Uses of Interface
org.apache.commons.math3.stat.descriptive.StorelessUnivariateStatistic
Packages that use StorelessUnivariateStatistic
Package
Description
Generic univariate summary statistic objects.
Summary statistics based on moments.
Summary statistics based on ranks.
Other summary statistics.
-
Uses of StorelessUnivariateStatistic in org.apache.commons.math3.stat.descriptive
Classes in org.apache.commons.math3.stat.descriptive that implement StorelessUnivariateStatisticModifier and TypeClassDescriptionclass
Abstract implementation of theStorelessUnivariateStatistic
interface.Methods in org.apache.commons.math3.stat.descriptive that return StorelessUnivariateStatisticModifier and TypeMethodDescriptionabstract StorelessUnivariateStatistic
AbstractStorelessUnivariateStatistic.copy()
Returns a copy of the statistic with the same internal state.StorelessUnivariateStatistic.copy()
Returns a copy of the statistic with the same internal state.MultivariateSummaryStatistics.getGeoMeanImpl()
Returns the currently configured geometric mean implementationSummaryStatistics.getGeoMeanImpl()
Returns the currently configured geometric mean implementationSynchronizedMultivariateSummaryStatistics.getGeoMeanImpl()
Returns the currently configured geometric mean implementationSynchronizedSummaryStatistics.getGeoMeanImpl()
Returns the currently configured geometric mean implementationMultivariateSummaryStatistics.getMaxImpl()
Returns the currently configured maximum implementationSummaryStatistics.getMaxImpl()
Returns the currently configured maximum implementationSynchronizedMultivariateSummaryStatistics.getMaxImpl()
Returns the currently configured maximum implementationSynchronizedSummaryStatistics.getMaxImpl()
Returns the currently configured maximum implementationMultivariateSummaryStatistics.getMeanImpl()
Returns the currently configured mean implementationSummaryStatistics.getMeanImpl()
Returns the currently configured mean implementationSynchronizedMultivariateSummaryStatistics.getMeanImpl()
Returns the currently configured mean implementationSynchronizedSummaryStatistics.getMeanImpl()
Returns the currently configured mean implementationMultivariateSummaryStatistics.getMinImpl()
Returns the currently configured minimum implementationSummaryStatistics.getMinImpl()
Returns the currently configured minimum implementationSynchronizedMultivariateSummaryStatistics.getMinImpl()
Returns the currently configured minimum implementationSynchronizedSummaryStatistics.getMinImpl()
Returns the currently configured minimum implementationMultivariateSummaryStatistics.getSumImpl()
Returns the currently configured Sum implementationSummaryStatistics.getSumImpl()
Returns the currently configured Sum implementationSynchronizedMultivariateSummaryStatistics.getSumImpl()
Returns the currently configured Sum implementationSynchronizedSummaryStatistics.getSumImpl()
Returns the currently configured Sum implementationMultivariateSummaryStatistics.getSumLogImpl()
Returns the currently configured sum of logs implementationSummaryStatistics.getSumLogImpl()
Returns the currently configured sum of logs implementationSynchronizedMultivariateSummaryStatistics.getSumLogImpl()
Returns the currently configured sum of logs implementationSynchronizedSummaryStatistics.getSumLogImpl()
Returns the currently configured sum of logs implementationMultivariateSummaryStatistics.getSumsqImpl()
Returns the currently configured sum of squares implementationSummaryStatistics.getSumsqImpl()
Returns the currently configured sum of squares implementationSynchronizedMultivariateSummaryStatistics.getSumsqImpl()
Returns the currently configured sum of squares implementationSynchronizedSummaryStatistics.getSumsqImpl()
Returns the currently configured sum of squares implementationSummaryStatistics.getVarianceImpl()
Returns the currently configured variance implementationSynchronizedSummaryStatistics.getVarianceImpl()
Returns the currently configured variance implementationMethods in org.apache.commons.math3.stat.descriptive with parameters of type StorelessUnivariateStatisticModifier and TypeMethodDescriptionvoid
MultivariateSummaryStatistics.setGeoMeanImpl
(StorelessUnivariateStatistic[] geoMeanImpl) Sets the implementation for the geometric mean.void
SummaryStatistics.setGeoMeanImpl
(StorelessUnivariateStatistic geoMeanImpl) Sets the implementation for the geometric mean.void
SynchronizedMultivariateSummaryStatistics.setGeoMeanImpl
(StorelessUnivariateStatistic[] geoMeanImpl) Sets the implementation for the geometric mean.void
SynchronizedSummaryStatistics.setGeoMeanImpl
(StorelessUnivariateStatistic geoMeanImpl) Sets the implementation for the geometric mean.void
MultivariateSummaryStatistics.setMaxImpl
(StorelessUnivariateStatistic[] maxImpl) Sets the implementation for the maximum.void
SummaryStatistics.setMaxImpl
(StorelessUnivariateStatistic maxImpl) Sets the implementation for the maximum.void
SynchronizedMultivariateSummaryStatistics.setMaxImpl
(StorelessUnivariateStatistic[] maxImpl) Sets the implementation for the maximum.void
SynchronizedSummaryStatistics.setMaxImpl
(StorelessUnivariateStatistic maxImpl) Sets the implementation for the maximum.void
MultivariateSummaryStatistics.setMeanImpl
(StorelessUnivariateStatistic[] meanImpl) Sets the implementation for the mean.void
SummaryStatistics.setMeanImpl
(StorelessUnivariateStatistic meanImpl) Sets the implementation for the mean.void
SynchronizedMultivariateSummaryStatistics.setMeanImpl
(StorelessUnivariateStatistic[] meanImpl) Sets the implementation for the mean.void
SynchronizedSummaryStatistics.setMeanImpl
(StorelessUnivariateStatistic meanImpl) Sets the implementation for the mean.void
MultivariateSummaryStatistics.setMinImpl
(StorelessUnivariateStatistic[] minImpl) Sets the implementation for the minimum.void
SummaryStatistics.setMinImpl
(StorelessUnivariateStatistic minImpl) Sets the implementation for the minimum.void
SynchronizedMultivariateSummaryStatistics.setMinImpl
(StorelessUnivariateStatistic[] minImpl) Sets the implementation for the minimum.void
SynchronizedSummaryStatistics.setMinImpl
(StorelessUnivariateStatistic minImpl) Sets the implementation for the minimum.void
MultivariateSummaryStatistics.setSumImpl
(StorelessUnivariateStatistic[] sumImpl) Sets the implementation for the Sum.void
SummaryStatistics.setSumImpl
(StorelessUnivariateStatistic sumImpl) Sets the implementation for the Sum.void
SynchronizedMultivariateSummaryStatistics.setSumImpl
(StorelessUnivariateStatistic[] sumImpl) Sets the implementation for the Sum.void
SynchronizedSummaryStatistics.setSumImpl
(StorelessUnivariateStatistic sumImpl) Sets the implementation for the Sum.void
MultivariateSummaryStatistics.setSumLogImpl
(StorelessUnivariateStatistic[] sumLogImpl) Sets the implementation for the sum of logs.void
SummaryStatistics.setSumLogImpl
(StorelessUnivariateStatistic sumLogImpl) Sets the implementation for the sum of logs.void
SynchronizedMultivariateSummaryStatistics.setSumLogImpl
(StorelessUnivariateStatistic[] sumLogImpl) Sets the implementation for the sum of logs.void
SynchronizedSummaryStatistics.setSumLogImpl
(StorelessUnivariateStatistic sumLogImpl) Sets the implementation for the sum of logs.void
MultivariateSummaryStatistics.setSumsqImpl
(StorelessUnivariateStatistic[] sumsqImpl) Sets the implementation for the sum of squares.void
SummaryStatistics.setSumsqImpl
(StorelessUnivariateStatistic sumsqImpl) Sets the implementation for the sum of squares.void
SynchronizedMultivariateSummaryStatistics.setSumsqImpl
(StorelessUnivariateStatistic[] sumsqImpl) Sets the implementation for the sum of squares.void
SynchronizedSummaryStatistics.setSumsqImpl
(StorelessUnivariateStatistic sumsqImpl) Sets the implementation for the sum of squares.void
SummaryStatistics.setVarianceImpl
(StorelessUnivariateStatistic varianceImpl) Sets the implementation for the variance.void
SynchronizedSummaryStatistics.setVarianceImpl
(StorelessUnivariateStatistic varianceImpl) Sets the implementation for the variance. -
Uses of StorelessUnivariateStatistic in org.apache.commons.math3.stat.descriptive.moment
Classes in org.apache.commons.math3.stat.descriptive.moment that implement StorelessUnivariateStatisticModifier and TypeClassDescriptionclass
Returns the geometric mean of the available values.class
Computes the Kurtosis of the available values.class
Computes the arithmetic mean of a set of values.class
Computes a statistic related to the Second Central Moment.class
Computes the skewness of the available values.class
Computes the sample standard deviation.class
Computes the variance of the available values.Methods in org.apache.commons.math3.stat.descriptive.moment that return StorelessUnivariateStatisticModifier and TypeMethodDescriptionGeometricMean.getSumLogImpl()
Returns the currently configured sum of logs implementationMethods in org.apache.commons.math3.stat.descriptive.moment with parameters of type StorelessUnivariateStatisticModifier and TypeMethodDescriptionvoid
GeometricMean.setSumLogImpl
(StorelessUnivariateStatistic sumLogImpl) Sets the implementation for the sum of logs. -
Uses of StorelessUnivariateStatistic in org.apache.commons.math3.stat.descriptive.rank
Classes in org.apache.commons.math3.stat.descriptive.rank that implement StorelessUnivariateStatisticModifier and TypeClassDescriptionclass
Returns the maximum of the available values.class
Returns the minimum of the available values.class
AStorelessUnivariateStatistic
estimating percentiles using the invalid input: '<'ahref=http://www.cs.wustl.edu/~jain/papers/ftp/psqr.pdf>P2 Algorithm as explained by Raj Jain and Imrich Chlamtac in P2 Algorithm for Dynamic Calculation of Quantiles and Histogram Without Storing Observations.Methods in org.apache.commons.math3.stat.descriptive.rank that return StorelessUnivariateStatisticModifier and TypeMethodDescriptionPSquarePercentile.copy()
Returns a copy of the statistic with the same internal state. -
Uses of StorelessUnivariateStatistic in org.apache.commons.math3.stat.descriptive.summary
Classes in org.apache.commons.math3.stat.descriptive.summary that implement StorelessUnivariateStatisticModifier and TypeClassDescriptionclass
Returns the product of the available values.class
Returns the sum of the available values.class
Returns the sum of the natural logs for this collection of values.class
Returns the sum of the squares of the available values.