Class ExponentialDistributionImpl
- java.lang.Object
-
- org.apache.commons.math.distribution.AbstractDistribution
-
- org.apache.commons.math.distribution.AbstractContinuousDistribution
-
- org.apache.commons.math.distribution.ExponentialDistributionImpl
-
- All Implemented Interfaces:
java.io.Serializable
,ContinuousDistribution
,Distribution
,ExponentialDistribution
,HasDensity<java.lang.Double>
public class ExponentialDistributionImpl extends AbstractContinuousDistribution implements ExponentialDistribution, java.io.Serializable
The default implementation ofExponentialDistribution
.- Version:
- $Revision: 1055914 $ $Date: 2011-01-06 16:34:34 +0100 (jeu. 06 janv. 2011) $
- See Also:
- Serialized Form
-
-
Field Summary
Fields Modifier and Type Field Description static double
DEFAULT_INVERSE_ABSOLUTE_ACCURACY
Default inverse cumulative probability accuracy-
Fields inherited from class org.apache.commons.math.distribution.AbstractContinuousDistribution
randomData
-
-
Constructor Summary
Constructors Constructor Description ExponentialDistributionImpl(double mean)
Create a exponential distribution with the given mean.ExponentialDistributionImpl(double mean, double inverseCumAccuracy)
Create a exponential distribution with the given mean.
-
Method Summary
All Methods Instance Methods Concrete Methods Deprecated Methods Modifier and Type Method Description double
cumulativeProbability(double x)
For this distribution, X, this method returns P(X < x).double
density(double x)
Return the probability density for a particular point.double
density(java.lang.Double x)
Deprecated.- use density(double)protected double
getDomainLowerBound(double p)
Access the domain value lower bound, based onp
, used to bracket a CDF root.protected double
getDomainUpperBound(double p)
Access the domain value upper bound, based onp
, used to bracket a CDF root.protected double
getInitialDomain(double p)
Access the initial domain value, based onp
, used to bracket a CDF root.double
getMean()
Access the mean.double
getNumericalMean()
Returns the mean of the distribution.double
getNumericalVariance()
Returns the variance of the distribution.protected double
getSolverAbsoluteAccuracy()
Return the absolute accuracy setting of the solver used to estimate inverse cumulative probabilities.double
getSupportLowerBound()
Returns the lower bound of the support for the distribution.double
getSupportUpperBound()
Returns the upper bound of the support for the distribution.double
inverseCumulativeProbability(double p)
For this distribution, X, this method returns the critical point x, such that P(X < x) =p
.double
sample()
Generates a random value sampled from this distribution.void
setMean(double mean)
Deprecated.as of 2.1 (class will become immutable in 3.0)-
Methods inherited from class org.apache.commons.math.distribution.AbstractContinuousDistribution
reseedRandomGenerator, sample
-
Methods inherited from class org.apache.commons.math.distribution.AbstractDistribution
cumulativeProbability
-
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
-
Methods inherited from interface org.apache.commons.math.distribution.Distribution
cumulativeProbability
-
-
-
-
Field Detail
-
DEFAULT_INVERSE_ABSOLUTE_ACCURACY
public static final double DEFAULT_INVERSE_ABSOLUTE_ACCURACY
Default inverse cumulative probability accuracy- Since:
- 2.1
- See Also:
- Constant Field Values
-
-
Constructor Detail
-
ExponentialDistributionImpl
public ExponentialDistributionImpl(double mean)
Create a exponential distribution with the given mean.- Parameters:
mean
- mean of this distribution.
-
ExponentialDistributionImpl
public ExponentialDistributionImpl(double mean, double inverseCumAccuracy)
Create a exponential distribution with the given mean.- Parameters:
mean
- mean of this distribution.inverseCumAccuracy
- the maximum absolute error in inverse cumulative probability estimates (defaults toDEFAULT_INVERSE_ABSOLUTE_ACCURACY
)- Since:
- 2.1
-
-
Method Detail
-
setMean
@Deprecated public void setMean(double mean)
Deprecated.as of 2.1 (class will become immutable in 3.0)Modify the mean.- Specified by:
setMean
in interfaceExponentialDistribution
- Parameters:
mean
- the new mean.- Throws:
java.lang.IllegalArgumentException
- ifmean
is not positive.
-
getMean
public double getMean()
Access the mean.- Specified by:
getMean
in interfaceExponentialDistribution
- Returns:
- the mean.
-
density
@Deprecated public double density(java.lang.Double x)
Deprecated.- use density(double)Return the probability density for a particular point.- Specified by:
density
in interfaceExponentialDistribution
- Specified by:
density
in interfaceHasDensity<java.lang.Double>
- Parameters:
x
- The point at which the density should be computed.- Returns:
- The pdf at point x.
-
density
public double density(double x)
Return the probability density for a particular point.- Overrides:
density
in classAbstractContinuousDistribution
- Parameters:
x
- The point at which the density should be computed.- Returns:
- The pdf at point x.
- Since:
- 2.1
-
cumulativeProbability
public double cumulativeProbability(double x) throws MathException
For this distribution, X, this method returns P(X < x). The implementation of this method is based on:- Exponential Distribution, equation (1).
- Specified by:
cumulativeProbability
in interfaceDistribution
- Parameters:
x
- the value at which the CDF is evaluated.- Returns:
- CDF for this distribution.
- Throws:
MathException
- if the cumulative probability can not be computed due to convergence or other numerical errors.
-
inverseCumulativeProbability
public double inverseCumulativeProbability(double p) throws MathException
For this distribution, X, this method returns the critical point x, such that P(X < x) =p
.Returns 0 for p=0 and
Double.POSITIVE_INFINITY
for p=1.- Specified by:
inverseCumulativeProbability
in interfaceContinuousDistribution
- Overrides:
inverseCumulativeProbability
in classAbstractContinuousDistribution
- Parameters:
p
- the desired probability- Returns:
- x, such that P(X < x) =
p
- Throws:
MathException
- if the inverse cumulative probability can not be computed due to convergence or other numerical errors.java.lang.IllegalArgumentException
- if p < 0 or p > 1.
-
sample
public double sample() throws MathException
Generates a random value sampled from this distribution.Algorithm Description: Uses the Inversion Method to generate exponentially distributed random values from uniform deviates.
- Overrides:
sample
in classAbstractContinuousDistribution
- Returns:
- random value
- Throws:
MathException
- if an error occurs generating the random value- Since:
- 2.2
-
getDomainLowerBound
protected double getDomainLowerBound(double p)
Access the domain value lower bound, based onp
, used to bracket a CDF root.- Specified by:
getDomainLowerBound
in classAbstractContinuousDistribution
- Parameters:
p
- the desired probability for the critical value- Returns:
- domain value lower bound, i.e.
P(X < lower bound) <
p
-
getDomainUpperBound
protected double getDomainUpperBound(double p)
Access the domain value upper bound, based onp
, used to bracket a CDF root.- Specified by:
getDomainUpperBound
in classAbstractContinuousDistribution
- Parameters:
p
- the desired probability for the critical value- Returns:
- domain value upper bound, i.e.
P(X < upper bound) >
p
-
getInitialDomain
protected double getInitialDomain(double p)
Access the initial domain value, based onp
, used to bracket a CDF root.- Specified by:
getInitialDomain
in classAbstractContinuousDistribution
- Parameters:
p
- the desired probability for the critical value- Returns:
- initial domain value
-
getSolverAbsoluteAccuracy
protected double getSolverAbsoluteAccuracy()
Return the absolute accuracy setting of the solver used to estimate inverse cumulative probabilities.- Overrides:
getSolverAbsoluteAccuracy
in classAbstractContinuousDistribution
- Returns:
- the solver absolute accuracy
- Since:
- 2.1
-
getSupportLowerBound
public double getSupportLowerBound()
Returns the lower bound of the support for the distribution. The lower bound of the support is always 0, regardless of the mean.- Returns:
- lower bound of the support (always 0)
- Since:
- 2.2
-
getSupportUpperBound
public double getSupportUpperBound()
Returns the upper bound of the support for the distribution. The upper bound of the support is always positive infinity, regardless of the mean.- Returns:
- upper bound of the support (always Double.POSITIVE_INFINITY)
- Since:
- 2.2
-
getNumericalMean
public double getNumericalMean()
Returns the mean of the distribution. For mean parameterk
, the mean isk
- Returns:
- the mean
- Since:
- 2.2
-
getNumericalVariance
public double getNumericalVariance()
Returns the variance of the distribution. For mean parameterk
, the variance isk^2
- Returns:
- the variance
- Since:
- 2.2
-
-