Class JacobianMatrices
secondary equations
to
compute the Jacobian matrices with respect to the initial state vector and, if
any, to some parameters of the primary ODE set.
It is intended to be packed into an ExpandableStatefulODE
in conjunction with a primary set of ODE, which may be:
- Since:
- 3.0
- See Also:
-
Nested Class Summary
Nested ClassesModifier and TypeClassDescriptionstatic class
Special exception for equations mismatch. -
Constructor Summary
ConstructorsConstructorDescriptionJacobianMatrices
(FirstOrderDifferentialEquations fode, double[] hY, String... parameters) Simple constructor for a secondary equations set computing Jacobian matrices.JacobianMatrices
(MainStateJacobianProvider jode, String... parameters) Simple constructor for a secondary equations set computing Jacobian matrices. -
Method Summary
Modifier and TypeMethodDescriptionvoid
Add a parameter Jacobian provider.void
getCurrentMainSetJacobian
(double[][] dYdY0) Get the current value of the Jacobian matrix with respect to state.void
getCurrentParameterJacobian
(String pName, double[] dYdP) Get the current value of the Jacobian matrix with respect to one parameter.void
registerVariationalEquations
(ExpandableStatefulODE expandable) Register the variational equations for the Jacobians matrices to the expandable set.void
setInitialMainStateJacobian
(double[][] dYdY0) Set the initial value of the Jacobian matrix with respect to state.void
setInitialParameterJacobian
(String pName, double[] dYdP) Set the initial value of a column of the Jacobian matrix with respect to one parameter.void
setParameterizedODE
(ParameterizedODE parameterizedOde) Set a parameter Jacobian provider.void
setParameterStep
(String parameter, double hP) Set the step associated to a parameter in order to compute by finite difference the Jacobian matrix.
-
Constructor Details
-
JacobianMatrices
public JacobianMatrices(FirstOrderDifferentialEquations fode, double[] hY, String... parameters) throws DimensionMismatchException Simple constructor for a secondary equations set computing Jacobian matrices.Parameters must belong to the supported ones given by
Parameterizable.getParametersNames()
, so the primary set of differential equations must beParameterizable
.Note that each selection clears the previous selected parameters.
- Parameters:
fode
- the primary first order differential equations set to extendhY
- step used for finite difference computation with respect to state vectorparameters
- parameters to consider for Jacobian matrices processing (may be null if parameters Jacobians is not desired)- Throws:
DimensionMismatchException
- if there is a dimension mismatch between the steps arrayhY
and the equation dimension
-
JacobianMatrices
Simple constructor for a secondary equations set computing Jacobian matrices.Parameters must belong to the supported ones given by
Parameterizable.getParametersNames()
, so the primary set of differential equations must beParameterizable
.Note that each selection clears the previous selected parameters.
- Parameters:
jode
- the primary first order differential equations set to extendparameters
- parameters to consider for Jacobian matrices processing (may be null if parameters Jacobians is not desired)
-
-
Method Details
-
registerVariationalEquations
public void registerVariationalEquations(ExpandableStatefulODE expandable) throws DimensionMismatchException, JacobianMatrices.MismatchedEquations Register the variational equations for the Jacobians matrices to the expandable set.- Parameters:
expandable
- expandable set into which variational equations should be registered- Throws:
DimensionMismatchException
- if the dimension of the partial state does not match the selected equations set dimensionJacobianMatrices.MismatchedEquations
- if the primary set of the expandable set does not match the one used to build the instance- See Also:
-
addParameterJacobianProvider
Add a parameter Jacobian provider.- Parameters:
provider
- the parameter Jacobian provider to compute exactly the parameter Jacobian matrix
-
setParameterizedODE
Set a parameter Jacobian provider.- Parameters:
parameterizedOde
- the parameterized ODE to compute the parameter Jacobian matrix using finite differences
-
setParameterStep
Set the step associated to a parameter in order to compute by finite difference the Jacobian matrix.Needed if and only if the primary ODE set is a
ParameterizedODE
.Given a non zero parameter value pval for the parameter, a reasonable value for such a step is
pval * FastMath.sqrt(Precision.EPSILON)
.A zero value for such a step doesn't enable to compute the parameter Jacobian matrix.
- Parameters:
parameter
- parameter to consider for Jacobian processinghP
- step for Jacobian finite difference computation w.r.t. the specified parameter- Throws:
UnknownParameterException
- if the parameter is not supported- See Also:
-
setInitialMainStateJacobian
Set the initial value of the Jacobian matrix with respect to state.If this method is not called, the initial value of the Jacobian matrix with respect to state is set to identity.
- Parameters:
dYdY0
- initial Jacobian matrix w.r.t. state- Throws:
DimensionMismatchException
- if matrix dimensions are incorrect
-
setInitialParameterJacobian
public void setInitialParameterJacobian(String pName, double[] dYdP) throws UnknownParameterException, DimensionMismatchException Set the initial value of a column of the Jacobian matrix with respect to one parameter.If this method is not called for some parameter, the initial value of the column of the Jacobian matrix with respect to this parameter is set to zero.
- Parameters:
pName
- parameter namedYdP
- initial Jacobian column vector with respect to the parameter- Throws:
UnknownParameterException
- if a parameter is not supportedDimensionMismatchException
- if the column vector does not match state dimension
-
getCurrentMainSetJacobian
public void getCurrentMainSetJacobian(double[][] dYdY0) Get the current value of the Jacobian matrix with respect to state.- Parameters:
dYdY0
- current Jacobian matrix with respect to state.
-
getCurrentParameterJacobian
Get the current value of the Jacobian matrix with respect to one parameter.- Parameters:
pName
- name of the parameter for the computed Jacobian matrixdYdP
- current Jacobian matrix with respect to the named parameter
-