/* * abm_precision.cpp * * example to check the order of the multi-step methods * * Copyright 2009-2013 Karsten Ahnert * Copyright 2009-2013 Mario Mulansky * * Distributed under the Boost Software License, Version 1.0. * (See accompanying file LICENSE_1_0.txt or * copy at http://www.boost.org/LICENSE_1_0.txt) */ #include #include #include #include using namespace boost::numeric::odeint; const int Steps = 4; typedef double value_type; typedef boost::array< double , 2 > state_type; typedef runge_kutta_fehlberg78 initializing_stepper_type; typedef adams_bashforth_moulton< Steps , state_type > stepper_type; //typedef adams_bashforth< Steps , state_type > stepper_type; // harmonic oscillator, analytic solution x[0] = sin( t ) struct osc { void operator()( const state_type &x , state_type &dxdt , const double t ) const { dxdt[0] = x[1]; dxdt[1] = -x[0]; } }; int main() { stepper_type stepper; initializing_stepper_type init_stepper; const int o = stepper.order()+1; //order of the error is order of approximation + 1 const state_type x0 = {{ 0.0 , 1.0 }}; state_type x1 = x0; double t = 0.0; double dt = 0.25; // initialization, does a number of steps already to fill internal buffer, t is increased // we use the rk78 as initializing stepper stepper.initialize( boost::ref(init_stepper) , osc() , x1 , t , dt ); // do a number of steps to fill the buffer with results from adams bashforth for( size_t n=0 ; n < stepper.steps ; ++n ) { stepper.do_step( osc() , x1 , t , dt ); t += dt; } double A = std::sqrt( x1[0]*x1[0] + x1[1]*x1[1] ); double phi = std::asin(x1[0]/A) - t; // now we do the actual step stepper.do_step( osc() , x1 , t , dt ); // only examine the error of the adams-bashforth-moulton step, not the initialization const double f = 2.0 * std::abs( A*sin(t+dt+phi) - x1[0] ) / std::pow( dt , o ); // upper bound std::cout << "# " << o << " , " << f << std::endl; /* as long as we have errors above machine precision */ while( f*std::pow( dt , o ) > 1E-16 ) { x1 = x0; t = 0.0; stepper.initialize( boost::ref(init_stepper) , osc() , x1 , t , dt ); A = std::sqrt( x1[0]*x1[0] + x1[1]*x1[1] ); phi = std::asin(x1[0]/A) - t; // now we do the actual step stepper.do_step( osc() , x1 , t , dt ); // only examine the error of the adams-bashforth-moulton step, not the initialization std::cout << dt << '\t' << std::abs( A*sin(t+dt+phi) - x1[0] ) << std::endl; dt *= 0.5; } }