Uses of Class
org.apache.commons.math3.exception.ZeroException
Packages that use ZeroException
Package
Description
Univariate real functions interpolation algorithms.
Complex number type and implementations of complex transcendental
functions.
Linear algebra support.
Random number and random data generators.
Classes providing hypothesis testing.
-
Uses of ZeroException in org.apache.commons.math3.analysis.interpolation
Methods in org.apache.commons.math3.analysis.interpolation that throw ZeroExceptionModifier and TypeMethodDescriptionvoid
FieldHermiteInterpolator.addSamplePoint
(T x, T[]... value) Add a sample point.void
HermiteInterpolator.addSamplePoint
(double x, double[]... value) Add a sample point. -
Uses of ZeroException in org.apache.commons.math3.complex
Methods in org.apache.commons.math3.complex that throw ZeroExceptionModifier and TypeMethodDescriptionvoid
RootsOfUnity.computeRoots
(int n) Computes then
-th roots of unity. -
Uses of ZeroException in org.apache.commons.math3.linear
Methods in org.apache.commons.math3.linear that throw ZeroExceptionModifier and TypeMethodDescriptionstatic <T extends FieldElement<T>>
FieldVector<T> MatrixUtils.createFieldVector
(T[] data) Creates aFieldVector
using the data from the input array.Constructors in org.apache.commons.math3.linear that throw ZeroExceptionModifierConstructorDescriptionArrayFieldVector
(Field<T> field, T[] v1, T[] v2) Construct a vector by appending one vector to another vector.ArrayFieldVector
(T[] d) Construct a vector from an array, copying the input array.ArrayFieldVector
(T[] d, boolean copyArray) Create a new ArrayFieldVector using the input array as the underlying data array.ArrayFieldVector
(T[] v1, T[] v2) Construct a vector by appending one vector to another vector. -
Uses of ZeroException in org.apache.commons.math3.random
Methods in org.apache.commons.math3.random that throw ZeroExceptionModifier and TypeMethodDescriptionvoid
ValueServer.computeDistribution()
Computes the empirical distribution using values from the file invaluesFileURL
, using the default number of bins.void
ValueServer.computeDistribution
(int binCount) Computes the empirical distribution using values from the file invaluesFileURL
andbinCount
bins.void
Computes the empirical distribution using data read from a URL. -
Uses of ZeroException in org.apache.commons.math3.stat.inference
Methods in org.apache.commons.math3.stat.inference that throw ZeroExceptionModifier and TypeMethodDescriptiondouble
ChiSquareTest.chiSquareDataSetsComparison
(long[] observed1, long[] observed2) Computes a Chi-Square two sample test statistic comparing bin frequency counts inobserved1
andobserved2
.static double
TestUtils.chiSquareDataSetsComparison
(long[] observed1, long[] observed2) double
ChiSquareTest.chiSquareTestDataSetsComparison
(long[] observed1, long[] observed2) Returns the observed significance level, or p-value, associated with a Chi-Square two sample test comparing bin frequency counts inobserved1
andobserved2
.boolean
ChiSquareTest.chiSquareTestDataSetsComparison
(long[] observed1, long[] observed2, double alpha) Performs a Chi-Square two sample test comparing two binned data sets.static double
TestUtils.chiSquareTestDataSetsComparison
(long[] observed1, long[] observed2) static boolean
TestUtils.chiSquareTestDataSetsComparison
(long[] observed1, long[] observed2, double alpha) double
GTest.gDataSetsComparison
(long[] observed1, long[] observed2) Computes a G (Log-Likelihood Ratio) two sample test statistic for independence comparing frequency counts inobserved1
andobserved2
.static double
TestUtils.gDataSetsComparison
(long[] observed1, long[] observed2) double
GTest.gTestDataSetsComparison
(long[] observed1, long[] observed2) Returns the observed significance level, or p-value, associated with a G-Value (Log-Likelihood Ratio) for two sample test comparing bin frequency counts inobserved1
andobserved2
.boolean
GTest.gTestDataSetsComparison
(long[] observed1, long[] observed2, double alpha) Performs a G-Test (Log-Likelihood Ratio Test) comparing two binned data sets.static double
TestUtils.gTestDataSetsComparison
(long[] observed1, long[] observed2) static boolean
TestUtils.gTestDataSetsComparison
(long[] observed1, long[] observed2, double alpha) static double
TestUtils.rootLogLikelihoodRatio
(long k11, long k12, long k21, long k22)