/* * Copyright (c) 2015 Universita' degli Studi di Napoli "Federico II" * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation; * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * * Author: Pasquale Imputato * Author: Stefano Avallone */ #include "ns3/applications-module.h" #include "ns3/core-module.h" #include "ns3/flow-monitor-module.h" #include "ns3/internet-module.h" #include "ns3/network-module.h" #include "ns3/point-to-point-module.h" #include "ns3/traffic-control-module.h" // This simple example shows how to use TrafficControlHelper to install a // QueueDisc on a device. // // The default QueueDisc is a pfifo_fast with a capacity of 1000 packets (as in // Linux). However, in this example, we install a RedQueueDisc with a capacity // of 10000 packets. // // Network topology // // 10.1.1.0 // n0 -------------- n1 // point-to-point // // The output will consist of all the traced changes in the length of the RED // internal queue and in the length of the netdevice queue: // // DevicePacketsInQueue 0 to 1 // TcPacketsInQueue 7 to 8 // TcPacketsInQueue 8 to 9 // DevicePacketsInQueue 1 to 0 // TcPacketsInQueue 9 to 8 // // plus some statistics collected at the network layer (by the flow monitor) // and the application layer. Finally, the number of packets dropped by the // queuing discipline, the number of packets dropped by the netdevice and // the number of packets requeued by the queuing discipline are reported. // // If the size of the DropTail queue of the netdevice were increased from 1 // to a large number (e.g. 1000), one would observe that the number of dropped // packets goes to zero, but the latency grows in an uncontrolled manner. This // is the so-called bufferbloat problem, and illustrates the importance of // having a small device queue, so that the standing queues build in the traffic // control layer where they can be managed by advanced queue discs rather than // in the device layer. using namespace ns3; NS_LOG_COMPONENT_DEFINE("TrafficControlExample"); /** * Number of packets in TX queue trace. * * \param oldValue Old velue. * \param newValue New value. */ void TcPacketsInQueueTrace(uint32_t oldValue, uint32_t newValue) { std::cout << "TcPacketsInQueue " << oldValue << " to " << newValue << std::endl; } /** * Packets in the device queue trace. * * \param oldValue Old velue. * \param newValue New value. */ void DevicePacketsInQueueTrace(uint32_t oldValue, uint32_t newValue) { std::cout << "DevicePacketsInQueue " << oldValue << " to " << newValue << std::endl; } /** * TC Soujoun time trace. * * \param sojournTime The soujourn time. */ void SojournTimeTrace(Time sojournTime) { std::cout << "Sojourn time " << sojournTime.ToDouble(Time::MS) << "ms" << std::endl; } int main(int argc, char* argv[]) { double simulationTime = 10; // seconds std::string transportProt = "Tcp"; std::string socketType; CommandLine cmd(__FILE__); cmd.AddValue("transportProt", "Transport protocol to use: Tcp, Udp", transportProt); cmd.Parse(argc, argv); if (transportProt == "Tcp") { socketType = "ns3::TcpSocketFactory"; } else { socketType = "ns3::UdpSocketFactory"; } NodeContainer nodes; nodes.Create(2); PointToPointHelper pointToPoint; pointToPoint.SetDeviceAttribute("DataRate", StringValue("10Mbps")); pointToPoint.SetChannelAttribute("Delay", StringValue("2ms")); pointToPoint.SetQueue("ns3::DropTailQueue", "MaxSize", StringValue("1p")); NetDeviceContainer devices; devices = pointToPoint.Install(nodes); InternetStackHelper stack; stack.Install(nodes); TrafficControlHelper tch; tch.SetRootQueueDisc("ns3::RedQueueDisc"); QueueDiscContainer qdiscs = tch.Install(devices); Ptr q = qdiscs.Get(1); q->TraceConnectWithoutContext("PacketsInQueue", MakeCallback(&TcPacketsInQueueTrace)); Config::ConnectWithoutContext( "/NodeList/1/$ns3::TrafficControlLayer/RootQueueDiscList/0/SojournTime", MakeCallback(&SojournTimeTrace)); Ptr nd = devices.Get(1); Ptr ptpnd = DynamicCast(nd); Ptr> queue = ptpnd->GetQueue(); queue->TraceConnectWithoutContext("PacketsInQueue", MakeCallback(&DevicePacketsInQueueTrace)); Ipv4AddressHelper address; address.SetBase("10.1.1.0", "255.255.255.0"); Ipv4InterfaceContainer interfaces = address.Assign(devices); // Flow uint16_t port = 7; Address localAddress(InetSocketAddress(Ipv4Address::GetAny(), port)); PacketSinkHelper packetSinkHelper(socketType, localAddress); ApplicationContainer sinkApp = packetSinkHelper.Install(nodes.Get(0)); sinkApp.Start(Seconds(0.0)); sinkApp.Stop(Seconds(simulationTime + 0.1)); uint32_t payloadSize = 1448; Config::SetDefault("ns3::TcpSocket::SegmentSize", UintegerValue(payloadSize)); OnOffHelper onoff(socketType, Ipv4Address::GetAny()); onoff.SetAttribute("OnTime", StringValue("ns3::ConstantRandomVariable[Constant=1]")); onoff.SetAttribute("OffTime", StringValue("ns3::ConstantRandomVariable[Constant=0]")); onoff.SetAttribute("PacketSize", UintegerValue(payloadSize)); onoff.SetAttribute("DataRate", StringValue("50Mbps")); // bit/s ApplicationContainer apps; InetSocketAddress rmt(interfaces.GetAddress(0), port); rmt.SetTos(0xb8); AddressValue remoteAddress(rmt); onoff.SetAttribute("Remote", remoteAddress); apps.Add(onoff.Install(nodes.Get(1))); apps.Start(Seconds(1.0)); apps.Stop(Seconds(simulationTime + 0.1)); FlowMonitorHelper flowmon; Ptr monitor = flowmon.InstallAll(); Simulator::Stop(Seconds(simulationTime + 5)); Simulator::Run(); Ptr classifier = DynamicCast(flowmon.GetClassifier()); std::map stats = monitor->GetFlowStats(); std::cout << std::endl << "*** Flow monitor statistics ***" << std::endl; std::cout << " Tx Packets/Bytes: " << stats[1].txPackets << " / " << stats[1].txBytes << std::endl; std::cout << " Offered Load: " << stats[1].txBytes * 8.0 / (stats[1].timeLastTxPacket.GetSeconds() - stats[1].timeFirstTxPacket.GetSeconds()) / 1000000 << " Mbps" << std::endl; std::cout << " Rx Packets/Bytes: " << stats[1].rxPackets << " / " << stats[1].rxBytes << std::endl; uint32_t packetsDroppedByQueueDisc = 0; uint64_t bytesDroppedByQueueDisc = 0; if (stats[1].packetsDropped.size() > Ipv4FlowProbe::DROP_QUEUE_DISC) { packetsDroppedByQueueDisc = stats[1].packetsDropped[Ipv4FlowProbe::DROP_QUEUE_DISC]; bytesDroppedByQueueDisc = stats[1].bytesDropped[Ipv4FlowProbe::DROP_QUEUE_DISC]; } std::cout << " Packets/Bytes Dropped by Queue Disc: " << packetsDroppedByQueueDisc << " / " << bytesDroppedByQueueDisc << std::endl; uint32_t packetsDroppedByNetDevice = 0; uint64_t bytesDroppedByNetDevice = 0; if (stats[1].packetsDropped.size() > Ipv4FlowProbe::DROP_QUEUE) { packetsDroppedByNetDevice = stats[1].packetsDropped[Ipv4FlowProbe::DROP_QUEUE]; bytesDroppedByNetDevice = stats[1].bytesDropped[Ipv4FlowProbe::DROP_QUEUE]; } std::cout << " Packets/Bytes Dropped by NetDevice: " << packetsDroppedByNetDevice << " / " << bytesDroppedByNetDevice << std::endl; std::cout << " Throughput: " << stats[1].rxBytes * 8.0 / (stats[1].timeLastRxPacket.GetSeconds() - stats[1].timeFirstRxPacket.GetSeconds()) / 1000000 << " Mbps" << std::endl; std::cout << " Mean delay: " << stats[1].delaySum.GetSeconds() / stats[1].rxPackets << std::endl; std::cout << " Mean jitter: " << stats[1].jitterSum.GetSeconds() / (stats[1].rxPackets - 1) << std::endl; auto dscpVec = classifier->GetDscpCounts(1); for (auto p : dscpVec) { std::cout << " DSCP value: 0x" << std::hex << static_cast(p.first) << std::dec << " count: " << p.second << std::endl; } Simulator::Destroy(); std::cout << std::endl << "*** Application statistics ***" << std::endl; double thr = 0; uint64_t totalPacketsThr = DynamicCast(sinkApp.Get(0))->GetTotalRx(); thr = totalPacketsThr * 8 / (simulationTime * 1000000.0); // Mbit/s std::cout << " Rx Bytes: " << totalPacketsThr << std::endl; std::cout << " Average Goodput: " << thr << " Mbit/s" << std::endl; std::cout << std::endl << "*** TC Layer statistics ***" << std::endl; std::cout << q->GetStats() << std::endl; return 0; }