//======================================================================= // Copyright 2001 Jeremy G. Siek, Andrew Lumsdaine, Lie-Quan Lee, // // Distributed under the Boost Software License, Version 1.0. (See // accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) //======================================================================= #include #include #include #include #include using namespace boost; template < typename TimeMap > class dfs_time_visitor:public default_dfs_visitor { typedef typename property_traits < TimeMap >::value_type T; public: dfs_time_visitor(TimeMap dmap, TimeMap fmap, T & t) : m_dtimemap(dmap), m_ftimemap(fmap), m_time(t) { } template < typename Vertex, typename Graph > void discover_vertex(Vertex u, const Graph & g) const { put(m_dtimemap, u, m_time++); } template < typename Vertex, typename Graph > void finish_vertex(Vertex u, const Graph & g) const { put(m_ftimemap, u, m_time++); } TimeMap m_dtimemap; TimeMap m_ftimemap; T & m_time; }; int main() { // Select the graph type we wish to use typedef adjacency_list < vecS, vecS, directedS > graph_t; typedef graph_traits < graph_t >::vertices_size_type size_type; // Set up the vertex names enum { u, v, w, x, y, z, N }; char name[] = { 'u', 'v', 'w', 'x', 'y', 'z' }; // Specify the edges in the graph typedef std::pair < int, int >E; E edge_array[] = { E(u, v), E(u, x), E(x, v), E(y, x), E(v, y), E(w, y), E(w, z), E(z, z) }; #if defined(BOOST_MSVC) && BOOST_MSVC <= 1300 graph_t g(N); for (std::size_t j = 0; j < sizeof(edge_array) / sizeof(E); ++j) add_edge(edge_array[j].first, edge_array[j].second, g); #else graph_t g(edge_array, edge_array + sizeof(edge_array) / sizeof(E), N); #endif // discover time and finish time properties std::vector < size_type > dtime(num_vertices(g)); std::vector < size_type > ftime(num_vertices(g)); typedef iterator_property_map::iterator, property_map::const_type> time_pm_type; time_pm_type dtime_pm(dtime.begin(), get(vertex_index, g)); time_pm_type ftime_pm(ftime.begin(), get(vertex_index, g)); size_type t = 0; dfs_time_visitor < time_pm_type >vis(dtime_pm, ftime_pm, t); depth_first_search(g, visitor(vis)); // use std::sort to order the vertices by their discover time std::vector < size_type > discover_order(N); integer_range < size_type > r(0, N); std::copy(r.begin(), r.end(), discover_order.begin()); std::sort(discover_order.begin(), discover_order.end(), indirect_cmp < time_pm_type, std::less < size_type > >(dtime_pm)); std::cout << "order of discovery: "; int i; for (i = 0; i < N; ++i) std::cout << name[discover_order[i]] << " "; std::vector < size_type > finish_order(N); std::copy(r.begin(), r.end(), finish_order.begin()); std::sort(finish_order.begin(), finish_order.end(), indirect_cmp < time_pm_type, std::less < size_type > >(ftime_pm)); std::cout << std::endl << "order of finish: "; for (i = 0; i < N; ++i) std::cout << name[finish_order[i]] << " "; std::cout << std::endl; return EXIT_SUCCESS; }