Class EmbeddedRungeKuttaIntegrator
- java.lang.Object
-
- org.apache.commons.math.ode.AbstractIntegrator
-
- org.apache.commons.math.ode.nonstiff.AdaptiveStepsizeIntegrator
-
- org.apache.commons.math.ode.nonstiff.EmbeddedRungeKuttaIntegrator
-
- All Implemented Interfaces:
FirstOrderIntegrator
,ODEIntegrator
- Direct Known Subclasses:
DormandPrince54Integrator
,DormandPrince853Integrator
,HighamHall54Integrator
public abstract class EmbeddedRungeKuttaIntegrator extends AdaptiveStepsizeIntegrator
This class implements the common part of all embedded Runge-Kutta integrators for Ordinary Differential Equations.These methods are embedded explicit Runge-Kutta methods with two sets of coefficients allowing to estimate the error, their Butcher arrays are as follows :
0 | c2 | a21 c3 | a31 a32 ... | ... cs | as1 as2 ... ass-1 |-------------------------- | b1 b2 ... bs-1 bs | b'1 b'2 ... b's-1 b's
In fact, we rather use the array defined by ej = bj - b'j to compute directly the error rather than computing two estimates and then comparing them.
Some methods are qualified as fsal (first same as last) methods. This means the last evaluation of the derivatives in one step is the same as the first in the next step. Then, this evaluation can be reused from one step to the next one and the cost of such a method is really s-1 evaluations despite the method still has s stages. This behaviour is true only for successful steps, if the step is rejected after the error estimation phase, no evaluation is saved. For an fsal method, we have cs = 1 and asi = bi for all i.
- Since:
- 1.2
- Version:
- $Revision: 1073158 $ $Date: 2011-02-21 22:46:52 +0100 (lun. 21 févr. 2011) $
-
-
Field Summary
-
Fields inherited from class org.apache.commons.math.ode.nonstiff.AdaptiveStepsizeIntegrator
mainSetDimension, scalAbsoluteTolerance, scalRelativeTolerance, vecAbsoluteTolerance, vecRelativeTolerance
-
Fields inherited from class org.apache.commons.math.ode.AbstractIntegrator
isLastStep, resetOccurred, stepHandlers, stepSize, stepStart
-
-
Constructor Summary
Constructors Modifier Constructor Description protected
EmbeddedRungeKuttaIntegrator(java.lang.String name, boolean fsal, double[] c, double[][] a, double[] b, org.apache.commons.math.ode.nonstiff.RungeKuttaStepInterpolator prototype, double minStep, double maxStep, double[] vecAbsoluteTolerance, double[] vecRelativeTolerance)
Build a Runge-Kutta integrator with the given Butcher array.protected
EmbeddedRungeKuttaIntegrator(java.lang.String name, boolean fsal, double[] c, double[][] a, double[] b, org.apache.commons.math.ode.nonstiff.RungeKuttaStepInterpolator prototype, double minStep, double maxStep, double scalAbsoluteTolerance, double scalRelativeTolerance)
Build a Runge-Kutta integrator with the given Butcher array.
-
Method Summary
All Methods Instance Methods Abstract Methods Concrete Methods Modifier and Type Method Description protected abstract double
estimateError(double[][] yDotK, double[] y0, double[] y1, double h)
Compute the error ratio.double
getMaxGrowth()
Get the maximal growth factor for stepsize control.double
getMinReduction()
Get the minimal reduction factor for stepsize control.abstract int
getOrder()
Get the order of the method.double
getSafety()
Get the safety factor for stepsize control.double
integrate(FirstOrderDifferentialEquations equations, double t0, double[] y0, double t, double[] y)
Integrate the differential equations up to the given time.void
setMaxGrowth(double maxGrowth)
Set the maximal growth factor for stepsize control.void
setMinReduction(double minReduction)
Set the minimal reduction factor for stepsize control.void
setSafety(double safety)
Set the safety factor for stepsize control.-
Methods inherited from class org.apache.commons.math.ode.nonstiff.AdaptiveStepsizeIntegrator
filterStep, getCurrentStepStart, getMaxStep, getMinStep, initializeStep, resetInternalState, sanityChecks, setInitialStepSize
-
Methods inherited from class org.apache.commons.math.ode.AbstractIntegrator
acceptStep, addEndTimeChecker, addEventHandler, addStepHandler, clearEventHandlers, clearStepHandlers, computeDerivatives, getCurrentSignedStepsize, getEvaluations, getEventHandlers, getMaxEvaluations, getName, getStepHandlers, requiresDenseOutput, resetEvaluations, setEquations, setMaxEvaluations, setStateInitialized
-
-
-
-
Constructor Detail
-
EmbeddedRungeKuttaIntegrator
protected EmbeddedRungeKuttaIntegrator(java.lang.String name, boolean fsal, double[] c, double[][] a, double[] b, org.apache.commons.math.ode.nonstiff.RungeKuttaStepInterpolator prototype, double minStep, double maxStep, double scalAbsoluteTolerance, double scalRelativeTolerance)
Build a Runge-Kutta integrator with the given Butcher array.- Parameters:
name
- name of the methodfsal
- indicate that the method is an fsalc
- time steps from Butcher array (without the first zero)a
- internal weights from Butcher array (without the first empty row)b
- propagation weights for the high order method from Butcher arrayprototype
- prototype of the step interpolator to useminStep
- minimal step (must be positive even for backward integration), the last step can be smaller than thismaxStep
- maximal step (must be positive even for backward integration)scalAbsoluteTolerance
- allowed absolute errorscalRelativeTolerance
- allowed relative error
-
EmbeddedRungeKuttaIntegrator
protected EmbeddedRungeKuttaIntegrator(java.lang.String name, boolean fsal, double[] c, double[][] a, double[] b, org.apache.commons.math.ode.nonstiff.RungeKuttaStepInterpolator prototype, double minStep, double maxStep, double[] vecAbsoluteTolerance, double[] vecRelativeTolerance)
Build a Runge-Kutta integrator with the given Butcher array.- Parameters:
name
- name of the methodfsal
- indicate that the method is an fsalc
- time steps from Butcher array (without the first zero)a
- internal weights from Butcher array (without the first empty row)b
- propagation weights for the high order method from Butcher arrayprototype
- prototype of the step interpolator to useminStep
- minimal step (must be positive even for backward integration), the last step can be smaller than thismaxStep
- maximal step (must be positive even for backward integration)vecAbsoluteTolerance
- allowed absolute errorvecRelativeTolerance
- allowed relative error
-
-
Method Detail
-
getOrder
public abstract int getOrder()
Get the order of the method.- Returns:
- order of the method
-
getSafety
public double getSafety()
Get the safety factor for stepsize control.- Returns:
- safety factor
-
setSafety
public void setSafety(double safety)
Set the safety factor for stepsize control.- Parameters:
safety
- safety factor
-
integrate
public double integrate(FirstOrderDifferentialEquations equations, double t0, double[] y0, double t, double[] y) throws DerivativeException, IntegratorException
Integrate the differential equations up to the given time.This method solves an Initial Value Problem (IVP).
Since this method stores some internal state variables made available in its public interface during integration (
ODEIntegrator.getCurrentSignedStepsize()
), it is not thread-safe.- Specified by:
integrate
in interfaceFirstOrderIntegrator
- Specified by:
integrate
in classAdaptiveStepsizeIntegrator
- Parameters:
equations
- differential equations to integratet0
- initial timey0
- initial value of the state vector at t0t
- target time for the integration (can be set to a value smaller thant0
for backward integration)y
- placeholder where to put the state vector at each successful step (and hence at the end of integration), can be the same object as y0- Returns:
- stop time, will be the same as target time if integration reached its
target, but may be different if some
EventHandler
stops it at some point. - Throws:
DerivativeException
- this exception is propagated to the caller if the underlying user function triggers oneIntegratorException
- if the integrator cannot perform integration
-
getMinReduction
public double getMinReduction()
Get the minimal reduction factor for stepsize control.- Returns:
- minimal reduction factor
-
setMinReduction
public void setMinReduction(double minReduction)
Set the minimal reduction factor for stepsize control.- Parameters:
minReduction
- minimal reduction factor
-
getMaxGrowth
public double getMaxGrowth()
Get the maximal growth factor for stepsize control.- Returns:
- maximal growth factor
-
setMaxGrowth
public void setMaxGrowth(double maxGrowth)
Set the maximal growth factor for stepsize control.- Parameters:
maxGrowth
- maximal growth factor
-
estimateError
protected abstract double estimateError(double[][] yDotK, double[] y0, double[] y1, double h)
Compute the error ratio.- Parameters:
yDotK
- derivatives computed during the first stagesy0
- estimate of the step at the start of the stepy1
- estimate of the step at the end of the steph
- current step- Returns:
- error ratio, greater than 1 if step should be rejected
-
-