Class MultivariateSummaryStatistics

java.lang.Object
org.apache.commons.math3.stat.descriptive.MultivariateSummaryStatistics
All Implemented Interfaces:
Serializable, StatisticalMultivariateSummary
Direct Known Subclasses:
SynchronizedMultivariateSummaryStatistics

public class MultivariateSummaryStatistics extends Object implements StatisticalMultivariateSummary, Serializable

Computes summary statistics for a stream of n-tuples added using the addValue method. The data values are not stored in memory, so this class can be used to compute statistics for very large n-tuple streams.

The StorelessUnivariateStatistic instances used to maintain summary state and compute statistics are configurable via setters. For example, the default implementation for the mean can be overridden by calling setMeanImpl(StorelessUnivariateStatistic[]). Actual parameters to these methods must implement the StorelessUnivariateStatistic interface and configuration must be completed before addValue is called. No configuration is necessary to use the default, commons-math provided implementations.

To compute statistics for a stream of n-tuples, construct a MultivariateStatistics instance with dimension n and then use addValue(double[]) to add n-tuples. The getXxx methods where Xxx is a statistic return an array of double values, where for i = 0,...,n-1 the ith array element is the value of the given statistic for data range consisting of the ith element of each of the input n-tuples. For example, if addValue is called with actual parameters {0, 1, 2}, then {3, 4, 5} and finally {6, 7, 8}, getSum will return a three-element array with values {0+3+6, 1+4+7, 2+5+8}

Note: This class is not thread-safe. Use SynchronizedMultivariateSummaryStatistics if concurrent access from multiple threads is required.

Since:
1.2
See Also:
  • Constructor Details

    • MultivariateSummaryStatistics

      public MultivariateSummaryStatistics(int k, boolean isCovarianceBiasCorrected)
      Construct a MultivariateSummaryStatistics instance
      Parameters:
      k - dimension of the data
      isCovarianceBiasCorrected - if true, the unbiased sample covariance is computed, otherwise the biased population covariance is computed
  • Method Details

    • addValue

      public void addValue(double[] value) throws DimensionMismatchException
      Add an n-tuple to the data
      Parameters:
      value - the n-tuple to add
      Throws:
      DimensionMismatchException - if the length of the array does not match the one used at construction
    • getDimension

      public int getDimension()
      Returns the dimension of the data
      Specified by:
      getDimension in interface StatisticalMultivariateSummary
      Returns:
      The dimension of the data
    • getN

      public long getN()
      Returns the number of available values
      Specified by:
      getN in interface StatisticalMultivariateSummary
      Returns:
      The number of available values
    • getSum

      public double[] getSum()
      Returns an array whose ith entry is the sum of the ith entries of the arrays that have been added using addValue(double[])
      Specified by:
      getSum in interface StatisticalMultivariateSummary
      Returns:
      the array of component sums
    • getSumSq

      public double[] getSumSq()
      Returns an array whose ith entry is the sum of squares of the ith entries of the arrays that have been added using addValue(double[])
      Specified by:
      getSumSq in interface StatisticalMultivariateSummary
      Returns:
      the array of component sums of squares
    • getSumLog

      public double[] getSumLog()
      Returns an array whose ith entry is the sum of logs of the ith entries of the arrays that have been added using addValue(double[])
      Specified by:
      getSumLog in interface StatisticalMultivariateSummary
      Returns:
      the array of component log sums
    • getMean

      public double[] getMean()
      Returns an array whose ith entry is the mean of the ith entries of the arrays that have been added using addValue(double[])
      Specified by:
      getMean in interface StatisticalMultivariateSummary
      Returns:
      the array of component means
    • getStandardDeviation

      public double[] getStandardDeviation()
      Returns an array whose ith entry is the standard deviation of the ith entries of the arrays that have been added using addValue(double[])
      Specified by:
      getStandardDeviation in interface StatisticalMultivariateSummary
      Returns:
      the array of component standard deviations
    • getCovariance

      public RealMatrix getCovariance()
      Returns the covariance matrix of the values that have been added.
      Specified by:
      getCovariance in interface StatisticalMultivariateSummary
      Returns:
      the covariance matrix
    • getMax

      public double[] getMax()
      Returns an array whose ith entry is the maximum of the ith entries of the arrays that have been added using addValue(double[])
      Specified by:
      getMax in interface StatisticalMultivariateSummary
      Returns:
      the array of component maxima
    • getMin

      public double[] getMin()
      Returns an array whose ith entry is the minimum of the ith entries of the arrays that have been added using addValue(double[])
      Specified by:
      getMin in interface StatisticalMultivariateSummary
      Returns:
      the array of component minima
    • getGeometricMean

      public double[] getGeometricMean()
      Returns an array whose ith entry is the geometric mean of the ith entries of the arrays that have been added using addValue(double[])
      Specified by:
      getGeometricMean in interface StatisticalMultivariateSummary
      Returns:
      the array of component geometric means
    • toString

      public String toString()
      Generates a text report displaying summary statistics from values that have been added.
      Overrides:
      toString in class Object
      Returns:
      String with line feeds displaying statistics
    • clear

      public void clear()
      Resets all statistics and storage
    • equals

      public boolean equals(Object object)
      Returns true iff object is a MultivariateSummaryStatistics instance and all statistics have the same values as this.
      Overrides:
      equals in class Object
      Parameters:
      object - the object to test equality against.
      Returns:
      true if object equals this
    • hashCode

      public int hashCode()
      Returns hash code based on values of statistics
      Overrides:
      hashCode in class Object
      Returns:
      hash code
    • getSumImpl

      public StorelessUnivariateStatistic[] getSumImpl()
      Returns the currently configured Sum implementation
      Returns:
      the StorelessUnivariateStatistic implementing the sum
    • setSumImpl

      Sets the implementation for the Sum.

      This method must be activated before any data has been added - i.e., before addValue has been used to add data; otherwise an IllegalStateException will be thrown.

      Parameters:
      sumImpl - the StorelessUnivariateStatistic instance to use for computing the Sum
      Throws:
      DimensionMismatchException - if the array dimension does not match the one used at construction
      MathIllegalStateException - if data has already been added (i.e if n > 0)
    • getSumsqImpl

      public StorelessUnivariateStatistic[] getSumsqImpl()
      Returns the currently configured sum of squares implementation
      Returns:
      the StorelessUnivariateStatistic implementing the sum of squares
    • setSumsqImpl

      Sets the implementation for the sum of squares.

      This method must be activated before any data has been added - i.e., before addValue has been used to add data; otherwise an IllegalStateException will be thrown.

      Parameters:
      sumsqImpl - the StorelessUnivariateStatistic instance to use for computing the sum of squares
      Throws:
      DimensionMismatchException - if the array dimension does not match the one used at construction
      MathIllegalStateException - if data has already been added (i.e if n > 0)
    • getMinImpl

      public StorelessUnivariateStatistic[] getMinImpl()
      Returns the currently configured minimum implementation
      Returns:
      the StorelessUnivariateStatistic implementing the minimum
    • setMinImpl

      Sets the implementation for the minimum.

      This method must be activated before any data has been added - i.e., before addValue has been used to add data; otherwise an IllegalStateException will be thrown.

      Parameters:
      minImpl - the StorelessUnivariateStatistic instance to use for computing the minimum
      Throws:
      DimensionMismatchException - if the array dimension does not match the one used at construction
      MathIllegalStateException - if data has already been added (i.e if n > 0)
    • getMaxImpl

      public StorelessUnivariateStatistic[] getMaxImpl()
      Returns the currently configured maximum implementation
      Returns:
      the StorelessUnivariateStatistic implementing the maximum
    • setMaxImpl

      Sets the implementation for the maximum.

      This method must be activated before any data has been added - i.e., before addValue has been used to add data; otherwise an IllegalStateException will be thrown.

      Parameters:
      maxImpl - the StorelessUnivariateStatistic instance to use for computing the maximum
      Throws:
      DimensionMismatchException - if the array dimension does not match the one used at construction
      MathIllegalStateException - if data has already been added (i.e if n > 0)
    • getSumLogImpl

      public StorelessUnivariateStatistic[] getSumLogImpl()
      Returns the currently configured sum of logs implementation
      Returns:
      the StorelessUnivariateStatistic implementing the log sum
    • setSumLogImpl

      public void setSumLogImpl(StorelessUnivariateStatistic[] sumLogImpl) throws MathIllegalStateException, DimensionMismatchException

      Sets the implementation for the sum of logs.

      This method must be activated before any data has been added - i.e., before addValue has been used to add data; otherwise an IllegalStateException will be thrown.

      Parameters:
      sumLogImpl - the StorelessUnivariateStatistic instance to use for computing the log sum
      Throws:
      DimensionMismatchException - if the array dimension does not match the one used at construction
      MathIllegalStateException - if data has already been added (i.e if n > 0)
    • getGeoMeanImpl

      public StorelessUnivariateStatistic[] getGeoMeanImpl()
      Returns the currently configured geometric mean implementation
      Returns:
      the StorelessUnivariateStatistic implementing the geometric mean
    • setGeoMeanImpl

      public void setGeoMeanImpl(StorelessUnivariateStatistic[] geoMeanImpl) throws MathIllegalStateException, DimensionMismatchException

      Sets the implementation for the geometric mean.

      This method must be activated before any data has been added - i.e., before addValue has been used to add data; otherwise an IllegalStateException will be thrown.

      Parameters:
      geoMeanImpl - the StorelessUnivariateStatistic instance to use for computing the geometric mean
      Throws:
      DimensionMismatchException - if the array dimension does not match the one used at construction
      MathIllegalStateException - if data has already been added (i.e if n > 0)
    • getMeanImpl

      public StorelessUnivariateStatistic[] getMeanImpl()
      Returns the currently configured mean implementation
      Returns:
      the StorelessUnivariateStatistic implementing the mean
    • setMeanImpl

      Sets the implementation for the mean.

      This method must be activated before any data has been added - i.e., before addValue has been used to add data; otherwise an IllegalStateException will be thrown.

      Parameters:
      meanImpl - the StorelessUnivariateStatistic instance to use for computing the mean
      Throws:
      DimensionMismatchException - if the array dimension does not match the one used at construction
      MathIllegalStateException - if data has already been added (i.e if n > 0)