Bullet Collision Detection & Physics Library
btGImpactQuantizedBvh.h
Go to the documentation of this file.
1#ifndef GIM_QUANTIZED_SET_H_INCLUDED
2#define GIM_QUANTIZED_SET_H_INCLUDED
3
7/*
8This source file is part of GIMPACT Library.
9
10For the latest info, see http://gimpact.sourceforge.net/
11
12Copyright (c) 2007 Francisco Leon Najera. C.C. 80087371.
13email: projectileman@yahoo.com
14
15
16This software is provided 'as-is', without any express or implied warranty.
17In no event will the authors be held liable for any damages arising from the use of this software.
18Permission is granted to anyone to use this software for any purpose,
19including commercial applications, and to alter it and redistribute it freely,
20subject to the following restrictions:
21
221. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
232. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
243. This notice may not be removed or altered from any source distribution.
25*/
26
27#include "btGImpactBvh.h"
28#include "btQuantization.h"
30
31class GIM_QUANTIZED_BVH_NODE_ARRAY : public btAlignedObjectArray<BT_QUANTIZED_BVH_NODE>
32{
33};
34
37{
38protected:
43
44protected:
45 void calc_quantization(GIM_BVH_DATA_ARRAY& primitive_boxes, btScalar boundMargin = btScalar(1.0));
46
48 GIM_BVH_DATA_ARRAY& primitive_boxes,
49 int startIndex, int endIndex, int splitAxis);
50
51 int _calc_splitting_axis(GIM_BVH_DATA_ARRAY& primitive_boxes, int startIndex, int endIndex);
52
53 void _build_sub_tree(GIM_BVH_DATA_ARRAY& primitive_boxes, int startIndex, int endIndex);
54
55public:
57 {
58 m_num_nodes = 0;
59 }
60
63 void build_tree(GIM_BVH_DATA_ARRAY& primitive_boxes);
64
66 unsigned short* quantizedpoint, const btVector3& point) const
67 {
69 }
70
72 int node_index,
73 unsigned short* quantizedMin, unsigned short* quantizedMax) const
74 {
75 return m_node_array[node_index].testQuantizedBoxOverlapp(quantizedMin, quantizedMax);
76 }
77
79 {
81 m_num_nodes = 0;
82 }
83
86 {
87 return m_num_nodes;
88 }
89
91 SIMD_FORCE_INLINE bool isLeafNode(int nodeindex) const
92 {
93 return m_node_array[nodeindex].isLeafNode();
94 }
95
96 SIMD_FORCE_INLINE int getNodeData(int nodeindex) const
97 {
98 return m_node_array[nodeindex].getDataIndex();
99 }
100
101 SIMD_FORCE_INLINE void getNodeBound(int nodeindex, btAABB& bound) const
102 {
103 bound.m_min = bt_unquantize(
104 m_node_array[nodeindex].m_quantizedAabbMin,
106
107 bound.m_max = bt_unquantize(
108 m_node_array[nodeindex].m_quantizedAabbMax,
110 }
111
112 SIMD_FORCE_INLINE void setNodeBound(int nodeindex, const btAABB& bound)
113 {
114 bt_quantize_clamp(m_node_array[nodeindex].m_quantizedAabbMin,
115 bound.m_min,
119
120 bt_quantize_clamp(m_node_array[nodeindex].m_quantizedAabbMax,
121 bound.m_max,
125 }
126
127 SIMD_FORCE_INLINE int getLeftNode(int nodeindex) const
128 {
129 return nodeindex + 1;
130 }
131
132 SIMD_FORCE_INLINE int getRightNode(int nodeindex) const
133 {
134 if (m_node_array[nodeindex + 1].isLeafNode()) return nodeindex + 2;
135 return nodeindex + 1 + m_node_array[nodeindex + 1].getEscapeIndex();
136 }
137
138 SIMD_FORCE_INLINE int getEscapeNodeIndex(int nodeindex) const
139 {
140 return m_node_array[nodeindex].getEscapeIndex();
141 }
142
144 {
145 return &m_node_array[index];
146 }
147
149};
150
152
157{
158protected:
161
162protected:
163 //stackless refit
164 void refit();
165
166public:
169 {
170 m_primitive_manager = NULL;
171 }
172
175 {
176 m_primitive_manager = primitive_manager;
177 }
178
180 {
181 btAABB totalbox;
182 getNodeBound(0, totalbox);
183 return totalbox;
184 }
185
187 {
188 m_primitive_manager = primitive_manager;
189 }
190
192 {
193 return m_primitive_manager;
194 }
195
198
201 {
202 refit();
203 }
204
206 void buildSet();
207
209 bool boxQuery(const btAABB& box, btAlignedObjectArray<int>& collided_results) const;
210
213 const btTransform& transform, btAlignedObjectArray<int>& collided_results) const
214 {
215 btAABB transbox = box;
216 transbox.appy_transform(transform);
217 return boxQuery(transbox, collided_results);
218 }
219
221 bool rayQuery(
222 const btVector3& ray_dir, const btVector3& ray_origin,
223 btAlignedObjectArray<int>& collided_results) const;
224
227 {
228 return true;
229 }
230
233 {
235 }
236
239 {
240 return m_box_tree.getNodeCount();
241 }
242
244 SIMD_FORCE_INLINE bool isLeafNode(int nodeindex) const
245 {
246 return m_box_tree.isLeafNode(nodeindex);
247 }
248
249 SIMD_FORCE_INLINE int getNodeData(int nodeindex) const
250 {
251 return m_box_tree.getNodeData(nodeindex);
252 }
253
254 SIMD_FORCE_INLINE void getNodeBound(int nodeindex, btAABB& bound) const
255 {
256 m_box_tree.getNodeBound(nodeindex, bound);
257 }
258
259 SIMD_FORCE_INLINE void setNodeBound(int nodeindex, const btAABB& bound)
260 {
261 m_box_tree.setNodeBound(nodeindex, bound);
262 }
263
264 SIMD_FORCE_INLINE int getLeftNode(int nodeindex) const
265 {
266 return m_box_tree.getLeftNode(nodeindex);
267 }
268
269 SIMD_FORCE_INLINE int getRightNode(int nodeindex) const
270 {
271 return m_box_tree.getRightNode(nodeindex);
272 }
273
274 SIMD_FORCE_INLINE int getEscapeNodeIndex(int nodeindex) const
275 {
276 return m_box_tree.getEscapeNodeIndex(nodeindex);
277 }
278
279 SIMD_FORCE_INLINE void getNodeTriangle(int nodeindex, btPrimitiveTriangle& triangle) const
280 {
282 }
283
285 {
286 return m_box_tree.get_node_pointer(index);
287 }
288
289#ifdef TRI_COLLISION_PROFILING
290 static float getAverageTreeCollisionTime();
291#endif //TRI_COLLISION_PROFILING
292
293 static void find_collision(const btGImpactQuantizedBvh* boxset1, const btTransform& trans1,
294 const btGImpactQuantizedBvh* boxset2, const btTransform& trans2,
295 btPairSet& collision_pairs);
296};
297
298#endif // GIM_BOXPRUNING_H_INCLUDED
void bt_quantize_clamp(unsigned short *out, const btVector3 &point, const btVector3 &min_bound, const btVector3 &max_bound, const btVector3 &bvhQuantization)
btVector3 bt_unquantize(const unsigned short *vecIn, const btVector3 &offset, const btVector3 &bvhQuantization)
float btScalar
The btScalar type abstracts floating point numbers, to easily switch between double and single floati...
Definition: btScalar.h:314
#define SIMD_FORCE_INLINE
Definition: btScalar.h:98
Axis aligned box.
btVector3 m_min
btVector3 m_max
void appy_transform(const btTransform &trans)
Apply a transform to an AABB.
The btAlignedObjectArray template class uses a subset of the stl::vector interface for its methods It...
void clear()
clear the array, deallocated memory. Generally it is better to use array.resize(0),...
Structure for containing Boxes.
int getNodeData(int nodeindex) const
bool boxQueryTrans(const btAABB &box, const btTransform &transform, btAlignedObjectArray< int > &collided_results) const
returns the indices of the primitives in the m_primitive_manager
bool rayQuery(const btVector3 &ray_dir, const btVector3 &ray_origin, btAlignedObjectArray< int > &collided_results) const
returns the indices of the primitives in the m_primitive_manager
btPrimitiveManagerBase * m_primitive_manager
btPrimitiveManagerBase * getPrimitiveManager() const
void buildSet()
this rebuild the entire set
btGImpactQuantizedBvh()
this constructor doesn't build the tree. you must call buildSet
bool boxQuery(const btAABB &box, btAlignedObjectArray< int > &collided_results) const
returns the indices of the primitives in the m_primitive_manager
bool isLeafNode(int nodeindex) const
tells if the node is a leaf
btGImpactQuantizedBvh(btPrimitiveManagerBase *primitive_manager)
this constructor doesn't build the tree. you must call buildSet
void getNodeTriangle(int nodeindex, btPrimitiveTriangle &triangle) const
btQuantizedBvhTree m_box_tree
void setNodeBound(int nodeindex, const btAABB &bound)
int getNodeCount() const
node count
int getRightNode(int nodeindex) const
void update()
node manager prototype functions
void setPrimitiveManager(btPrimitiveManagerBase *primitive_manager)
const BT_QUANTIZED_BVH_NODE * get_node_pointer(int index=0) const
int getEscapeNodeIndex(int nodeindex) const
bool isTrimesh() const
tells if this set is a trimesh
void getNodeBound(int nodeindex, btAABB &bound) const
int getLeftNode(int nodeindex) const
static void find_collision(const btGImpactQuantizedBvh *boxset1, const btTransform &trans1, const btGImpactQuantizedBvh *boxset2, const btTransform &trans2, btPairSet &collision_pairs)
bool hasHierarchy() const
tells if this set has hierarcht
A pairset array.
Definition: btGImpactBvh.h:35
Prototype Base class for primitive classification.
Definition: btGImpactBvh.h:150
virtual void get_primitive_triangle(int prim_index, btPrimitiveTriangle &triangle) const =0
retrieves only the points of the triangle, and the collision margin
virtual bool is_trimesh() const =0
determines if this manager consist on only triangles, which special case will be optimized
Basic Box tree structure.
void setNodeBound(int nodeindex, const btAABB &bound)
const BT_QUANTIZED_BVH_NODE * get_node_pointer(int index=0) const
void getNodeBound(int nodeindex, btAABB &bound) const
int getRightNode(int nodeindex) const
bool isLeafNode(int nodeindex) const
tells if the node is a leaf
void _build_sub_tree(GIM_BVH_DATA_ARRAY &primitive_boxes, int startIndex, int endIndex)
void quantizePoint(unsigned short *quantizedpoint, const btVector3 &point) const
int getNodeCount() const
node count
void calc_quantization(GIM_BVH_DATA_ARRAY &primitive_boxes, btScalar boundMargin=btScalar(1.0))
void build_tree(GIM_BVH_DATA_ARRAY &primitive_boxes)
prototype functions for box tree management
int getEscapeNodeIndex(int nodeindex) const
GIM_QUANTIZED_BVH_NODE_ARRAY m_node_array
int _sort_and_calc_splitting_index(GIM_BVH_DATA_ARRAY &primitive_boxes, int startIndex, int endIndex, int splitAxis)
int getNodeData(int nodeindex) const
int _calc_splitting_axis(GIM_BVH_DATA_ARRAY &primitive_boxes, int startIndex, int endIndex)
bool testQuantizedBoxOverlapp(int node_index, unsigned short *quantizedMin, unsigned short *quantizedMax) const
int getLeftNode(int nodeindex) const
The btTransform class supports rigid transforms with only translation and rotation and no scaling/she...
Definition: btTransform.h:30
btVector3 can be used to represent 3D points and vectors.
Definition: btVector3.h:82
btQuantizedBvhNode is a compressed aabb node, 16 bytes.