Class NakagamiDistribution
- All Implemented Interfaces:
Serializable
,RealDistribution
- Since:
- 3.4
- See Also:
-
Field Summary
FieldsModifier and TypeFieldDescriptionstatic final double
Default inverse cumulative probability accuracy.Fields inherited from class org.apache.commons.math3.distribution.AbstractRealDistribution
random, randomData, SOLVER_DEFAULT_ABSOLUTE_ACCURACY
-
Constructor Summary
ConstructorsConstructorDescriptionNakagamiDistribution
(double mu, double omega) Build a new instance.NakagamiDistribution
(double mu, double omega, double inverseAbsoluteAccuracy) Build a new instance.NakagamiDistribution
(RandomGenerator rng, double mu, double omega, double inverseAbsoluteAccuracy) Build a new instance. -
Method Summary
Modifier and TypeMethodDescriptiondouble
cumulativeProbability
(double x) For a random variableX
whose values are distributed according to this distribution, this method returnsP(X <= x)
.double
density
(double x) Returns the probability density function (PDF) of this distribution evaluated at the specified pointx
.double
Use this method to get the numerical value of the mean of this distribution.double
Use this method to get the numerical value of the variance of this distribution.double
getScale()
Access the scale parameter,omega
.double
getShape()
Access the shape parameter,mu
.protected double
Returns the solver absolute accuracy for inverse cumulative computation.double
Access the lower bound of the support.double
Access the upper bound of the support.boolean
Use this method to get information about whether the support is connected, i.e.boolean
Whether or not the lower bound of support is in the domain of the density function.boolean
Whether or not the upper bound of support is in the domain of the density function.Methods inherited from class org.apache.commons.math3.distribution.AbstractRealDistribution
cumulativeProbability, inverseCumulativeProbability, logDensity, probability, probability, reseedRandomGenerator, sample, sample
-
Field Details
-
DEFAULT_INVERSE_ABSOLUTE_ACCURACY
public static final double DEFAULT_INVERSE_ABSOLUTE_ACCURACYDefault inverse cumulative probability accuracy.- See Also:
-
-
Constructor Details
-
NakagamiDistribution
public NakagamiDistribution(double mu, double omega) Build a new instance.Note: this constructor will implicitly create an instance of
Well19937c
as random generator to be used for sampling only (seeAbstractRealDistribution.sample()
andAbstractRealDistribution.sample(int)
). In case no sampling is needed for the created distribution, it is advised to passnull
as random generator via the appropriate constructors to avoid the additional initialisation overhead.- Parameters:
mu
- shape parameteromega
- scale parameter (must be positive)- Throws:
NumberIsTooSmallException
- ifmu < 0.5
NotStrictlyPositiveException
- ifomega <= 0
-
NakagamiDistribution
public NakagamiDistribution(double mu, double omega, double inverseAbsoluteAccuracy) Build a new instance.Note: this constructor will implicitly create an instance of
Well19937c
as random generator to be used for sampling only (seeAbstractRealDistribution.sample()
andAbstractRealDistribution.sample(int)
). In case no sampling is needed for the created distribution, it is advised to passnull
as random generator via the appropriate constructors to avoid the additional initialisation overhead.- Parameters:
mu
- shape parameteromega
- scale parameter (must be positive)inverseAbsoluteAccuracy
- the maximum absolute error in inverse cumulative probability estimates (defaults toDEFAULT_INVERSE_ABSOLUTE_ACCURACY
).- Throws:
NumberIsTooSmallException
- ifmu < 0.5
NotStrictlyPositiveException
- ifomega <= 0
-
NakagamiDistribution
public NakagamiDistribution(RandomGenerator rng, double mu, double omega, double inverseAbsoluteAccuracy) Build a new instance.- Parameters:
rng
- Random number generatormu
- shape parameteromega
- scale parameter (must be positive)inverseAbsoluteAccuracy
- the maximum absolute error in inverse cumulative probability estimates (defaults toDEFAULT_INVERSE_ABSOLUTE_ACCURACY
).- Throws:
NumberIsTooSmallException
- ifmu < 0.5
NotStrictlyPositiveException
- ifomega <= 0
-
-
Method Details
-
getShape
public double getShape()Access the shape parameter,mu
.- Returns:
- the shape parameter.
-
getScale
public double getScale()Access the scale parameter,omega
.- Returns:
- the scale parameter.
-
getSolverAbsoluteAccuracy
protected double getSolverAbsoluteAccuracy()Returns the solver absolute accuracy for inverse cumulative computation. You can override this method in order to use a Brent solver with an absolute accuracy different from the default.- Overrides:
getSolverAbsoluteAccuracy
in classAbstractRealDistribution
- Returns:
- the maximum absolute error in inverse cumulative probability estimates
-
density
public double density(double x) Returns the probability density function (PDF) of this distribution evaluated at the specified pointx
. In general, the PDF is the derivative of theCDF
. If the derivative does not exist atx
, then an appropriate replacement should be returned, e.g.Double.POSITIVE_INFINITY
,Double.NaN
, or the limit inferior or limit superior of the difference quotient.- Parameters:
x
- the point at which the PDF is evaluated- Returns:
- the value of the probability density function at point
x
-
cumulativeProbability
public double cumulativeProbability(double x) For a random variableX
whose values are distributed according to this distribution, this method returnsP(X <= x)
. In other words, this method represents the (cumulative) distribution function (CDF) for this distribution.- Parameters:
x
- the point at which the CDF is evaluated- Returns:
- the probability that a random variable with this
distribution takes a value less than or equal to
x
-
getNumericalMean
public double getNumericalMean()Use this method to get the numerical value of the mean of this distribution.- Returns:
- the mean or
Double.NaN
if it is not defined
-
getNumericalVariance
public double getNumericalVariance()Use this method to get the numerical value of the variance of this distribution.- Returns:
- the variance (possibly
Double.POSITIVE_INFINITY
as for certain cases inTDistribution
) orDouble.NaN
if it is not defined
-
getSupportLowerBound
public double getSupportLowerBound()Access the lower bound of the support. This method must return the same value asinverseCumulativeProbability(0)
. In other words, this method must returninf {x in R | P(X invalid input: '<'= x) > 0}
.- Returns:
- lower bound of the support (might be
Double.NEGATIVE_INFINITY
)
-
getSupportUpperBound
public double getSupportUpperBound()Access the upper bound of the support. This method must return the same value asinverseCumulativeProbability(1)
. In other words, this method must returninf {x in R | P(X invalid input: '<'= x) = 1}
.- Returns:
- upper bound of the support (might be
Double.POSITIVE_INFINITY
)
-
isSupportLowerBoundInclusive
public boolean isSupportLowerBoundInclusive()Whether or not the lower bound of support is in the domain of the density function. Returns true iffgetSupporLowerBound()
is finite anddensity(getSupportLowerBound())
returns a non-NaN, non-infinite value.- Returns:
- true if the lower bound of support is finite and the density function returns a non-NaN, non-infinite value there
-
isSupportUpperBoundInclusive
public boolean isSupportUpperBoundInclusive()Whether or not the upper bound of support is in the domain of the density function. Returns true iffgetSupportUpperBound()
is finite anddensity(getSupportUpperBound())
returns a non-NaN, non-infinite value.- Returns:
- true if the upper bound of support is finite and the density function returns a non-NaN, non-infinite value there
-
isSupportConnected
public boolean isSupportConnected()Use this method to get information about whether the support is connected, i.e. whether all values between the lower and upper bound of the support are included in the support.- Returns:
- whether the support is connected or not
-