Bullet Collision Detection & Physics Library
btSolverBody.h
Go to the documentation of this file.
1/*
2Bullet Continuous Collision Detection and Physics Library
3Copyright (c) 2003-2006 Erwin Coumans https://bulletphysics.org
4
5This software is provided 'as-is', without any express or implied warranty.
6In no event will the authors be held liable for any damages arising from the use of this software.
7Permission is granted to anyone to use this software for any purpose,
8including commercial applications, and to alter it and redistribute it freely,
9subject to the following restrictions:
10
111. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
122. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
133. This notice may not be removed or altered from any source distribution.
14*/
15
16#ifndef BT_SOLVER_BODY_H
17#define BT_SOLVER_BODY_H
18
19class btRigidBody;
22
25
27#ifdef BT_USE_SSE
28#define USE_SIMD 1
29#endif //
30
31#ifdef USE_SIMD
32
33struct btSimdScalar
34{
36 {
37 }
38
41 {
42 }
43
45 : m_vec128(v128)
46 {
47 }
48 union {
50 float m_floats[4];
51 int m_ints[4];
53 };
55 {
56 return m_vec128;
57 }
58
59 SIMD_FORCE_INLINE const __m128 get128() const
60 {
61 return m_vec128;
62 }
63
65 {
66 m_vec128 = v128;
67 }
68
69 SIMD_FORCE_INLINE operator __m128()
70 {
71 return m_vec128;
72 }
73 SIMD_FORCE_INLINE operator const __m128() const
74 {
75 return m_vec128;
76 }
77
78 SIMD_FORCE_INLINE operator float() const
79 {
80 return m_floats[0];
81 }
82};
83
86operator*(const btSimdScalar& v1, const btSimdScalar& v2)
87{
88 return btSimdScalar(_mm_mul_ps(v1.get128(), v2.get128()));
89}
90
93operator+(const btSimdScalar& v1, const btSimdScalar& v2)
94{
95 return btSimdScalar(_mm_add_ps(v1.get128(), v2.get128()));
96}
97
98#else
99#define btSimdScalar btScalar
100#endif
101
105{
119
122 {
123 m_worldTransform = worldTransform;
124 }
125
127 {
128 return m_worldTransform;
129 }
130
132 {
133 if (m_originalBody)
134 velocity = m_linearVelocity + m_externalForceImpulse + (m_angularVelocity + m_externalTorqueImpulse).cross(rel_pos);
135 else
136 velocity.setValue(0, 0, 0);
137 }
138
140 {
141 if (m_originalBody)
142 velocity = m_linearVelocity + m_deltaLinearVelocity + (m_angularVelocity + m_deltaAngularVelocity).cross(rel_pos);
143 else
144 velocity.setValue(0, 0, 0);
145 }
146
148 {
149 if (m_originalBody)
150 angVel = m_angularVelocity + m_deltaAngularVelocity;
151 else
152 angVel.setValue(0, 0, 0);
153 }
154
155 //Optimization for the iterative solver: avoid calculating constant terms involving inertia, normal, relative position
157 {
158 if (m_originalBody)
159 {
160 m_deltaLinearVelocity += linearComponent * impulseMagnitude * m_linearFactor;
161 m_deltaAngularVelocity += angularComponent * (impulseMagnitude * m_angularFactor);
162 }
163 }
164
166 {
167 if (m_originalBody)
168 {
169 m_pushVelocity += linearComponent * impulseMagnitude * m_linearFactor;
170 m_turnVelocity += angularComponent * (impulseMagnitude * m_angularFactor);
171 }
172 }
173
175 {
176 return m_deltaLinearVelocity;
177 }
178
180 {
181 return m_deltaAngularVelocity;
182 }
183
185 {
186 return m_pushVelocity;
187 }
188
190 {
191 return m_turnVelocity;
192 }
193
196
198 {
199 return m_deltaLinearVelocity;
200 }
201
203 {
204 return m_deltaAngularVelocity;
205 }
206
208 {
209 return m_angularFactor;
210 }
211
213 {
214 return m_invMass;
215 }
216
217 void internalSetInvMass(const btVector3& invMass)
218 {
219 m_invMass = invMass;
220 }
221
223 {
224 return m_pushVelocity;
225 }
226
228 {
229 return m_turnVelocity;
230 }
231
233 {
234 velocity = m_linearVelocity + m_deltaLinearVelocity + (m_angularVelocity + m_deltaAngularVelocity).cross(rel_pos);
235 }
236
238 {
239 angVel = m_angularVelocity + m_deltaAngularVelocity;
240 }
241
242 //Optimization for the iterative solver: avoid calculating constant terms involving inertia, normal, relative position
244 {
245 if (m_originalBody)
246 {
247 m_deltaLinearVelocity += linearComponent * impulseMagnitude * m_linearFactor;
248 m_deltaAngularVelocity += angularComponent * (impulseMagnitude * m_angularFactor);
249 }
250 }
251
253 {
254 if (m_originalBody)
255 {
256 m_linearVelocity += m_deltaLinearVelocity;
257 m_angularVelocity += m_deltaAngularVelocity;
258
259 //m_originalBody->setCompanionId(-1);
260 }
261 }
262
264 {
265 (void)timeStep;
266 if (m_originalBody)
267 {
268 m_linearVelocity += m_deltaLinearVelocity;
269 m_angularVelocity += m_deltaAngularVelocity;
270
271 //correct the position/orientation based on push/turn recovery
273 if (m_pushVelocity[0] != 0.f || m_pushVelocity[1] != 0 || m_pushVelocity[2] != 0 || m_turnVelocity[0] != 0.f || m_turnVelocity[1] != 0 || m_turnVelocity[2] != 0)
274 {
275 // btQuaternion orn = m_worldTransform.getRotation();
276 btTransformUtil::integrateTransform(m_worldTransform, m_pushVelocity, m_turnVelocity * splitImpulseTurnErp, timeStep, newTransform);
277 m_worldTransform = newTransform;
278 }
279 //m_worldTransform.setRotation(orn);
280 //m_originalBody->setCompanionId(-1);
281 }
282 }
283};
284
285#endif //BT_SOLVER_BODY_H
btMatrix3x3 operator*(const btMatrix3x3 &m, const btScalar &k)
btMatrix3x3 operator+(const btMatrix3x3 &m1, const btMatrix3x3 &m2)
const T & btMax(const T &a, const T &b)
Definition btMinMax.h:27
float btScalar
The btScalar type abstracts floating point numbers, to easily switch between double and single floati...
Definition btScalar.h:314
#define ATTRIBUTE_ALIGNED16(a)
Definition btScalar.h:99
#define SIMD_FORCE_INLINE
Definition btScalar.h:98
#define btSimdScalar
Until we get other contributions, only use SIMD on Windows, when using Visual Studio 2008 or later,...
The btRigidBody is the main class for rigid body objects.
Definition btRigidBody.h:60
static void integrateTransform(const btTransform &curTrans, const btVector3 &linvel, const btVector3 &angvel, btScalar timeStep, btTransform &predictedTransform)
The btTransform class supports rigid transforms with only translation and rotation and no scaling/she...
Definition btTransform.h:30
btVector3 can be used to represent 3D points and vectors.
Definition btVector3.h:82
void setValue(const btScalar &_x, const btScalar &_y, const btScalar &_z)
Definition btVector3.h:640
The btSolverBody is an internal datastructure for the constraint solver. Only necessary data is packe...
void getAngularVelocity(btVector3 &angVel) const
const btVector3 & getPushVelocity() const
const btVector3 & getTurnVelocity() const
const btVector3 & getDeltaLinearVelocity() const
btVector3 m_linearFactor
btVector3 m_invMass
btVector3 m_pushVelocity
btVector3 & internalGetDeltaAngularVelocity()
void setWorldTransform(const btTransform &worldTransform)
btVector3 m_angularVelocity
btVector3 m_deltaLinearVelocity
btRigidBody * m_originalBody
void internalApplyPushImpulse(const btVector3 &linearComponent, const btVector3 &angularComponent, btScalar impulseMagnitude)
btVector3 & internalGetTurnVelocity()
BT_DECLARE_ALIGNED_ALLOCATOR()
btVector3 m_deltaAngularVelocity
btVector3 m_linearVelocity
void getVelocityInLocalPointNoDelta(const btVector3 &rel_pos, btVector3 &velocity) const
const btVector3 & getDeltaAngularVelocity() const
btTransform m_worldTransform
btVector3 & internalGetPushVelocity()
const btVector3 & internalGetAngularFactor() const
void writebackVelocityAndTransform(btScalar timeStep, btScalar splitImpulseTurnErp)
btVector3 & internalGetDeltaLinearVelocity()
some internal methods, don't use them
void writebackVelocity()
void internalSetInvMass(const btVector3 &invMass)
btVector3 m_angularFactor
void internalApplyImpulse(const btVector3 &linearComponent, const btVector3 &angularComponent, const btScalar impulseMagnitude)
void internalGetAngularVelocity(btVector3 &angVel) const
btVector3 m_externalTorqueImpulse
void internalGetVelocityInLocalPointObsolete(const btVector3 &rel_pos, btVector3 &velocity) const
const btTransform & getWorldTransform() const
void applyImpulse(const btVector3 &linearComponent, const btVector3 &angularComponent, const btScalar impulseMagnitude)
void getVelocityInLocalPointObsolete(const btVector3 &rel_pos, btVector3 &velocity) const
const btVector3 & internalGetInvMass() const
btVector3 m_turnVelocity
btVector3 m_externalForceImpulse