Class FeatureInitializerFactory
java.lang.Object
org.apache.commons.math3.ml.neuralnet.FeatureInitializerFactory
Creates functions that will select the initial values of a neuron's
features.
- Since:
- 3.3
-
Method Summary
Modifier and TypeMethodDescriptionstatic FeatureInitializer
function
(UnivariateFunction f, double init, double inc) Creates an initializer from a univariate functionf(x)
.static FeatureInitializer
randomize
(RealDistribution random, FeatureInitializer orig) Adds some amount of random data to the given initializer.static FeatureInitializer
uniform
(double min, double max) Uniform sampling of the given range.static FeatureInitializer
uniform
(RandomGenerator rng, double min, double max) Uniform sampling of the given range.
-
Method Details
-
uniform
Uniform sampling of the given range.- Parameters:
rng
- Random number generator used to draw samples from a uniform distribution.min
- Lower bound of the range.max
- Upper bound of the range.- Returns:
- an initializer such that the features will be initialized with values within the given range.
- Throws:
NumberIsTooLargeException
- ifmin >= max
.
-
uniform
Uniform sampling of the given range.- Parameters:
min
- Lower bound of the range.max
- Upper bound of the range.- Returns:
- an initializer such that the features will be initialized with values within the given range.
- Throws:
NumberIsTooLargeException
- ifmin >= max
.
-
function
Creates an initializer from a univariate functionf(x)
. The argumentx
is set toinit
at the first call and will be incremented at each call.- Parameters:
f
- Function.init
- Initial value.inc
- Increment- Returns:
- the initializer.
-
randomize
Adds some amount of random data to the given initializer.- Parameters:
random
- Random variable distribution.orig
- Original initializer.- Returns:
- an initializer whose
value
method will returnorig.value() + random.sample()
.
-