Class BaseAbstractMultivariateVectorOptimizer<FUNC extends MultivariateVectorFunction>

java.lang.Object
org.apache.commons.math3.optimization.direct.BaseAbstractMultivariateVectorOptimizer<FUNC>
Type Parameters:
FUNC - the type of the objective function to be optimized
All Implemented Interfaces:
BaseMultivariateVectorOptimizer<FUNC>, BaseOptimizer<PointVectorValuePair>
Direct Known Subclasses:
AbstractLeastSquaresOptimizer

@Deprecated public abstract class BaseAbstractMultivariateVectorOptimizer<FUNC extends MultivariateVectorFunction> extends Object implements BaseMultivariateVectorOptimizer<FUNC>
Deprecated.
As of 3.1 (to be removed in 4.0).
Base class for implementing optimizers for multivariate scalar functions. This base class handles the boiler-plate methods associated to thresholds settings, iterations and evaluations counting.
Since:
3.0
  • Field Details

    • evaluations

      protected final Incrementor evaluations
      Deprecated.
      Evaluations counter.
  • Constructor Details

  • Method Details

    • getMaxEvaluations

      public int getMaxEvaluations()
      Deprecated.
      Get the maximal number of function evaluations.
      Specified by:
      getMaxEvaluations in interface BaseOptimizer<FUNC extends MultivariateVectorFunction>
      Returns:
      the maximal number of function evaluations.
    • getEvaluations

      public int getEvaluations()
      Deprecated.
      Get the number of evaluations of the objective function. The number of evaluations corresponds to the last call to the optimize method. It is 0 if the method has not been called yet.
      Specified by:
      getEvaluations in interface BaseOptimizer<FUNC extends MultivariateVectorFunction>
      Returns:
      the number of evaluations of the objective function.
    • getConvergenceChecker

      public ConvergenceChecker<PointVectorValuePair> getConvergenceChecker()
      Deprecated.
      Get the convergence checker.
      Specified by:
      getConvergenceChecker in interface BaseOptimizer<FUNC extends MultivariateVectorFunction>
      Returns:
      the object used to check for convergence.
    • computeObjectiveValue

      protected double[] computeObjectiveValue(double[] point)
      Deprecated.
      Compute the objective function value.
      Parameters:
      point - Point at which the objective function must be evaluated.
      Returns:
      the objective function value at the specified point.
      Throws:
      TooManyEvaluationsException - if the maximal number of evaluations is exceeded.
    • optimize

      @Deprecated public PointVectorValuePair optimize(int maxEval, FUNC f, double[] t, double[] w, double[] startPoint)
      Deprecated.
      Optimize an objective function. Optimization is considered to be a weighted least-squares minimization. The cost function to be minimized is ∑weighti(objectivei - targeti)2
      Specified by:
      optimize in interface BaseMultivariateVectorOptimizer<FUNC extends MultivariateVectorFunction>
      Parameters:
      maxEval - Maximum number of function evaluations.
      f - Objective function.
      t - Target value for the objective functions at optimum.
      w - Weights for the least squares cost computation.
      startPoint - Start point for optimization.
      Returns:
      the point/value pair giving the optimal value for objective function.
    • optimize

      protected PointVectorValuePair optimize(int maxEval, FUNC f, OptimizationData... optData) throws TooManyEvaluationsException, DimensionMismatchException
      Deprecated.
      Optimize an objective function.
      Parameters:
      maxEval - Allowed number of evaluations of the objective function.
      f - Objective function.
      optData - Optimization data. The following data will be looked for:
      Returns:
      the point/value pair giving the optimal value of the objective function.
      Throws:
      TooManyEvaluationsException - if the maximal number of evaluations is exceeded.
      DimensionMismatchException - if the initial guess, target, and weight arguments have inconsistent dimensions.
      Since:
      3.1
    • optimizeInternal

      @Deprecated protected PointVectorValuePair optimizeInternal(int maxEval, FUNC f, double[] t, double[] w, double[] startPoint)
      Optimize an objective function. Optimization is considered to be a weighted least-squares minimization. The cost function to be minimized is ∑weighti(objectivei - targeti)2
      Parameters:
      maxEval - Maximum number of function evaluations.
      f - Objective function.
      t - Target value for the objective functions at optimum.
      w - Weights for the least squares cost computation.
      startPoint - Start point for optimization.
      Returns:
      the point/value pair giving the optimal value for objective function.
      Throws:
      DimensionMismatchException - if the start point dimension is wrong.
      TooManyEvaluationsException - if the maximal number of evaluations is exceeded.
      NullArgumentException - if any argument is null.
    • optimizeInternal

      protected PointVectorValuePair optimizeInternal(int maxEval, FUNC f, OptimizationData... optData) throws TooManyEvaluationsException, DimensionMismatchException
      Deprecated.
      Optimize an objective function.
      Parameters:
      maxEval - Allowed number of evaluations of the objective function.
      f - Objective function.
      optData - Optimization data. The following data will be looked for:
      Returns:
      the point/value pair giving the optimal value of the objective function.
      Throws:
      TooManyEvaluationsException - if the maximal number of evaluations is exceeded.
      DimensionMismatchException - if the initial guess, target, and weight arguments have inconsistent dimensions.
      Since:
      3.1
    • getStartPoint

      public double[] getStartPoint()
      Deprecated.
      Gets the initial values of the optimized parameters.
      Returns:
      the initial guess.
    • getWeight

      public RealMatrix getWeight()
      Deprecated.
      Gets the weight matrix of the observations.
      Returns:
      the weight matrix.
      Since:
      3.1
    • getTarget

      public double[] getTarget()
      Deprecated.
      Gets the observed values to be matched by the objective vector function.
      Returns:
      the target values.
      Since:
      3.1
    • getObjectiveFunction

      protected FUNC getObjectiveFunction()
      Deprecated.
      Gets the objective vector function. Note that this access bypasses the evaluation counter.
      Returns:
      the objective vector function.
      Since:
      3.1
    • doOptimize

      protected abstract PointVectorValuePair doOptimize()
      Deprecated.
      Perform the bulk of the optimization algorithm.
      Returns:
      the point/value pair giving the optimal value for the objective function.
    • getTargetRef

      @Deprecated protected double[] getTargetRef()
      Deprecated.
      As of 3.1.
      Returns:
      a reference to the array.
    • getWeightRef

      @Deprecated protected double[] getWeightRef()
      Deprecated.
      As of 3.1.
      Returns:
      a reference to the array.
    • setUp

      protected void setUp()
      Deprecated.
      Method which a subclass must override whenever its internal state depend on the input parsed by this base class. It will be called after the parsing step performed in the optimize method and just before doOptimize().
      Since:
      3.1