Bullet Collision Detection & Physics Library
btTriangleInfoMap.h
Go to the documentation of this file.
1/*
2Bullet Continuous Collision Detection and Physics Library
3Copyright (c) 2010 Erwin Coumans http://bulletphysics.org
4
5This software is provided 'as-is', without any express or implied warranty.
6In no event will the authors be held liable for any damages arising from the use of this software.
7Permission is granted to anyone to use this software for any purpose,
8including commercial applications, and to alter it and redistribute it freely,
9subject to the following restrictions:
10
111. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
122. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
133. This notice may not be removed or altered from any source distribution.
14*/
15
16#ifndef _BT_TRIANGLE_INFO_MAP_H
17#define _BT_TRIANGLE_INFO_MAP_H
18
21
23#define TRI_INFO_V0V1_CONVEX 1
24#define TRI_INFO_V1V2_CONVEX 2
25#define TRI_INFO_V2V0_CONVEX 4
26
27#define TRI_INFO_V0V1_SWAP_NORMALB 8
28#define TRI_INFO_V1V2_SWAP_NORMALB 16
29#define TRI_INFO_V2V0_SWAP_NORMALB 32
30
34{
36 {
40 m_flags = 0;
41 }
42
44
48};
49
51
54{
59 btScalar m_maxEdgeAngleThreshold; //ignore edges that connect triangles at an angle larger than this m_maxEdgeAngleThreshold
61
63 {
64 m_convexEpsilon = 0.00f;
65 m_planarEpsilon = 0.0001f;
66 m_equalVertexThreshold = btScalar(0.0001) * btScalar(0.0001);
68 m_zeroAreaThreshold = btScalar(0.0001) * btScalar(0.0001);
70 }
71 virtual ~btTriangleInfoMap() {}
72
73 virtual int calculateSerializeBufferSize() const;
74
76 virtual const char* serialize(void* dataBuffer, btSerializer* serializer) const;
77
78 void deSerialize(struct btTriangleInfoMapData& data);
79};
80
81// clang-format off
82
85{
90};
91
93{
98
104
109 char m_padding[4];
110};
111
112// clang-format on
113
115{
116 return sizeof(btTriangleInfoMapData);
117}
118
121{
124 tmapData->m_planarEpsilon = (float)m_planarEpsilon;
125 tmapData->m_equalVertexThreshold = (float)m_equalVertexThreshold;
126 tmapData->m_edgeDistanceThreshold = (float)m_edgeDistanceThreshold;
127 tmapData->m_zeroAreaThreshold = (float)m_zeroAreaThreshold;
128
129 tmapData->m_hashTableSize = m_hashTable.size();
130
131 tmapData->m_hashTablePtr = tmapData->m_hashTableSize ? (int*)serializer->getUniquePointer((void*)&m_hashTable[0]) : 0;
132 if (tmapData->m_hashTablePtr)
133 {
134 //serialize an int buffer
135 int sz = sizeof(int);
136 int numElem = tmapData->m_hashTableSize;
137 btChunk* chunk = serializer->allocate(sz, numElem);
138 int* memPtr = (int*)chunk->m_oldPtr;
139 for (int i = 0; i < numElem; i++, memPtr++)
140 {
141 *memPtr = m_hashTable[i];
142 }
143 serializer->finalizeChunk(chunk, "int", BT_ARRAY_CODE, (void*)&m_hashTable[0]);
144 }
145
146 tmapData->m_nextSize = m_next.size();
147 tmapData->m_nextPtr = tmapData->m_nextSize ? (int*)serializer->getUniquePointer((void*)&m_next[0]) : 0;
148 if (tmapData->m_nextPtr)
149 {
150 int sz = sizeof(int);
151 int numElem = tmapData->m_nextSize;
152 btChunk* chunk = serializer->allocate(sz, numElem);
153 int* memPtr = (int*)chunk->m_oldPtr;
154 for (int i = 0; i < numElem; i++, memPtr++)
155 {
156 *memPtr = m_next[i];
157 }
158 serializer->finalizeChunk(chunk, "int", BT_ARRAY_CODE, (void*)&m_next[0]);
159 }
160
161 tmapData->m_numValues = m_valueArray.size();
162 tmapData->m_valueArrayPtr = tmapData->m_numValues ? (btTriangleInfoData*)serializer->getUniquePointer((void*)&m_valueArray[0]) : 0;
163 if (tmapData->m_valueArrayPtr)
164 {
165 int sz = sizeof(btTriangleInfoData);
166 int numElem = tmapData->m_numValues;
167 btChunk* chunk = serializer->allocate(sz, numElem);
169 for (int i = 0; i < numElem; i++, memPtr++)
170 {
171 memPtr->m_edgeV0V1Angle = (float)m_valueArray[i].m_edgeV0V1Angle;
172 memPtr->m_edgeV1V2Angle = (float)m_valueArray[i].m_edgeV1V2Angle;
173 memPtr->m_edgeV2V0Angle = (float)m_valueArray[i].m_edgeV2V0Angle;
174 memPtr->m_flags = m_valueArray[i].m_flags;
175 }
176 serializer->finalizeChunk(chunk, "btTriangleInfoData", BT_ARRAY_CODE, (void*)&m_valueArray[0]);
177 }
178
179 tmapData->m_numKeys = m_keyArray.size();
180 tmapData->m_keyArrayPtr = tmapData->m_numKeys ? (int*)serializer->getUniquePointer((void*)&m_keyArray[0]) : 0;
181 if (tmapData->m_keyArrayPtr)
182 {
183 int sz = sizeof(int);
184 int numElem = tmapData->m_numValues;
185 btChunk* chunk = serializer->allocate(sz, numElem);
186 int* memPtr = (int*)chunk->m_oldPtr;
187 for (int i = 0; i < numElem; i++, memPtr++)
188 {
189 *memPtr = m_keyArray[i].getUid1();
190 }
191 serializer->finalizeChunk(chunk, "int", BT_ARRAY_CODE, (void*)&m_keyArray[0]);
192 }
193
194 // Fill padding with zeros to appease msan.
195 tmapData->m_padding[0] = 0;
196 tmapData->m_padding[1] = 0;
197 tmapData->m_padding[2] = 0;
198 tmapData->m_padding[3] = 0;
199
200 return "btTriangleInfoMapData";
201}
202
205{
206 m_convexEpsilon = tmapData.m_convexEpsilon;
207 m_planarEpsilon = tmapData.m_planarEpsilon;
208 m_equalVertexThreshold = tmapData.m_equalVertexThreshold;
209 m_edgeDistanceThreshold = tmapData.m_edgeDistanceThreshold;
210 m_zeroAreaThreshold = tmapData.m_zeroAreaThreshold;
211 m_hashTable.resize(tmapData.m_hashTableSize);
212 int i = 0;
213 for (i = 0; i < tmapData.m_hashTableSize; i++)
214 {
215 m_hashTable[i] = tmapData.m_hashTablePtr[i];
216 }
217 m_next.resize(tmapData.m_nextSize);
218 for (i = 0; i < tmapData.m_nextSize; i++)
219 {
220 m_next[i] = tmapData.m_nextPtr[i];
221 }
222 m_valueArray.resize(tmapData.m_numValues);
223 for (i = 0; i < tmapData.m_numValues; i++)
224 {
225 m_valueArray[i].m_edgeV0V1Angle = tmapData.m_valueArrayPtr[i].m_edgeV0V1Angle;
226 m_valueArray[i].m_edgeV1V2Angle = tmapData.m_valueArrayPtr[i].m_edgeV1V2Angle;
227 m_valueArray[i].m_edgeV2V0Angle = tmapData.m_valueArrayPtr[i].m_edgeV2V0Angle;
228 m_valueArray[i].m_flags = tmapData.m_valueArrayPtr[i].m_flags;
229 }
230
231 m_keyArray.resize(tmapData.m_numKeys, btHashInt(0));
232 for (i = 0; i < tmapData.m_numKeys; i++)
233 {
234 m_keyArray[i].setUid1(tmapData.m_keyArrayPtr[i]);
235 }
236}
237
238#endif //_BT_TRIANGLE_INFO_MAP_H
const T & btMax(const T &a, const T &b)
Definition btMinMax.h:27
float btScalar
The btScalar type abstracts floating point numbers, to easily switch between double and single floati...
Definition btScalar.h:314
#define SIMD_FORCE_INLINE
Definition btScalar.h:98
#define SIMD_2_PI
Definition btScalar.h:527
#define BT_ARRAY_CODE
btHashMap< btHashInt, btTriangleInfo > btInternalTriangleInfoMap
int size() const
return the number of elements in the array
void resize(int newsize, const T &fillData=T())
void * m_oldPtr
The btHashMap template class implements a generic and lightweight hashmap.
Definition btHashMap.h:220
btAlignedObjectArray< int > m_hashTable
Definition btHashMap.h:222
btAlignedObjectArray< int > m_next
Definition btHashMap.h:223
btAlignedObjectArray< Key > m_keyArray
Definition btHashMap.h:226
btAlignedObjectArray< Value > m_valueArray
Definition btHashMap.h:225
those fields have to be float and not btScalar for the serialization to work properly
btTriangleInfoData * m_valueArrayPtr
The btTriangleInfoMap stores edge angle information for some triangles. You can compute this informat...
void deSerialize(struct btTriangleInfoMapData &data)
fills the dataBuffer and returns the struct name (and 0 on failure)
btScalar m_maxEdgeAngleThreshold
used to determine edge contacts: if the closest distance between a contact point and an edge is small...
btScalar m_edgeDistanceThreshold
used to compute connectivity: if the distance between two vertices is smaller than m_equalVertexThres...
btTriangleInfoMap()
used to determine if a triangle is degenerate (length squared of cross product of 2 triangle edges < ...
btScalar m_planarEpsilon
used to determine if an edge or contact normal is convex, using the dot product
btScalar m_equalVertexThreshold
used to determine if a triangle edge is planar with zero angle
virtual const char * serialize(void *dataBuffer, btSerializer *serializer) const
fills the dataBuffer and returns the struct name (and 0 on failure)
virtual int calculateSerializeBufferSize() const
The btTriangleInfo structure stores information to adjust collision normals to avoid collisions again...