/* * Copyright (c) 2016 Sébastien Deronne * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation; * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * * Author: Sébastien Deronne */ #include "ns3/boolean.h" #include "ns3/command-line.h" #include "ns3/config.h" #include "ns3/internet-stack-helper.h" #include "ns3/ipv4-address-helper.h" #include "ns3/log.h" #include "ns3/mobility-helper.h" #include "ns3/packet-sink-helper.h" #include "ns3/ssid.h" #include "ns3/string.h" #include "ns3/udp-client-server-helper.h" #include "ns3/uinteger.h" #include "ns3/wifi-mac.h" #include "ns3/wifi-net-device.h" #include "ns3/yans-wifi-channel.h" #include "ns3/yans-wifi-helper.h" // This is an example that illustrates how 802.11n aggregation is configured. // It defines 4 independent Wi-Fi networks (working on different channels). // Each network contains one access point and one station. Each station // continuously transmits data packets to its respective AP. // // Network topology (numbers in parentheses are channel numbers): // // Network A (36) Network B (40) Network C (44) Network D (48) // * * * * * * * * // | | | | | | | | // AP A STA A AP B STA B AP C STA C AP D STA D // // The aggregation parameters are configured differently on the 4 stations: // - station A uses default aggregation parameter values (A-MSDU disabled, A-MPDU enabled with // maximum size of 65 kB); // - station B doesn't use aggregation (both A-MPDU and A-MSDU are disabled); // - station C enables A-MSDU (with maximum size of 8 kB) but disables A-MPDU; // - station D uses two-level aggregation (A-MPDU with maximum size of 32 kB and A-MSDU with maximum // size of 4 kB). // // Packets in this simulation belong to BestEffort Access Class (AC_BE). // // The user can select the distance between the stations and the APs and can enable/disable the // RTS/CTS mechanism. Example: ./ns3 run "wifi-aggregation --distance=10 --enableRts=0 // --simulationTime=20" // // The output prints the throughput measured for the 4 cases/networks described above. When default // aggregation parameters are enabled, the maximum A-MPDU size is 65 kB and the throughput is // maximal. When aggregation is disabled, the throughput is about the half of the physical bitrate. // When only A-MSDU is enabled, the throughput is increased but is not maximal, since the maximum // A-MSDU size is limited to 7935 bytes (whereas the maximum A-MPDU size is limited to 65535 bytes). // When A-MSDU and A-MPDU are both enabled (= two-level aggregation), the throughput is slightly // smaller than the first scenario since we set a smaller maximum A-MPDU size. // // When the distance is increased, the frame error rate gets higher, and the output shows how it // affects the throughput for the 4 networks. Even through A-MSDU has less overheads than A-MPDU, // A-MSDU is less robust against transmission errors than A-MPDU. When the distance is augmented, // the throughput for the third scenario is more affected than the throughput obtained in other // networks. using namespace ns3; NS_LOG_COMPONENT_DEFINE("SimpleMpduAggregation"); int main(int argc, char* argv[]) { uint32_t payloadSize = 1472; // bytes double simulationTime = 10; // seconds double distance = 5; // meters bool enableRts = 0; bool enablePcap = 0; bool verifyResults = 0; // used for regression CommandLine cmd(__FILE__); cmd.AddValue("payloadSize", "Payload size in bytes", payloadSize); cmd.AddValue("enableRts", "Enable or disable RTS/CTS", enableRts); cmd.AddValue("simulationTime", "Simulation time in seconds", simulationTime); cmd.AddValue("distance", "Distance in meters between the station and the access point", distance); cmd.AddValue("enablePcap", "Enable/disable pcap file generation", enablePcap); cmd.AddValue("verifyResults", "Enable/disable results verification at the end of the simulation", verifyResults); cmd.Parse(argc, argv); Config::SetDefault("ns3::WifiRemoteStationManager::RtsCtsThreshold", enableRts ? StringValue("0") : StringValue("999999")); NodeContainer wifiStaNodes; wifiStaNodes.Create(4); NodeContainer wifiApNodes; wifiApNodes.Create(4); YansWifiChannelHelper channel = YansWifiChannelHelper::Default(); YansWifiPhyHelper phy; phy.SetPcapDataLinkType(WifiPhyHelper::DLT_IEEE802_11_RADIO); phy.SetChannel(channel.Create()); WifiHelper wifi; wifi.SetStandard(WIFI_STANDARD_80211n); wifi.SetRemoteStationManager("ns3::ConstantRateWifiManager", "DataMode", StringValue("HtMcs7"), "ControlMode", StringValue("HtMcs0")); WifiMacHelper mac; NetDeviceContainer staDeviceA; NetDeviceContainer staDeviceB; NetDeviceContainer staDeviceC; NetDeviceContainer staDeviceD; NetDeviceContainer apDeviceA; NetDeviceContainer apDeviceB; NetDeviceContainer apDeviceC; NetDeviceContainer apDeviceD; Ssid ssid; // Network A ssid = Ssid("network-A"); phy.Set("ChannelSettings", StringValue("{36, 0, BAND_5GHZ, 0}")); mac.SetType("ns3::StaWifiMac", "Ssid", SsidValue(ssid)); staDeviceA = wifi.Install(phy, mac, wifiStaNodes.Get(0)); mac.SetType("ns3::ApWifiMac", "Ssid", SsidValue(ssid), "EnableBeaconJitter", BooleanValue(false)); apDeviceA = wifi.Install(phy, mac, wifiApNodes.Get(0)); // Network B ssid = Ssid("network-B"); phy.Set("ChannelSettings", StringValue("{40, 0, BAND_5GHZ, 0}")); mac.SetType("ns3::StaWifiMac", "Ssid", SsidValue(ssid)); staDeviceB = wifi.Install(phy, mac, wifiStaNodes.Get(1)); // Disable A-MPDU Ptr dev = wifiStaNodes.Get(1)->GetDevice(0); Ptr wifi_dev = DynamicCast(dev); wifi_dev->GetMac()->SetAttribute("BE_MaxAmpduSize", UintegerValue(0)); mac.SetType("ns3::ApWifiMac", "Ssid", SsidValue(ssid), "EnableBeaconJitter", BooleanValue(false)); apDeviceB = wifi.Install(phy, mac, wifiApNodes.Get(1)); // Disable A-MPDU dev = wifiApNodes.Get(1)->GetDevice(0); wifi_dev = DynamicCast(dev); wifi_dev->GetMac()->SetAttribute("BE_MaxAmpduSize", UintegerValue(0)); // Network C ssid = Ssid("network-C"); phy.Set("ChannelSettings", StringValue("{44, 0, BAND_5GHZ, 0}")); mac.SetType("ns3::StaWifiMac", "Ssid", SsidValue(ssid)); staDeviceC = wifi.Install(phy, mac, wifiStaNodes.Get(2)); // Disable A-MPDU and enable A-MSDU with the highest maximum size allowed by the standard (7935 // bytes) dev = wifiStaNodes.Get(2)->GetDevice(0); wifi_dev = DynamicCast(dev); wifi_dev->GetMac()->SetAttribute("BE_MaxAmpduSize", UintegerValue(0)); wifi_dev->GetMac()->SetAttribute("BE_MaxAmsduSize", UintegerValue(7935)); mac.SetType("ns3::ApWifiMac", "Ssid", SsidValue(ssid), "EnableBeaconJitter", BooleanValue(false)); apDeviceC = wifi.Install(phy, mac, wifiApNodes.Get(2)); // Disable A-MPDU and enable A-MSDU with the highest maximum size allowed by the standard (7935 // bytes) dev = wifiApNodes.Get(2)->GetDevice(0); wifi_dev = DynamicCast(dev); wifi_dev->GetMac()->SetAttribute("BE_MaxAmpduSize", UintegerValue(0)); wifi_dev->GetMac()->SetAttribute("BE_MaxAmsduSize", UintegerValue(7935)); // Network D ssid = Ssid("network-D"); phy.Set("ChannelSettings", StringValue("{48, 0, BAND_5GHZ, 0}")); mac.SetType("ns3::StaWifiMac", "Ssid", SsidValue(ssid)); staDeviceD = wifi.Install(phy, mac, wifiStaNodes.Get(3)); // Enable A-MPDU with a smaller size than the default one and // enable A-MSDU with the smallest maximum size allowed by the standard (3839 bytes) dev = wifiStaNodes.Get(3)->GetDevice(0); wifi_dev = DynamicCast(dev); wifi_dev->GetMac()->SetAttribute("BE_MaxAmpduSize", UintegerValue(32768)); wifi_dev->GetMac()->SetAttribute("BE_MaxAmsduSize", UintegerValue(3839)); mac.SetType("ns3::ApWifiMac", "Ssid", SsidValue(ssid), "EnableBeaconJitter", BooleanValue(false)); apDeviceD = wifi.Install(phy, mac, wifiApNodes.Get(3)); // Enable A-MPDU with a smaller size than the default one and // enable A-MSDU with the smallest maximum size allowed by the standard (3839 bytes) dev = wifiApNodes.Get(3)->GetDevice(0); wifi_dev = DynamicCast(dev); wifi_dev->GetMac()->SetAttribute("BE_MaxAmpduSize", UintegerValue(32768)); wifi_dev->GetMac()->SetAttribute("BE_MaxAmsduSize", UintegerValue(3839)); // Setting mobility model MobilityHelper mobility; Ptr positionAlloc = CreateObject(); mobility.SetMobilityModel("ns3::ConstantPositionMobilityModel"); // Set position for APs positionAlloc->Add(Vector(0.0, 0.0, 0.0)); positionAlloc->Add(Vector(10.0, 0.0, 0.0)); positionAlloc->Add(Vector(20.0, 0.0, 0.0)); positionAlloc->Add(Vector(30.0, 0.0, 0.0)); // Set position for STAs positionAlloc->Add(Vector(distance, 0.0, 0.0)); positionAlloc->Add(Vector(10 + distance, 0.0, 0.0)); positionAlloc->Add(Vector(20 + distance, 0.0, 0.0)); positionAlloc->Add(Vector(30 + distance, 0.0, 0.0)); mobility.SetPositionAllocator(positionAlloc); mobility.Install(wifiApNodes); mobility.Install(wifiStaNodes); // Internet stack InternetStackHelper stack; stack.Install(wifiApNodes); stack.Install(wifiStaNodes); Ipv4AddressHelper address; address.SetBase("192.168.1.0", "255.255.255.0"); Ipv4InterfaceContainer StaInterfaceA; StaInterfaceA = address.Assign(staDeviceA); Ipv4InterfaceContainer ApInterfaceA; ApInterfaceA = address.Assign(apDeviceA); address.SetBase("192.168.2.0", "255.255.255.0"); Ipv4InterfaceContainer StaInterfaceB; StaInterfaceB = address.Assign(staDeviceB); Ipv4InterfaceContainer ApInterfaceB; ApInterfaceB = address.Assign(apDeviceB); address.SetBase("192.168.3.0", "255.255.255.0"); Ipv4InterfaceContainer StaInterfaceC; StaInterfaceC = address.Assign(staDeviceC); Ipv4InterfaceContainer ApInterfaceC; ApInterfaceC = address.Assign(apDeviceC); address.SetBase("192.168.4.0", "255.255.255.0"); Ipv4InterfaceContainer StaInterfaceD; StaInterfaceD = address.Assign(staDeviceD); Ipv4InterfaceContainer ApInterfaceD; ApInterfaceD = address.Assign(apDeviceD); // Setting applications uint16_t port = 9; UdpServerHelper serverA(port); ApplicationContainer serverAppA = serverA.Install(wifiStaNodes.Get(0)); serverAppA.Start(Seconds(0.0)); serverAppA.Stop(Seconds(simulationTime + 1)); UdpClientHelper clientA(StaInterfaceA.GetAddress(0), port); clientA.SetAttribute("MaxPackets", UintegerValue(4294967295U)); clientA.SetAttribute("Interval", TimeValue(Time("0.0001"))); // packets/s clientA.SetAttribute("PacketSize", UintegerValue(payloadSize)); ApplicationContainer clientAppA = clientA.Install(wifiApNodes.Get(0)); clientAppA.Start(Seconds(1.0)); clientAppA.Stop(Seconds(simulationTime + 1)); UdpServerHelper serverB(port); ApplicationContainer serverAppB = serverB.Install(wifiStaNodes.Get(1)); serverAppB.Start(Seconds(0.0)); serverAppB.Stop(Seconds(simulationTime + 1)); UdpClientHelper clientB(StaInterfaceB.GetAddress(0), port); clientB.SetAttribute("MaxPackets", UintegerValue(4294967295U)); clientB.SetAttribute("Interval", TimeValue(Time("0.0001"))); // packets/s clientB.SetAttribute("PacketSize", UintegerValue(payloadSize)); ApplicationContainer clientAppB = clientB.Install(wifiApNodes.Get(1)); clientAppB.Start(Seconds(1.0)); clientAppB.Stop(Seconds(simulationTime + 1)); UdpServerHelper serverC(port); ApplicationContainer serverAppC = serverC.Install(wifiStaNodes.Get(2)); serverAppC.Start(Seconds(0.0)); serverAppC.Stop(Seconds(simulationTime + 1)); UdpClientHelper clientC(StaInterfaceC.GetAddress(0), port); clientC.SetAttribute("MaxPackets", UintegerValue(4294967295U)); clientC.SetAttribute("Interval", TimeValue(Time("0.0001"))); // packets/s clientC.SetAttribute("PacketSize", UintegerValue(payloadSize)); ApplicationContainer clientAppC = clientC.Install(wifiApNodes.Get(2)); clientAppC.Start(Seconds(1.0)); clientAppC.Stop(Seconds(simulationTime + 1)); UdpServerHelper serverD(port); ApplicationContainer serverAppD = serverD.Install(wifiStaNodes.Get(3)); serverAppD.Start(Seconds(0.0)); serverAppD.Stop(Seconds(simulationTime + 1)); UdpClientHelper clientD(StaInterfaceD.GetAddress(0), port); clientD.SetAttribute("MaxPackets", UintegerValue(4294967295U)); clientD.SetAttribute("Interval", TimeValue(Time("0.0001"))); // packets/s clientD.SetAttribute("PacketSize", UintegerValue(payloadSize)); ApplicationContainer clientAppD = clientD.Install(wifiApNodes.Get(3)); clientAppD.Start(Seconds(1.0)); clientAppD.Stop(Seconds(simulationTime + 1)); if (enablePcap) { phy.EnablePcap("AP_A", apDeviceA.Get(0)); phy.EnablePcap("STA_A", staDeviceA.Get(0)); phy.EnablePcap("AP_B", apDeviceB.Get(0)); phy.EnablePcap("STA_B", staDeviceB.Get(0)); phy.EnablePcap("AP_C", apDeviceC.Get(0)); phy.EnablePcap("STA_C", staDeviceC.Get(0)); phy.EnablePcap("AP_D", apDeviceD.Get(0)); phy.EnablePcap("STA_D", staDeviceD.Get(0)); } Simulator::Stop(Seconds(simulationTime + 1)); Simulator::Run(); // Show results uint64_t totalPacketsThroughA = DynamicCast(serverAppA.Get(0))->GetReceived(); uint64_t totalPacketsThroughB = DynamicCast(serverAppB.Get(0))->GetReceived(); uint64_t totalPacketsThroughC = DynamicCast(serverAppC.Get(0))->GetReceived(); uint64_t totalPacketsThroughD = DynamicCast(serverAppD.Get(0))->GetReceived(); Simulator::Destroy(); double throughput = totalPacketsThroughA * payloadSize * 8 / (simulationTime * 1000000.0); std::cout << "Throughput with default configuration (A-MPDU aggregation enabled, 65kB): " << throughput << " Mbit/s" << '\n'; if (verifyResults && (throughput < 59.0 || throughput > 60.0)) { NS_LOG_ERROR("Obtained throughput " << throughput << " is not in the expected boundaries!"); exit(1); } throughput = totalPacketsThroughB * payloadSize * 8 / (simulationTime * 1000000.0); std::cout << "Throughput with aggregation disabled: " << throughput << " Mbit/s" << '\n'; if (verifyResults && (throughput < 30 || throughput > 31)) { NS_LOG_ERROR("Obtained throughput " << throughput << " is not in the expected boundaries!"); exit(1); } throughput = totalPacketsThroughC * payloadSize * 8 / (simulationTime * 1000000.0); std::cout << "Throughput with A-MPDU disabled and A-MSDU enabled (8kB): " << throughput << " Mbit/s" << '\n'; if (verifyResults && (throughput < 51 || throughput > 52)) { NS_LOG_ERROR("Obtained throughput " << throughput << " is not in the expected boundaries!"); exit(1); } throughput = totalPacketsThroughD * payloadSize * 8 / (simulationTime * 1000000.0); std::cout << "Throughput with A-MPDU enabled (32kB) and A-MSDU enabled (4kB): " << throughput << " Mbit/s" << '\n'; if (verifyResults && (throughput < 58 || throughput > 59)) { NS_LOG_ERROR("Obtained throughput " << throughput << " is not in the expected boundaries!"); exit(1); } return 0; }