Class AbstractLeastSquaresOptimizer
java.lang.Object
org.apache.commons.math3.optim.BaseOptimizer<PointVectorValuePair>
org.apache.commons.math3.optim.BaseMultivariateOptimizer<PointVectorValuePair>
org.apache.commons.math3.optim.nonlinear.vector.MultivariateVectorOptimizer
org.apache.commons.math3.optim.nonlinear.vector.JacobianMultivariateVectorOptimizer
org.apache.commons.math3.optim.nonlinear.vector.jacobian.AbstractLeastSquaresOptimizer
- Direct Known Subclasses:
GaussNewtonOptimizer
,LevenbergMarquardtOptimizer
@Deprecated
public abstract class AbstractLeastSquaresOptimizer
extends JacobianMultivariateVectorOptimizer
Deprecated.
Base class for implementing least-squares optimizers.
It provides methods for error estimation.
- Since:
- 3.1
-
Field Summary
Fields inherited from class org.apache.commons.math3.optim.BaseOptimizer
evaluations, iterations
-
Constructor Summary
ConstructorsModifierConstructorDescriptionprotected
Deprecated. -
Method Summary
Modifier and TypeMethodDescriptionprotected double
computeCost
(double[] residuals) Deprecated.Computes the cost.double[][]
computeCovariances
(double[] params, double threshold) Deprecated.Get the covariance matrix of the optimized parameters.protected double[]
computeResiduals
(double[] objectiveValue) Deprecated.Computes the residuals.double[]
computeSigma
(double[] params, double covarianceSingularityThreshold) Deprecated.Computes an estimate of the standard deviation of the parameters.protected RealMatrix
computeWeightedJacobian
(double[] params) Deprecated.Computes the weighted Jacobian matrix.double
Deprecated.Get a Chi-Square-like value assuming the N residuals follow N distinct normal distributions centered on 0 and whose variances are the reciprocal of the weights.double
getRMS()
Deprecated.Gets the root-mean-square (RMS) value.Deprecated.Gets the square-root of the weight matrix.optimize
(OptimizationData... optData) Deprecated.Stores data and performs the optimization.protected void
parseOptimizationData
(OptimizationData... optData) Deprecated.Scans the list of (required and optional) optimization data that characterize the problem.protected void
setCost
(double cost) Deprecated.Sets the cost.Methods inherited from class org.apache.commons.math3.optim.nonlinear.vector.JacobianMultivariateVectorOptimizer
computeJacobian
Methods inherited from class org.apache.commons.math3.optim.nonlinear.vector.MultivariateVectorOptimizer
computeObjectiveValue, getTarget, getTargetSize, getWeight
Methods inherited from class org.apache.commons.math3.optim.BaseMultivariateOptimizer
getLowerBound, getStartPoint, getUpperBound
Methods inherited from class org.apache.commons.math3.optim.BaseOptimizer
doOptimize, getConvergenceChecker, getEvaluations, getIterations, getMaxEvaluations, getMaxIterations, incrementEvaluationCount, incrementIterationCount, optimize
-
Constructor Details
-
AbstractLeastSquaresOptimizer
Deprecated.- Parameters:
checker
- Convergence checker.
-
-
Method Details
-
computeWeightedJacobian
Deprecated.Computes the weighted Jacobian matrix.- Parameters:
params
- Model parameters at which to compute the Jacobian.- Returns:
- the weighted Jacobian: W1/2 J.
- Throws:
DimensionMismatchException
- if the Jacobian dimension does not match problem dimension.
-
computeCost
protected double computeCost(double[] residuals) Deprecated.Computes the cost.- Parameters:
residuals
- Residuals.- Returns:
- the cost.
- See Also:
-
getRMS
public double getRMS()Deprecated.Gets the root-mean-square (RMS) value. The RMS the root of the arithmetic mean of the square of all weighted residuals. This is related to the criterion that is minimized by the optimizer as follows: If c if the criterion, and n is the number of measurements, then the RMS is sqrt (c/n).- Returns:
- the RMS value.
-
getChiSquare
public double getChiSquare()Deprecated.Get a Chi-Square-like value assuming the N residuals follow N distinct normal distributions centered on 0 and whose variances are the reciprocal of the weights.- Returns:
- chi-square value
-
getWeightSquareRoot
Deprecated.Gets the square-root of the weight matrix.- Returns:
- the square-root of the weight matrix.
-
setCost
protected void setCost(double cost) Deprecated.Sets the cost.- Parameters:
cost
- Cost value.
-
computeCovariances
public double[][] computeCovariances(double[] params, double threshold) Deprecated.Get the covariance matrix of the optimized parameters.
Note that this operation involves the inversion of theJTJ
matrix, whereJ
is the Jacobian matrix. Thethreshold
parameter is a way for the caller to specify that the result of this computation should be considered meaningless, and thus trigger an exception.- Parameters:
params
- Model parameters.threshold
- Singularity threshold.- Returns:
- the covariance matrix.
- Throws:
SingularMatrixException
- if the covariance matrix cannot be computed (singular problem).
-
computeSigma
public double[] computeSigma(double[] params, double covarianceSingularityThreshold) Deprecated.Computes an estimate of the standard deviation of the parameters. The returned values are the square root of the diagonal coefficients of the covariance matrix,sd(a[i]) ~= sqrt(C[i][i])
, wherea[i]
is the optimized value of thei
-th parameter, andC
is the covariance matrix.- Parameters:
params
- Model parameters.covarianceSingularityThreshold
- Singularity threshold (seecomputeCovariances
).- Returns:
- an estimate of the standard deviation of the optimized parameters
- Throws:
SingularMatrixException
- if the covariance matrix cannot be computed.
-
optimize
public PointVectorValuePair optimize(OptimizationData... optData) throws TooManyEvaluationsException Deprecated.Stores data and performs the optimization.The list of parameters is open-ended so that sub-classes can extend it with arguments specific to their concrete implementations.
When the method is called multiple times, instance data is overwritten only when actually present in the list of arguments: when not specified, data set in a previous call is retained (and thus is optional in subsequent calls).
Important note: Subclasses must override
BaseOptimizer.parseOptimizationData(OptimizationData[])
if they need to register their own options; but then, they must also callsuper.parseOptimizationData(optData)
within that method.- Overrides:
optimize
in classJacobianMultivariateVectorOptimizer
- Parameters:
optData
- Optimization data. In addition to those documented inJacobianMultivariateVectorOptimizer
, this method will register the following data:- Returns:
- a point/value pair that satisfies the convergence criteria.
- Throws:
TooManyEvaluationsException
- if the maximal number of evaluations is exceeded.DimensionMismatchException
- if the initial guess, target, and weight arguments have inconsistent dimensions.
-
computeResiduals
protected double[] computeResiduals(double[] objectiveValue) Deprecated.Computes the residuals. The residual is the difference between the observed (target) values and the model (objective function) value. There is one residual for each element of the vector-valued function.- Parameters:
objectiveValue
- Value of the the objective function. This is the value returned from a call tocomputeObjectiveValue
(whose array argument contains the model parameters).- Returns:
- the residuals.
- Throws:
DimensionMismatchException
- ifparams
has a wrong length.
-
parseOptimizationData
Deprecated.Scans the list of (required and optional) optimization data that characterize the problem. If the weight matrix is specified, theweightMatrixSqrt
field is recomputed.- Overrides:
parseOptimizationData
in classJacobianMultivariateVectorOptimizer
- Parameters:
optData
- Optimization data. The following data will be looked for:
-
org.apache.commons.math3.fitting.leastsquares
package (cf. MATH-1008).