Class GammaDistribution
- All Implemented Interfaces:
Serializable
,RealDistribution
- See Also:
-
Field Summary
FieldsModifier and TypeFieldDescriptionstatic final double
Default inverse cumulative probability accuracy.Fields inherited from class org.apache.commons.math3.distribution.AbstractRealDistribution
random, randomData, SOLVER_DEFAULT_ABSOLUTE_ACCURACY
-
Constructor Summary
ConstructorsConstructorDescriptionGammaDistribution
(double shape, double scale) Creates a new gamma distribution with specified values of the shape and scale parameters.GammaDistribution
(double shape, double scale, double inverseCumAccuracy) Creates a new gamma distribution with specified values of the shape and scale parameters.GammaDistribution
(RandomGenerator rng, double shape, double scale) Creates a Gamma distribution.GammaDistribution
(RandomGenerator rng, double shape, double scale, double inverseCumAccuracy) Creates a Gamma distribution. -
Method Summary
Modifier and TypeMethodDescriptiondouble
cumulativeProbability
(double x) For a random variableX
whose values are distributed according to this distribution, this method returnsP(X <= x)
.double
density
(double x) Returns the probability density function (PDF) of this distribution evaluated at the specified pointx
.double
getAlpha()
Deprecated.double
getBeta()
Deprecated.as of version 3.1,getScale()
should be preferred.double
Use this method to get the numerical value of the mean of this distribution.double
Use this method to get the numerical value of the variance of this distribution.double
getScale()
Returns the scale parameter ofthis
distribution.double
getShape()
Returns the shape parameter ofthis
distribution.protected double
Returns the solver absolute accuracy for inverse cumulative computation.double
Access the lower bound of the support.double
Access the upper bound of the support.boolean
Use this method to get information about whether the support is connected, i.e.boolean
Whether or not the lower bound of support is in the domain of the density function.boolean
Whether or not the upper bound of support is in the domain of the density function.double
logDensity
(double x) Returns the natural logarithm of the probability density function (PDF) of this distribution evaluated at the specified pointx
.double
sample()
This implementation uses the following algorithms:Methods inherited from class org.apache.commons.math3.distribution.AbstractRealDistribution
cumulativeProbability, inverseCumulativeProbability, probability, probability, reseedRandomGenerator, sample
-
Field Details
-
DEFAULT_INVERSE_ABSOLUTE_ACCURACY
public static final double DEFAULT_INVERSE_ABSOLUTE_ACCURACYDefault inverse cumulative probability accuracy.- Since:
- 2.1
- See Also:
-
-
Constructor Details
-
GammaDistribution
Creates a new gamma distribution with specified values of the shape and scale parameters.Note: this constructor will implicitly create an instance of
Well19937c
as random generator to be used for sampling only (seesample()
andAbstractRealDistribution.sample(int)
). In case no sampling is needed for the created distribution, it is advised to passnull
as random generator via the appropriate constructors to avoid the additional initialisation overhead.- Parameters:
shape
- the shape parameterscale
- the scale parameter- Throws:
NotStrictlyPositiveException
- ifshape <= 0
orscale <= 0
.
-
GammaDistribution
public GammaDistribution(double shape, double scale, double inverseCumAccuracy) throws NotStrictlyPositiveException Creates a new gamma distribution with specified values of the shape and scale parameters.Note: this constructor will implicitly create an instance of
Well19937c
as random generator to be used for sampling only (seesample()
andAbstractRealDistribution.sample(int)
). In case no sampling is needed for the created distribution, it is advised to passnull
as random generator via the appropriate constructors to avoid the additional initialisation overhead.- Parameters:
shape
- the shape parameterscale
- the scale parameterinverseCumAccuracy
- the maximum absolute error in inverse cumulative probability estimates (defaults toDEFAULT_INVERSE_ABSOLUTE_ACCURACY
).- Throws:
NotStrictlyPositiveException
- ifshape <= 0
orscale <= 0
.- Since:
- 2.1
-
GammaDistribution
public GammaDistribution(RandomGenerator rng, double shape, double scale) throws NotStrictlyPositiveException Creates a Gamma distribution.- Parameters:
rng
- Random number generator.shape
- the shape parameterscale
- the scale parameter- Throws:
NotStrictlyPositiveException
- ifshape <= 0
orscale <= 0
.- Since:
- 3.3
-
GammaDistribution
public GammaDistribution(RandomGenerator rng, double shape, double scale, double inverseCumAccuracy) throws NotStrictlyPositiveException Creates a Gamma distribution.- Parameters:
rng
- Random number generator.shape
- the shape parameterscale
- the scale parameterinverseCumAccuracy
- the maximum absolute error in inverse cumulative probability estimates (defaults toDEFAULT_INVERSE_ABSOLUTE_ACCURACY
).- Throws:
NotStrictlyPositiveException
- ifshape <= 0
orscale <= 0
.- Since:
- 3.1
-
-
Method Details
-
getAlpha
Deprecated.as of version 3.1,getShape()
should be preferred. This method will be removed in version 4.0.Returns the shape parameter ofthis
distribution.- Returns:
- the shape parameter
-
getShape
public double getShape()Returns the shape parameter ofthis
distribution.- Returns:
- the shape parameter
- Since:
- 3.1
-
getBeta
Deprecated.as of version 3.1,getScale()
should be preferred. This method will be removed in version 4.0.Returns the scale parameter ofthis
distribution.- Returns:
- the scale parameter
-
getScale
public double getScale()Returns the scale parameter ofthis
distribution.- Returns:
- the scale parameter
- Since:
- 3.1
-
density
public double density(double x) Returns the probability density function (PDF) of this distribution evaluated at the specified pointx
. In general, the PDF is the derivative of theCDF
. If the derivative does not exist atx
, then an appropriate replacement should be returned, e.g.Double.POSITIVE_INFINITY
,Double.NaN
, or the limit inferior or limit superior of the difference quotient.- Parameters:
x
- the point at which the PDF is evaluated- Returns:
- the value of the probability density function at point
x
-
logDensity
public double logDensity(double x) Returns the natural logarithm of the probability density function (PDF) of this distribution evaluated at the specified pointx
. In general, the PDF is the derivative of theCDF
. If the derivative does not exist atx
, then an appropriate replacement should be returned, e.g.Double.POSITIVE_INFINITY
,Double.NaN
, or the limit inferior or limit superior of the difference quotient. Note that due to the floating point precision and under/overflow issues, this method will for some distributions be more precise and faster than computing the logarithm ofRealDistribution.density(double)
. The default implementation simply computes the logarithm ofdensity(x)
.- Overrides:
logDensity
in classAbstractRealDistribution
- Parameters:
x
- the point at which the PDF is evaluated- Returns:
- the logarithm of the value of the probability density function at point
x
-
cumulativeProbability
public double cumulativeProbability(double x) For a random variableX
whose values are distributed according to this distribution, this method returnsP(X <= x)
. In other words, this method represents the (cumulative) distribution function (CDF) for this distribution. The implementation of this method is based on:- Chi-Squared Distribution, equation (9).
- Casella, G., invalid input: '&' Berger, R. (1990). Statistical Inference. Belmont, CA: Duxbury Press.
- Parameters:
x
- the point at which the CDF is evaluated- Returns:
- the probability that a random variable with this
distribution takes a value less than or equal to
x
-
getSolverAbsoluteAccuracy
protected double getSolverAbsoluteAccuracy()Returns the solver absolute accuracy for inverse cumulative computation. You can override this method in order to use a Brent solver with an absolute accuracy different from the default.- Overrides:
getSolverAbsoluteAccuracy
in classAbstractRealDistribution
- Returns:
- the maximum absolute error in inverse cumulative probability estimates
-
getNumericalMean
public double getNumericalMean()Use this method to get the numerical value of the mean of this distribution. For shape parameteralpha
and scale parameterbeta
, the mean isalpha * beta
.- Returns:
- the mean or
Double.NaN
if it is not defined
-
getNumericalVariance
public double getNumericalVariance()Use this method to get the numerical value of the variance of this distribution. For shape parameteralpha
and scale parameterbeta
, the variance isalpha * beta^2
.- Returns:
- the variance (possibly
Double.POSITIVE_INFINITY
as for certain cases inTDistribution
) orDouble.NaN
if it is not defined
-
getSupportLowerBound
public double getSupportLowerBound()Access the lower bound of the support. This method must return the same value asinverseCumulativeProbability(0)
. In other words, this method must return
The lower bound of the support is always 0 no matter the parameters.inf {x in R | P(X invalid input: '<'= x) > 0}
.- Returns:
- lower bound of the support (always 0)
-
getSupportUpperBound
public double getSupportUpperBound()Access the upper bound of the support. This method must return the same value asinverseCumulativeProbability(1)
. In other words, this method must return
The upper bound of the support is always positive infinity no matter the parameters.inf {x in R | P(X invalid input: '<'= x) = 1}
.- Returns:
- upper bound of the support (always Double.POSITIVE_INFINITY)
-
isSupportLowerBoundInclusive
public boolean isSupportLowerBoundInclusive()Whether or not the lower bound of support is in the domain of the density function. Returns true iffgetSupporLowerBound()
is finite anddensity(getSupportLowerBound())
returns a non-NaN, non-infinite value.- Returns:
- true if the lower bound of support is finite and the density function returns a non-NaN, non-infinite value there
-
isSupportUpperBoundInclusive
public boolean isSupportUpperBoundInclusive()Whether or not the upper bound of support is in the domain of the density function. Returns true iffgetSupportUpperBound()
is finite anddensity(getSupportUpperBound())
returns a non-NaN, non-infinite value.- Returns:
- true if the upper bound of support is finite and the density function returns a non-NaN, non-infinite value there
-
isSupportConnected
public boolean isSupportConnected()Use this method to get information about whether the support is connected, i.e. whether all values between the lower and upper bound of the support are included in the support. The support of this distribution is connected.- Returns:
true
-
sample
public double sample()This implementation uses the following algorithms:
For 0 invalid input: '<' shape invalid input: '<' 1:
Ahrens, J. H. and Dieter, U., Computer methods for sampling from gamma, beta, Poisson and binomial distributions. Computing, 12, 223-246, 1974.For shape >= 1:
Marsaglia and Tsang, A Simple Method for Generating Gamma Variables. ACM Transactions on Mathematical Software, Volume 26 Issue 3, September, 2000.- Specified by:
sample
in interfaceRealDistribution
- Overrides:
sample
in classAbstractRealDistribution
- Returns:
- random value sampled from the Gamma(shape, scale) distribution
-
getShape()
should be preferred.