Class LutherIntegrator
java.lang.Object
org.apache.commons.math3.ode.AbstractIntegrator
org.apache.commons.math3.ode.nonstiff.RungeKuttaIntegrator
org.apache.commons.math3.ode.nonstiff.LutherIntegrator
- All Implemented Interfaces:
FirstOrderIntegrator
,ODEIntegrator
This class implements the Luther sixth order Runge-Kutta
integrator for Ordinary Differential Equations.
This method is described in H. A. Luther 1968 paper An explicit Sixth-Order Runge-Kutta Formula.
This method is an explicit Runge-Kutta method, its Butcher-array is the following one :
0 | 0 0 0 0 0 0 1 | 1 0 0 0 0 0 1/2 | 3/8 1/8 0 0 0 0 2/3 | 8/27 2/27 8/27 0 0 0 (7-q)/14 | ( -21 + 9q)/392 ( -56 + 8q)/392 ( 336 - 48q)/392 ( -63 + 3q)/392 0 0 (7+q)/14 | (-1155 - 255q)/1960 ( -280 - 40q)/1960 ( 0 - 320q)/1960 ( 63 + 363q)/1960 ( 2352 + 392q)/1960 0 1 | ( 330 + 105q)/180 ( 120 + 0q)/180 ( -200 + 280q)/180 ( 126 - 189q)/180 ( -686 - 126q)/180 ( 490 - 70q)/180 |-------------------------------------------------------------------------------------------------------------------------------------------------- | 1/20 0 16/45 0 49/180 49/180 1/20where q = √21
- Since:
- 3.3
- See Also:
-
Field Summary
Fields inherited from class org.apache.commons.math3.ode.AbstractIntegrator
isLastStep, resetOccurred, stepHandlers, stepSize, stepStart
-
Constructor Summary
Constructors -
Method Summary
Methods inherited from class org.apache.commons.math3.ode.nonstiff.RungeKuttaIntegrator
integrate, singleStep
Methods inherited from class org.apache.commons.math3.ode.AbstractIntegrator
acceptStep, addEventHandler, addEventHandler, addStepHandler, clearEventHandlers, clearStepHandlers, computeDerivatives, getCounter, getCurrentSignedStepsize, getCurrentStepStart, getEvaluations, getEvaluationsCounter, getEventHandlers, getExpandable, getMaxEvaluations, getName, getStepHandlers, initIntegration, integrate, sanityChecks, setEquations, setMaxEvaluations, setStateInitialized
-
Constructor Details
-
LutherIntegrator
public LutherIntegrator(double step) Simple constructor. Build a fourth-order Luther integrator with the given step.- Parameters:
step
- integration step
-