Class WeibullDistributionImpl
- java.lang.Object
-
- org.apache.commons.math.distribution.AbstractDistribution
-
- org.apache.commons.math.distribution.AbstractContinuousDistribution
-
- org.apache.commons.math.distribution.WeibullDistributionImpl
-
- All Implemented Interfaces:
java.io.Serializable,ContinuousDistribution,Distribution,WeibullDistribution
public class WeibullDistributionImpl extends AbstractContinuousDistribution implements WeibullDistribution, java.io.Serializable
Default implementation ofWeibullDistribution.- Since:
- 1.1
- Version:
- $Revision: 1054524 $ $Date: 2011-01-03 05:59:18 +0100 (lun. 03 janv. 2011) $
- See Also:
- Serialized Form
-
-
Field Summary
Fields Modifier and Type Field Description static doubleDEFAULT_INVERSE_ABSOLUTE_ACCURACYDefault inverse cumulative probability accuracy-
Fields inherited from class org.apache.commons.math.distribution.AbstractContinuousDistribution
randomData
-
-
Constructor Summary
Constructors Constructor Description WeibullDistributionImpl(double alpha, double beta)Creates weibull distribution with the given shape and scale and a location equal to zero.WeibullDistributionImpl(double alpha, double beta, double inverseCumAccuracy)Creates weibull distribution with the given shape, scale and inverse cumulative probability accuracy and a location equal to zero.
-
Method Summary
All Methods Instance Methods Concrete Methods Deprecated Methods Modifier and Type Method Description protected doublecalculateNumericalMean()Calculates the mean.doublecumulativeProbability(double x)For this distribution, X, this method returns P(X <x).doubledensity(double x)Returns the probability density for a particular point.protected doublegetDomainLowerBound(double p)Access the domain value lower bound, based onp, used to bracket a CDF root.protected doublegetDomainUpperBound(double p)Access the domain value upper bound, based onp, used to bracket a CDF root.protected doublegetInitialDomain(double p)Access the initial domain value, based onp, used to bracket a CDF root.doublegetNumericalMean()Returns the mean of the distribution.doublegetNumericalVariance()Returns the variance of the distribution.doublegetScale()Access the scale parameter.doublegetShape()Access the shape parameter.protected doublegetSolverAbsoluteAccuracy()Return the absolute accuracy setting of the solver used to estimate inverse cumulative probabilities.doublegetSupportLowerBound()Returns the lower bound of the support for the distribution.doublegetSupportUpperBound()Returns the upper bound of the support for the distribution.doubleinverseCumulativeProbability(double p)For this distribution, X, this method returns the critical point x, such that P(X < x) =p.voidsetScale(double beta)Deprecated.as of 2.1 (class will become immutable in 3.0)voidsetShape(double alpha)Deprecated.as of 2.1 (class will become immutable in 3.0)-
Methods inherited from class org.apache.commons.math.distribution.AbstractContinuousDistribution
reseedRandomGenerator, sample, sample
-
Methods inherited from class org.apache.commons.math.distribution.AbstractDistribution
cumulativeProbability
-
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
-
Methods inherited from interface org.apache.commons.math.distribution.Distribution
cumulativeProbability
-
-
-
-
Field Detail
-
DEFAULT_INVERSE_ABSOLUTE_ACCURACY
public static final double DEFAULT_INVERSE_ABSOLUTE_ACCURACY
Default inverse cumulative probability accuracy- Since:
- 2.1
- See Also:
- Constant Field Values
-
-
Constructor Detail
-
WeibullDistributionImpl
public WeibullDistributionImpl(double alpha, double beta)Creates weibull distribution with the given shape and scale and a location equal to zero.- Parameters:
alpha- the shape parameter.beta- the scale parameter.
-
WeibullDistributionImpl
public WeibullDistributionImpl(double alpha, double beta, double inverseCumAccuracy)Creates weibull distribution with the given shape, scale and inverse cumulative probability accuracy and a location equal to zero.- Parameters:
alpha- the shape parameter.beta- the scale parameter.inverseCumAccuracy- the maximum absolute error in inverse cumulative probability estimates (defaults toDEFAULT_INVERSE_ABSOLUTE_ACCURACY)- Since:
- 2.1
-
-
Method Detail
-
cumulativeProbability
public double cumulativeProbability(double x)
For this distribution, X, this method returns P(X <x).- Specified by:
cumulativeProbabilityin interfaceDistribution- Parameters:
x- the value at which the CDF is evaluated.- Returns:
- CDF evaluated at
x.
-
getShape
public double getShape()
Access the shape parameter.- Specified by:
getShapein interfaceWeibullDistribution- Returns:
- the shape parameter.
-
getScale
public double getScale()
Access the scale parameter.- Specified by:
getScalein interfaceWeibullDistribution- Returns:
- the scale parameter.
-
density
public double density(double x)
Returns the probability density for a particular point.- Overrides:
densityin classAbstractContinuousDistribution- Parameters:
x- The point at which the density should be computed.- Returns:
- The pdf at point x.
- Since:
- 2.1
-
inverseCumulativeProbability
public double inverseCumulativeProbability(double p)
For this distribution, X, this method returns the critical point x, such that P(X < x) =p.Returns
Double.NEGATIVE_INFINITYfor p=0 andDouble.POSITIVE_INFINITYfor p=1.- Specified by:
inverseCumulativeProbabilityin interfaceContinuousDistribution- Overrides:
inverseCumulativeProbabilityin classAbstractContinuousDistribution- Parameters:
p- the desired probability- Returns:
- x, such that P(X < x) =
p - Throws:
java.lang.IllegalArgumentException- ifpis not a valid probability.
-
setShape
@Deprecated public void setShape(double alpha)
Deprecated.as of 2.1 (class will become immutable in 3.0)Modify the shape parameter.- Specified by:
setShapein interfaceWeibullDistribution- Parameters:
alpha- the new shape parameter value.
-
setScale
@Deprecated public void setScale(double beta)
Deprecated.as of 2.1 (class will become immutable in 3.0)Modify the scale parameter.- Specified by:
setScalein interfaceWeibullDistribution- Parameters:
beta- the new scale parameter value.
-
getDomainLowerBound
protected double getDomainLowerBound(double p)
Access the domain value lower bound, based onp, used to bracket a CDF root. This method is used byinverseCumulativeProbability(double)to find critical values.- Specified by:
getDomainLowerBoundin classAbstractContinuousDistribution- Parameters:
p- the desired probability for the critical value- Returns:
- domain value lower bound, i.e.
P(X < lower bound) <
p
-
getDomainUpperBound
protected double getDomainUpperBound(double p)
Access the domain value upper bound, based onp, used to bracket a CDF root. This method is used byinverseCumulativeProbability(double)to find critical values.- Specified by:
getDomainUpperBoundin classAbstractContinuousDistribution- Parameters:
p- the desired probability for the critical value- Returns:
- domain value upper bound, i.e.
P(X < upper bound) >
p
-
getInitialDomain
protected double getInitialDomain(double p)
Access the initial domain value, based onp, used to bracket a CDF root. This method is used byinverseCumulativeProbability(double)to find critical values.- Specified by:
getInitialDomainin classAbstractContinuousDistribution- Parameters:
p- the desired probability for the critical value- Returns:
- initial domain value
-
getSolverAbsoluteAccuracy
protected double getSolverAbsoluteAccuracy()
Return the absolute accuracy setting of the solver used to estimate inverse cumulative probabilities.- Overrides:
getSolverAbsoluteAccuracyin classAbstractContinuousDistribution- Returns:
- the solver absolute accuracy
- Since:
- 2.1
-
getSupportLowerBound
public double getSupportLowerBound()
Returns the lower bound of the support for the distribution. The lower bound of the support is always 0 no matter the parameters.- Returns:
- lower bound of the support (always 0)
- Since:
- 2.2
-
getSupportUpperBound
public double getSupportUpperBound()
Returns the upper bound of the support for the distribution. The upper bound of the support is always positive infinity no matter the parameters.- Returns:
- upper bound of the support (always Double.POSITIVE_INFINITY)
- Since:
- 2.2
-
calculateNumericalMean
protected double calculateNumericalMean()
Calculates the mean. The mean isscale * Gamma(1 + (1 / shape))whereGamma(...)is the Gamma-function- Returns:
- the mean
- Since:
- 2.2
-
getNumericalMean
public double getNumericalMean()
Returns the mean of the distribution.- Returns:
- the mean or Double.NaN if it's not defined
- Since:
- 2.2
-
getNumericalVariance
public double getNumericalVariance()
Returns the variance of the distribution.- Returns:
- the variance (possibly Double.POSITIVE_INFINITY as
for certain cases in
TDistributionImpl) or Double.NaN if it's not defined - Since:
- 2.2
-
-