SetRemoteStationManager("ns3::ConstantRateWifiManager", "DataMode", StringValue(ossDataMode.str()), "ControlMode", ctrlRate); // Set guard interval wifi.ConfigHeOptions("GuardInterval", TimeValue(NanoSeconds(gi))); Ssid ssid = Ssid("ns3-80211ax"); if (phyModel == "Spectrum") { auto spectrumChannel = CreateObject(); auto lossModel = CreateObject(); spectrumChannel->AddPropagationLossModel(lossModel); SpectrumWifiPhyHelper phy; phy.SetPcapDataLinkType(WifiPhyHelper::DLT_IEEE802_11_RADIO); phy.SetChannel(spectrumChannel); mac.SetType("ns3::StaWifiMac", "Ssid", SsidValue(ssid), "MpduBufferSize", UintegerValue(useExtendedBlockAck ? 256 : 64)); phy.Set("ChannelSettings", StringValue(channelStr)); staDevices = wifi.Install(phy, mac, wifiStaNodes); if (dlAckSeqType != "NO-OFDMA") { mac.SetMultiUserScheduler("ns3::RrMultiUserScheduler", "EnableUlOfdma", BooleanValue(enableUlOfdma), "EnableBsrp", BooleanValue(enableBsrp), "AccessReqInterval", TimeValue(accessReqInterval)); } mac.SetType("ns3::ApWifiMac", "EnableBeaconJitter", BooleanValue(false), "Ssid", SsidValue(ssid)); apDevice = wifi.Install(phy, mac, wifiApNode); } else { auto channel = YansWifiChannelHelper::Default(); YansWifiPhyHelper phy; phy.SetPcapDataLinkType(WifiPhyHelper::DLT_IEEE802_11_RADIO); phy.SetChannel(channel.Create()); mac.SetType("ns3::StaWifiMac", "Ssid", SsidValue(ssid), "MpduBufferSize", UintegerValue(useExtendedBlockAck ? 256 : 64)); phy.Set("ChannelSettings", StringValue(channelStr)); staDevices = wifi.Install(phy, mac, wifiStaNodes); mac.SetType("ns3::ApWifiMac", "EnableBeaconJitter", BooleanValue(false), "Ssid", SsidValue(ssid)); apDevice = wifi.Install(phy, mac, wifiApNode); } int64_t streamNumber = 150; streamNumber += WifiHelper::AssignStreams(apDevice, streamNumber); streamNumber += WifiHelper::AssignStreams(staDevices, streamNumber); // mobility. MobilityHelper mobility; Ptr positionAlloc = CreateObject(); positionAlloc->Add(Vector(0.0, 0.0, 0.0)); positionAlloc->Add(Vector(distance, 0.0, 0.0)); mobility.SetPositionAllocator(positionAlloc); mobility.SetMobilityModel("ns3::ConstantPositionMobilityModel"); mobility.Install(wifiApNode); mobility.Install(wifiStaNodes); /* Internet stack*/ InternetStackHelper stack; stack.Install(wifiApNode); stack.Install(wifiStaNodes); streamNumber += stack.AssignStreams(wifiApNode, streamNumber); streamNumber += stack.AssignStreams(wifiStaNodes, streamNumber); Ipv4AddressHelper address; address.SetBase("192.168.1.0", "255.255.255.0"); Ipv4InterfaceContainer staNodeInterfaces; Ipv4InterfaceContainer apNodeInterface; staNodeInterfaces = address.Assign(staDevices); apNodeInterface = address.Assign(apDevice); /* Setting applications */ ApplicationContainer serverApp; auto serverNodes = downlink ? std::ref(wifiStaNodes) : std::ref(wifiApNode); Ipv4InterfaceContainer serverInterfaces; NodeContainer clientNodes; for (std::size_t i = 0; i < nStations; i++) { serverInterfaces.Add(downlink ? staNodeInterfaces.Get(i) : apNodeInterface.Get(0)); clientNodes.Add(downlink ? wifiApNode.Get(0) : wifiStaNodes.Get(i)); } const auto maxLoad = HePhy::GetDataRate(mcs, channelWidth, NanoSeconds(gi), 1) / nStations; if (udp) { // UDP flow uint16_t port = 9; UdpServerHelper server(port); serverApp = server.Install(serverNodes.get()); streamNumber += server.AssignStreams(serverNodes.get(), streamNumber); serverApp.Start(Seconds(0.0)); serverApp.Stop(simulationTime + Seconds(1.0)); const auto packetInterval = payloadSize * 8.0 / maxLoad; for (std::size_t i = 0; i < nStations; i++) { UdpClientHelper client(serverInterfaces.GetAddress(i), port); client.SetAttribute("MaxPackets", UintegerValue(4294967295U)); client.SetAttribute("Interval", TimeValue(Seconds(packetInterval))); client.SetAttribute("PacketSize", UintegerValue(payloadSize)); ApplicationContainer clientApp = client.Install(clientNodes.Get(i)); streamNumber += client.AssignStreams(clientNodes.Get(i), streamNumber); clientApp.Start(Seconds(1.0)); clientApp.Stop(simulationTime + Seconds(1.0)); } } else { // TCP flow uint16_t port = 50000; Address localAddress(InetSocketAddress(Ipv4Address::GetAny(), port)); PacketSinkHelper packetSinkHelper("ns3::TcpSocketFactory", localAddress); serverApp = packetSinkHelper.Install(serverNodes.get()); streamNumber += packetSinkHelper.AssignStreams(serverNodes.get(), streamNumber); serverApp.Start(Seconds(0.0)); serverApp.Stop(simulationTime + Seconds(1.0)); for (std::size_t i = 0; i < nStations; i++) { OnOffHelper onoff("ns3::TcpSocketFactory", Ipv4Address::GetAny()); onoff.SetAttribute("OnTime", StringValue("ns3::ConstantRandomVariable[Constant=1]")); onoff.SetAttribute("OffTime", StringValue("ns3::ConstantRandomVariable[Constant=0]")); onoff.SetAttribute("PacketSize", UintegerValue(payloadSize)); onoff.SetAttribute("DataRate", DataRateValue(maxLoad)); AddressValue remoteAddress( InetSocketAddress(serverInterfaces.GetAddress(i), port)); onoff.SetAttribute("Remote", remoteAddress); ApplicationContainer clientApp = onoff.Install(clientNodes.Get(i)); streamNumber += onoff.AssignStreams(clientNodes.Get(i), streamNumber); clientApp.Start(Seconds(1.0)); clientApp.Stop(simulationTime + Seconds(1.0)); } } Simulator::Schedule(Seconds(0), &Ipv4GlobalRoutingHelper::PopulateRoutingTables); Simulator::Stop(simulationTime + Seconds(1.0)); Simulator::Run(); // When multiple stations are used, there are chances that association requests // collide and hence the throughput may be lower than expected. Therefore, we relax // the check that the throughput cannot decrease by introducing a scaling factor (or // tolerance) auto tolerance = 0.10; auto rxBytes = 0.0; if (udp) { for (uint32_t i = 0; i < serverApp.GetN(); i++) { rxBytes += payloadSize * DynamicCast(serverApp.Get(i))->GetReceived(); } } else { for (uint32_t i = 0; i < serverApp.GetN(); i++) { rxBytes += DynamicCast(serverApp.Get(i))->GetTotalRx(); } } auto throughput = (rxBytes * 8) / simulationTime.GetMicroSeconds(); // Mbit/s Simulator::Destroy(); std::cout << +mcs << "\t\t\t" << widthStr << " MHz\t\t" << (widthStr.size() > 3 ? "" : "\t") << gi << " ns\t\t\t" << throughput << " Mbit/s" << std::endl; // test first element if (mcs == minMcs && channelWidth == 20 && gi == 3200) { if (throughput * (1 + tolerance) < minExpectedThroughput) { NS_LOG_ERROR("Obtained throughput " << throughput << " is not expected!"); exit(1); } } // test last element if (mcs == maxMcs && channelWidth == maxChannelWidth && gi == 800) { if (maxExpectedThroughput > 0 && throughput > maxExpectedThroughput * (1 + tolerance)) { NS_LOG_ERROR("Obtained throughput " << throughput << " is not expected!"); exit(1); } } // Skip comparisons with previous cases if more than one stations are present // because, e.g., random collisions in the establishment of Block Ack agreements // have an impact on throughput if (nStations == 1) { // test previous throughput is smaller (for the same mcs) if (throughput * (1 + tolerance) > previous) { previous = throughput; } else if (throughput > 0) { NS_LOG_ERROR("Obtained throughput " << throughput << " is not expected!"); exit(1); } // test previous throughput is smaller (for the same channel width and GI) if (throughput * (1 + tolerance) > prevThroughput[index]) { prevThroughput[index] = throughput; } else if (throughput > 0) { NS_LOG_ERROR("Obtained throughput " << throughput << " is not expected!"); exit(1); } } index++; gi /= 2; } channelWidth *= 2; } } return 0; }