Gyoto
|
A toroidal accretion structure. More...
#include <GyotoPolishDoughnut.h>
Classes | |
class | intersection_t |
double intersection(double) Functor class More... | |
class | outerradius_t |
double outerradius(double) Functor class More... | |
Public Types | |
typedef Gyoto::SmartPointer< Gyoto::SmartPointee > | Subcontractor_t(Gyoto::FactoryMessenger *, std::vector< std::string > const &) |
A subcontractor builds an object upon order from the Factory. | |
Public Member Functions | |
virtual Property const * | getProperties () const |
Get list of properties. | |
void | fillProperty (Gyoto::FactoryMessenger *fmp, Property const &p) const |
Output a single Property to XML. | |
PolishDoughnut () | |
Default constructor. | |
PolishDoughnut (const PolishDoughnut &) | |
Copy constructor. | |
virtual PolishDoughnut * | clone () const |
Cloner. | |
virtual | ~PolishDoughnut () |
Destructor. | |
double | getL0 () const |
Get PolishDoughnut::l0_. | |
double | lambda () const |
Get PolishDoughnut::lambda_. | |
void | lambda (double lambda) |
Set PolishDoughnut::lambda_. | |
double | centralEnthalpyPerUnitVolume () const |
Get PolishDoughnut::central_enthalpy_cgs_. | |
double | centralEnthalpyPerUnitVolume (std::string const &unit) const |
Get PolishDoughnut::central_enthalpy_cgs_ in specified unit. | |
void | centralEnthalpyPerUnitVolume (double density) |
Set PolishDoughnut::central_enthalpy_cgs_. | |
void | centralEnthalpyPerUnitVolume (double density, std::string const &unit) |
Set PolishDoughnut::central_enthalpy_cgs_ in specified unit. | |
double | centralTemp () const |
Get PolishDoughnut::central_temperature_. | |
void | centralTemp (double val) |
Set PolishDoughnut::central_temperature_. | |
double | beta () const |
Get PolishDoughnut::beta_. | |
void | beta (double beta) |
Set PolishDoughnut::beta_. | |
void | magnetizationParameter (double rr) |
double | magnetizationParameter () const |
void | spectralOversampling (size_t) |
Set PolishDoughnut::spectral_oversampling_. | |
size_t | spectralOversampling () const |
Get PolishDoughnut::spectral_oversampling_. | |
bool | changeCusp () const |
Get PolishDoughnut::komissarov_. | |
void | changeCusp (bool t) |
Set PolishDoughnut::komissarov_. | |
bool | bremsstrahlung () const |
Get PolishDoughnut::bremsstrahlung_. | |
void | bremsstrahlung (bool brems) |
Set PolishDoughnut::bremsstrahlung_. | |
bool | angleAveraged () const |
Get PolishDoughnut::angle_averaged_. | |
void | angleAveraged (bool komis) |
Set PolishDoughnut::angle_averaged_. | |
void | nonThermalDeltaExpo (std::vector< double > const &v) |
std::vector< double > | nonThermalDeltaExpo () const |
void | angmomrinner (std::vector< double > const &v) |
std::vector< double > | angmomrinner () const |
void | adafparams (std::vector< double > const &v) |
std::vector< double > | adafparams () const |
void | adaf (bool t) |
bool | adaf () const |
void | setParameter (Gyoto::Property const &p, std::string const &name, std::string const &content, std::string const &unit) |
Set parameter by Property (and name) | |
double | getWsurface () const |
Get PolishDoughnut::W_surface_. | |
double | getWcentre () const |
Get PolishDoughnut::W_centre_. | |
double | getRcusp () const |
Get PolishDoughnut::r_cusp_. | |
double | getRcentre () const |
Get PolishDoughnut::r_centre_. | |
virtual void | metric (Gyoto::SmartPointer< Gyoto::Metric::Generic >) |
Set the Metric gg_. | |
int | Impact (Photon *ph, size_t index, Astrobj::Properties *data) |
Does a photon at these coordinates impact the object? | |
virtual double | operator() (double const coord[4]) |
Function defining the object interior. | |
virtual void | safetyValue (double val) |
Set Standard::safety_value_. | |
virtual double | safetyValue () const |
Get Standard::safety_value_. | |
double | deltaInObj () const |
Get Generic::delta_inobj_. | |
void | deltaInObj (double val) |
Set Generic::delta_inobj_. | |
virtual double | operator() (double const data[])=0 |
The actual function. | |
virtual double | giveDelta (double coord[8]) |
Maximum δ inside object. | |
virtual SmartPointer< Metric::Generic > | metric () const |
Get the Metric gg_. | |
virtual double | rMax () |
Get maximal distance from center of coordinate system. | |
virtual double | rMax () const |
Get maximal distance from center of coordinate system. | |
virtual double | rMax (std::string const &unit) |
Get rmax_ is specified unit. | |
virtual double | rMax (std::string const &unit) const |
Get rmax_ is specified unit. | |
virtual void | rMax (double val) |
Set maximal distance from center of coordinate system. | |
virtual void | rMax (double val, std::string const &unit) |
Set maximal distance from center of coordinate system. | |
virtual double | deltaMax (double coord[8]) |
Get max step constraint for adaptive integration. | |
GYOTO_OBJECT_ACCESSORS_UNIT (deltaMaxInsideRMax) | |
void | opticallyThin (bool flag) |
Set whether the object is optically thin. | |
bool | opticallyThin () const |
Query whether object is optically thin. | |
void | showshadow (bool flag) |
bool | showshadow () const |
void | redshift (bool flag) |
bool | redshift () const |
virtual Gyoto::Quantity_t | getDefaultQuantities () |
Which quantities to compute if know was requested. | |
virtual void | setParameters (FactoryMessenger *fmp) |
Main loop in Subcontractor_t function. | |
virtual void | processHitQuantities (Photon *ph, state_t const &coord_ph_hit, double const *coord_obj_hit, double dt, Astrobj::Properties *data) const |
Fills Astrobj::Properties. | |
virtual void | processHitQuantities (Photon *ph, double *coord_ph_hit, double *coord_obj_hit, double dt, Astrobj::Properties *data) const =delete |
virtual double | emission (double nu_em, double dsem, state_t const &coord_ph, double const coord_obj[8]=NULL) const |
Specific intensity Iν | |
virtual double | emission (double nu_em, double dsem, double coord_ph[8], double coord_obj[8]=NULL) const =delete |
Obsolete, update your code;. | |
virtual void | emission (double Inu[], double const nu_em[], size_t nbnu, double dsem, state_t const &coord_ph, double const coord_obj[8]=NULL) const |
Specific intensity Iν for several values of νem | |
virtual void | emission (double Inu[], double nu_em[], size_t nbnu, double dsem, double coord_ph[8], double coord_obj[8]=NULL) const =delete |
Obsolete, update your code. | |
virtual void | radiativeQ (double Inu[], double Taunu[], double nu_em[], size_t nbnu, double dsem, double coord_ph[8], double coord_obj[8]=NULL) const =delete |
virtual void | radiativeQ (double *Inu, double *Qnu, double *Unu, double *Vnu, Eigen::Matrix4d *Onu, double const *nuem, size_t nbnu, double dsem, state_t const &cph, double const *co) const |
Compute the increment of Stokes parameters and transmission matrix. Polarised version of RadiaveQ. | |
virtual double | integrateEmission (double nu1, double nu2, double dsem, state_t const &c_ph, double const c_obj[8]=NULL) const |
∫ν1ν2 Iν dν (or jν) | |
virtual double | integrateEmission (double nu1, double nu2, double dsem, double c_ph[8], double c_obj[8]=NULL) const =delete |
Obsolete, update your code. | |
virtual void | integrateEmission (double *I, double const *boundaries, size_t const *chaninds, size_t nbnu, double dsem, double *cph, double *co) const =delete |
Obsolete, update your code. | |
virtual double | transmission (double nuem, double dsem, state_t const &coord_ph, double const coord_obj[8]) const |
Transmission: exp( αν * dsem ) | |
virtual double | transmission (double nuem, double dsem, state_t const &coord) const =delete |
Obsolete, update your code. | |
virtual double | transmission (double nuem, double dsem, double coord[8]) const =delete |
Obsolete, update your code. | |
Eigen::Matrix4d | Omatrix (double alphanu[4], double rnu[3], double Chi, double dsem) const |
Eigen::Matrix4d | Omatrix (double alphaInu, double alphaQnu, double alphaUnu, double alphaVnu, double rQnu, double rUnu, double rVnu, double Chi, double dsem) const |
Eigen::Matrix4d | Omatrix (double alphanu[4], double rnu[3], double sin2Chi, double cos2Chi, double dsem) const |
Eigen::Matrix4d | Omatrix (double alphaInu, double alphaQnu, double alphaUnu, double alphaVnu, double rQnu, double rUnu, double rVnu, double sin2Chi, double cos2Chi, double dsem) const |
Eigen::Matrix4d | Pmatrix (double alphaInu, double alphaQnu, double alphaUnu, double alphaVnu, double rQnu, double rUnu, double rVnu, double sin2Chi, double cos2Chi, double dsem) const |
Eigen::Vector4d | rotateJs (double jInu, double jQnu, double jUnu, double jVnu, double sin2Chi, double cos2Chi) const |
Eigen::Vector4d | rotateJs (double jInu, double jQnu, double jUnu, double jVnu, double Chi) const |
double | getChi (double const fourvect[4], state_t const &cph, double const vel[4], bool elec=false) const |
void | getSinCos2Chi (double const fourvect[4], state_t const &cph, double const vel[4], double *sin2Chi, double *cos2Chi, bool elec=false) const |
void | computeB4vect (double B4vect[4], std::string const magneticConfig, double const co[8], state_t const &cph) const |
void | computeB4vect_ipole (double B4vect[4], std::string const magneticConfig, double const co[8], state_t const &cph, double spin) const |
double | interpolate (int const N, double *const array, double *const Xq, double **const X, int *const X_params, std::string const *cond_limits) const |
double | interpolate (int const N, double *const array, double *const Xq, double **const X_params, std::string const *cond_limits) const |
void | incRefCount () |
Increment the reference counter. Warning: Don't mess with the counter. | |
int | decRefCount () |
Decrement the reference counter and return current value. Warning: Don't mess with the counter. | |
int | getRefCount () |
Get the current number of references. | |
virtual bool | isThreadSafe () const |
Whether this class is thread-safe. | |
virtual void | set (Property const &p, Value val) |
Set Value of a Property. | |
virtual void | set (Property const &p, Value val, std::string const &unit) |
Set Value (expressed in unit) of a Property. | |
virtual void | set (std::string const &pname, Value val) |
Set Value of a Property. | |
virtual void | set (std::string const &pname, Value val, std::string const &unit) |
Set Value (expressed in unit) of a Property. | |
virtual Value | get (Property const &p) const |
Get Value of a Property. | |
virtual Value | get (std::string const &pname) const |
Get Value of a Property. | |
virtual Value | get (Property const &p, std::string const &unit) const |
Get Value of a Property, converted to unit. | |
virtual Value | get (std::string const &pname, std::string const &unit) const |
Get Value of a Property, converted to unit. | |
Property const * | property (std::string const pname) const |
Find property by name. | |
virtual void | fillElement (Gyoto::FactoryMessenger *fmp) const |
Fill the XML element for this Object. | |
virtual int | setParameter (std::string name, std::string content, std::string unit) |
Set parameter by name. | |
std::string | describeProperty (Gyoto::Property const &p) const |
Format desrciption for a property. | |
void | help () const |
Print (to stdout) some help on this class. | |
virtual std::string | kind () const |
Get kind_. | |
Public Attributes | |
GYOTO_OBJECT_THREAD_SAFETY | |
Static Public Attributes | |
static GYOTO_OBJECT Property const | properties [] |
Protected Member Functions | |
virtual void | tell (Gyoto::Hook::Teller *msg) |
Update PolishDoughnut::aa_. | |
virtual void | getVelocity (double const pos[4], double vel[4]) |
Fluid velocity field. | |
virtual void | integrateEmission (double *I, double const *boundaries, size_t const *chaninds, size_t nbnu, double dsem, state_t const &cph, double const *co) const |
∫ν1ν2 Iν dν (or jν) | |
virtual void | radiativeQ (double Inu[], double Taunu[], double const nu_em[], size_t nbnu, double dsem, state_t const &coord_ph, double const coord_obj[8]=NULL) const |
emission and transmission together | |
virtual void | kind (const std::string) |
Set kind_. | |
Protected Attributes | |
SmartPointer< Spectrum::ThermalBremsstrahlung > | spectrumBrems_ |
SmartPointer< Spectrum::ThermalSynchrotron > | spectrumSynch_ |
SmartPointer< Spectrum::PowerLawSynchrotron > | spectrumPLSynch_ |
double | l0_ |
Angular momentum. Tied to PolishDoughnut::lambda_. | |
double | lambda_ |
Adimentionned angular momentum. | |
double | W_surface_ |
Potential surface value. Tied to PolishDoughnut::lambda_. | |
double | W_centre_ |
Potential central value. Tied to PolishDoughnut::lambda_. | |
double | r_cusp_ |
Cusp radius in geometrical units. Tied to PolishDoughnut::lambda_. | |
double | r_centre_ |
Central radius in geometrical units. Tied to PolishDoughnut::lambda_. | |
double | r_torusouter_ |
Torus outer coordinate radius. Tied to PolishDoughnut::lambda_. | |
double | DeltaWm1_ |
1./(W_centre_ - W_surface_); | |
double | central_enthalpy_cgs_ |
Central enthalpy per unit volume in erg/cm3. | |
double | central_temperature_ |
Tcenter in K. | |
double | beta_ |
Pgas/Pmagn (careful not standard) | |
double | magnetizationParameter_ |
Pmagn/(ne mp c2) (careful, very different from above) | |
double | aa_ |
PolishDoughnut::gg_ spin, cached when setting PolishDoughnut::lambda_. | |
double | aa2_ |
aa_2 | |
size_t | spectral_oversampling_ |
Oversampling used in integrateEmission() | |
bool | angle_averaged_ |
1 if Komissarov model should be angle averaged | |
bool | bremsstrahlung_ |
1 if Komissarov model should compute Brems radiation | |
double | deltaPL_ |
fraction of thermal energy in non-thermal electrons | |
bool | adaf_ |
true to switch to an ADAF model rather tha Polish doughnut | |
double | ADAFtemperature_ |
ADAF central temperature. | |
double | ADAFdensity_ |
ADAF central density. | |
bool | changecusp_ |
true to apply the fishy rcusp_ change (to be changed) | |
bool | rochelobefilling_ |
true if torus filling its Roche lobe | |
bool | defangmomrinner_ |
true if torus defined from l0 and rin | |
double | rintorus_ |
Inner radius of the doughnut. | |
double | critical_value_ |
See operator()(double const coord[4]) | |
double | safety_value_ |
See operator()(double const coord[4]) | |
double | delta_inobj_ |
Constant value of the integration step inside object, in units of the compact object's mass M. | |
SmartPointer< Gyoto::Metric::Generic > | gg_ |
The Metric in this end of the Universe. | |
double | rmax_ |
Maximum distance to the center of the coordinate system [geometrical units]. | |
double | deltamaxinsidermax_ |
Maximum Photon integration step inside rmax_ [geometrical units]. | |
bool | flag_radtransf_ |
1 if radiative transfer inside Astrobj, else 0 | |
int | shadow_ |
1 to highlight the shadow region in the image | |
int | noredshift_ |
1 to impose redshift factor g = 1 | |
std::string | kind_ |
The "kind" that is output in the XML entity. | |
std::vector< std::string > | plugins_ |
The plug-ins that needs to be loaded to access this instance's class. | |
Private Member Functions | |
double | potential (double r, double theta) const |
Potential defining shape, used by operator()() | |
double | interp1d (double const x, double const y0, double const y1) const |
double | interpNd (int const N, double *const Xq, double **const X, double *const Y, std::string const *cond_limit) const |
int | getIndice (double &xq, std::string const cond_limit, double const X_params[3], double *const X=NULL) const |
Private Attributes | |
intersection_t | intersection |
double intersection(double) Functor | |
int | __defaultfeatures |
Whether some virtual methods are implemented. | |
int | refCount |
Reference counter. | |
pthread_mutex_t | mutex_ |
A mutex. | |
Friends | |
class | Gyoto::SmartPointer< Gyoto::Astrobj::PolishDoughnut > |
class | intersection_t |
A toroidal accretion structure.
Latest reference: Vincent, F. H.; Yan, W.; Straub, O.; Zdziarski, A. A.; Abramowicz, M. A. 2015, A magnetized torus for modeling Sagittarius A* millimeter images and spectra, A&A 574:A48.
Reference: Straub, O.; Vincent, F. H.; Abramowicz, M. A.; Gourgoulhon, E.; & Paumard, T. 2012, Modelling the black hole silhouette in Sagittarius A* with ion tori, A&A 543:83.
|
inherited |
A subcontractor builds an object upon order from the Factory.
Various classes need to provide a subcontractor to be able to instantiate themselves upon order from the Factory. A subcontractor is a function (often a static member function) which accepts a pointer to a FactoryMessenger as unique parameter, communicates with the Factory using this messenger to read an XML description of the object to build, and returns this objet. SmartPointee::Subcontractor_t* is just generic enough a typedef to cast to and from other subcontractor types: Astrobj::Subcontractor_t, Metric::Subcontractor_t, Spectrum::Subcontractor_t. A subcontractor needs to be registered using the relevant Register() function: Astrobj::Register(), Metric::Register(), Spectrum::Register().
|
virtual |
Cloner.
This method must be implemented by the various Astrobj::Generic subclasses in order to support cloning:
Cloning is necessary for multi-threading, recommended for interaction with the Yorick plug-in etc.
Implementing it is very straightforward, as long as the copy constructor Generic(const Generic& ) has been implemented:
Implements Gyoto::Astrobj::Generic.
|
inherited |
Compute the magnetic field 4-vector at a given position and a given configuration
B4vect | the output 4-vector magnetic field |
magneticConfig | string which determine the wanted configuration ('Radial', 'Azimuthal', 'Vertical') |
co | coordinate of the object which also contain its velocity |
cph | coordinate of the photon |
|
inherited |
Get Generic::delta_inobj_.
Get the constant integration step inside the astrobj
|
virtualinherited |
Get max step constraint for adaptive integration.
[in] | coord | position |
Reimplemented in Gyoto::Astrobj::Complex.
|
inherited |
Format desrciption for a property.
Returns a string containing the name(s) and type of the property, as well as whether it supports unit.
|
virtualinherited |
Specific intensity Iν for several values of νem
Called by the default implementation for processHitQuantities().
emission() computes the intensity Iν emitted by the small volume of length dsem. It should take self-absorption along dsem into account.
Same as emission(double nu_em, double dsem, double coord_ph[8], double coord_obj[8]=NULL) const looping on several values of nu_em.
Inu[nbnu] | Output (must be set to a previously allocated array of doubles) |
nu_em[nbnu] | Frequencies at emission |
nbnu | Size of Inu[] and nu_em[] |
dsem | Length over which to integrate inside the object |
coord_ph | Photon coordinate |
coord_obj | Emitter coordinate at current photon position |
Reimplemented in Gyoto::Astrobj::Python::Standard, and Gyoto::Astrobj::Python::ThinDisk.
|
virtualinherited |
Specific intensity Iν
Called by the default implementation for processHitQuantities().
emission() computes the intensity Iν emitted by the small volume of length dsem, in the emitter's frame. It should take self-absorption along dsem into account.
Reminder :
The equation used for radiative transfer (without absorption) is:
d(Iν/ν3)/dλ = (jν/ν2) [*]
where λ is the integration parameter along the null geodesic.
NB: Let us consider a particular observer, with ν being the frequency measured by this observer, and ds being the proper distance (as measured by the observer) that the photon travels as it moves from λ to λ+dλ along its geodesic. Then it can be shown that:
dλ = ds/ν
This shows that Eq. [*] is homogeneous.
The default implementation returns 1. if optically thick and dsem if optically thin. It allows for a quick implementation of your object for visualization purposes.
nu_em | Frequency at emission [Hz] |
dsem | length over which to integrate inside the object [geometrical units] |
coord_ph | Photon coordinate |
coord_obj | Emitter coordinate at current photon position |
Reimplemented in Gyoto::Astrobj::DynamicalDiskBolometric, Gyoto::Astrobj::EquatorialHotSpot, Gyoto::Astrobj::NeutronStarAnalyticEmission, Gyoto::Astrobj::NeutronStarModelAtmosphere, Gyoto::Astrobj::XillverReflection, Gyoto::Astrobj::DirectionalDisk, Gyoto::Astrobj::DynamicalDisk, Gyoto::Astrobj::DynamicalDisk, Gyoto::Astrobj::DynamicalDisk3D, Gyoto::Astrobj::PageThorneDisk, Gyoto::Astrobj::PatternDisk, Gyoto::Astrobj::PatternDiskBB, Gyoto::Astrobj::PatternDiskBB, Gyoto::Astrobj::ThinDiskGridIntensity, Gyoto::Astrobj::ThinDiskIronLine, Gyoto::Astrobj::ThinDiskPL, Gyoto::Astrobj::ThinDiskProfile, Gyoto::Astrobj::Torus, Gyoto::Astrobj::Python::Standard, Gyoto::Astrobj::Python::ThinDisk, Gyoto::Astrobj::InflateStar, and Gyoto::Astrobj::UniformSphere.
|
virtualinherited |
Fill the XML element for this Object.
The base implementation simply calls fillProperty() for each Property defined for the Object.
Derived classes should avoid overriding fillElement(). It may make sense occasionally, e.g. to make sure that the metric is output first.
To customize how a given Property is rendered, it is better to override fillProperty().
If this method is overridden, the implementation should in general call fillElement() on the direct base.
Reimplemented in Gyoto::Astrobj::Complex, Gyoto::Metric::Complex, Gyoto::Spectrometer::Complex, and Gyoto::Scenery.
|
virtual |
Output a single Property to XML.
The base implementation decides what to do based on the p.type. The format matches how setParameters() an setParameter() would interpret the XML descition.
Overriding this method should be avoided, but makes sense in some cases (for instance Screen::fillProperty() selects a different unit for Distance based on its magnitude, so that stellar sizes are expressed in solar radii while smaller sizes can be expressed in meters and larger sizes in parsecs).
Overriding implementation should fall-back on calling the implementation in the direct parent class:
Reimplemented from Gyoto::Object.
|
inherited |
Get Chi angle. Return the angle between the parallel transported observer polarization basis (Ephi,Etheta) and the Stokes basis in the rest frame of the emitter defined by the 4-vector magnetic/electric field.
fourvect | 4-vector magnetic/electric field depending on elec (false/true) |
cph | Photon coordinate, must contain the Ephi and Etheta vectors i.e. size(cph)==16 |
vel | Fluid velocity at the photon coordinate |
|
virtualinherited |
Which quantities to compute if know was requested.
Return a Gyoto::Quantity_t suitable as input to Gyoto::Scenery::setRequestedQuantities() to set de default quantities to compute for this object. The default of these defaults GYOTO_QUANTITY_INTENSITY.
Reimplemented in Gyoto::Astrobj::PageThorneDisk.
|
privateinherited |
Function that return the closest indice of the query value on an axis.
xq | query value on the axis. Could be modified in case of periodic boundary condition. |
cond_limit | boundary conditions that will be applied to the axis. |
X_params[3] | array which contain the minimum value, the maximum value and the length of the axe. |
X | (optional) array which contains the value of the axis points. Usefull for not linearly spaced axis. |
|
virtual |
Get list of properties.
This method is declared automatically by the GYOTO_OBJECT macro and defined automatically by the GYOTO_PROPERTY_END macro.
Reimplemented from Gyoto::Astrobj::Standard.
|
inherited |
Get the cosinus and sinus of 2*Chi angle. Chi being the angle between the parallel transported observer polarization basis (Ephi,Etheta) and the Stokes basis in the rest frame of the emitter defined by the 4-vector magnetic/electric field.
fourvect | 4-vector magnetic/electric field depending on elec (false/true) |
cph | Photon coordinate, must contain the Ephi and Etheta vectors i.e. size(cph)==16 |
vel | Fluid velocity at the photon coordinate |
|
protectedvirtual |
Fluid velocity field.
Fill vel with the 4-vector velocity of the fluid at 4-position pos.
[in] | pos | 4-position at which to compute velocity; |
[out] | vel | 4-velocity at pos. |
Implements Gyoto::Astrobj::Standard.
|
virtualinherited |
Maximum δ inside object.
Gives the requested integration step δt (in coordinate time t) between two neighboring points along a portion of geodesic inside an astrobj; the current implementation only considers a constant delta, equal to Standard::deltaInobj()
coord | input coordinate at which δt is given |
Reimplemented in Gyoto::Astrobj::Python::Standard.
|
inherited |
Print (to stdout) some help on this class.
Describe all properties that this instance supports.
|
virtual |
Does a photon at these coordinates impact the object?
Impact() checks whether a Photon impacts the object between two integration steps of the photon's trajectory (those two steps are photon->getCoord(index, coord1) and photon->getCoord(index+1, coord2)). Impact returns 1 if the photon impacts the object between these two steps, else 0. In many cases of geometrically thick obects, the implementation Astrobj::Standard::Impact() will be fine.
Impact will call Generic::processHitQuantities() (which is virtual and may be re-implemented) to compute observable properties on demand: if the data pointer is non-NULL, the object will look in it for pointers to properties which apply to its kind. If a pointer to a property known to this object is present, then the property is computed and store at the pointed-to address. For instance, all objects know the "intensity" property. If data->intensity != NULL, the instensity is computed and stored in *data->intensity.
If data is non-NULL and only in this case, processHitQuantities() will also call ph->transmit() to update the transmissions of the Photon (see Photon::transmit(size_t, double)). This must not be done if data is NULL (see Astrobj::Complex::Impact() for an explanation).
Impact() may not extend the ph Worldline. The only two dates that are guaranteed to be defined are at indices index and index+1.
ph | Gyoto::Photon aimed at the object; |
index | Index of the last photon step; |
data | Pointer to a structure to hold the observables at impact. |
Reimplemented from Gyoto::Astrobj::Standard.
|
protectedvirtual |
∫ν1ν2 Iν dν (or jν)
PolishDought::emission() is slow. Integrating it is very slow. This implementation simply oversamples the spectrum by PolishDoughnut::spectral_oversampling_ and sums the trapezoids.
For general documentation, see Astrobj::Generic::integrateEmission(double * I, double const * boundaries, size_t const * chaninds, size_t nbnu, double dsem, double *cph, double *co) const .
Reimplemented from Gyoto::Astrobj::Generic.
|
virtualinherited |
∫ν1ν2 Iν dν (or jν)
Compute the integral of emission() from ν1 to ν2. The default implementation is a numerical integrator which works well enough and is reasonably fast if emission() is a smooth function (i.e. no emission or absorption lines). If possible, it is wise to implement an analytical solution. It is used by processHitQuantities to compute the "BinSpectrum" quantity which is the most physical: it is the only quantity that can be actually measured directly by a real-life instrument.
Reimplemented in Gyoto::Astrobj::Torus, Gyoto::Astrobj::Python::Standard, and Gyoto::Astrobj::Python::ThinDisk.
|
privateinherited |
Function which returns the 1D linear interpolation.
x | the x query position along the linear function [0,1]. |
y0 | the value of the array to be interpolated at the low position. |
y1 | the value of the array to be interpolated at the high position. |
|
privateinherited |
Function which returns the N- dimension interpolation on an N-dimensional cube
N | number of dimensions |
Xq | query position at which the interpolation should be done. 1D array with N elements. |
X[2**N][N] | 2D array that contains for the 2**N points of the N dimensional cube the associated axes values. |
Y[2**N] | 1D array that contain the value of the array to be interpolated at each points of the N-dimensional cube. |
cond_limit | 1D array of strings that set the boundary conditions that will be applied to each axes. |
|
inherited |
N-dimensional linear interpolation function
N | number of dimensions |
array | array that should be interpolated. This array has to be a 1D array with the first dimension evolving the slowest |
Xq | query position at which the interpolation should be done. 1D array with N elements. |
X | 2D array containing the range of all the axes (for example : radius, \theta, \varphi) at which the array is knwon. Should be built as a pointer of pointers. |
X_params | 1D array that contain the length of each axes. |
cond_limits | 1D array of strings that set the boundary conditions that will be applied to each axes |
|
inherited |
N-dimensional linear interpolation function
N | number of dimensions |
array | array that should be interpolated. This array has to be a 1D array with the first dimension evolving the slowest |
Xq | query position at which the interpolation should be done. 1D array with N elements. |
X_params[N][3] | 2D array that contain the minimum value, the maximum value and the length of each axes. The axes will be assumed to be linearly spaced. |
cond_limits | 1D array of strings that set the boundary conditions that will be applied to each axes. |
|
virtualinherited |
Whether this class is thread-safe.
Return True if this object is thread-safe, i.e. if an instance and its clone can be used in parallel threads (in the context of Scenery::raytrace()). Known objects which are not thread-safe include Lorene metrics and everything from the Python plug-in.
The default implementation considers that the class itself is thread safe and recurses into the declared properties to check whether they are safe too. Classes that abide to the Object/Property paradigm and are themselves thread-safe have nothing special to do.
Objects that clone children in their copy constructor that are not declared as properties must take these children into account.
Classes that are never thread-safe must declare it. It acn be easily done using GYOTO_OBJECT_THREAD_SAFETY in the class declaration and GYOTO_PROPERTY_THREAD_UNSAFE in the class definition.
|
virtualinherited |
Get kind_.
Reimplemented in Gyoto::Spectrometer::Uniform.
|
protectedvirtualinherited |
Set kind_.
kind(const std::string) is protected because, for most Objects, it should not be changed in runtime. Set kind_
|
virtualinherited |
Reimplemented in Gyoto::Astrobj::Complex, Gyoto::Astrobj::DeformedTorus, Gyoto::Astrobj::DirectionalDisk, Gyoto::Astrobj::DynamicalDisk3D, Gyoto::Astrobj::EquatorialHotSpot, Gyoto::Astrobj::FixedStar, Gyoto::Astrobj::FlaredDiskSynchrotron, Gyoto::Astrobj::Jet, Gyoto::Astrobj::NeutronStar, Gyoto::Astrobj::OscilTorus, Gyoto::Astrobj::Plasmoid, Gyoto::Astrobj::SphericalAccretion, Gyoto::Astrobj::Star, Gyoto::Astrobj::StarTrace, Gyoto::Astrobj::ThickDisk, Gyoto::Astrobj::ThinDiskGridIntensity, and Gyoto::Astrobj::XillverReflection.
|
virtual |
Reimplemented from Gyoto::Astrobj::Generic.
|
inherited |
Omatrix() computes the exponential of the Mueller matrix which contains the absorption and Faraday coefficients and is used in the polarized radiative transfer equation.
Onu | output matrix (must be allocated previously) |
alphanu[4] | array containing the 4 absorption coefficients in the Stokes basis (I,Q,U,V) |
rnu[3] | array containing the 3 Faraday coefficients in the Stokes basis (Q,U,V) |
Chi | angle of rotation between the parallel transported observer polarization basis and the Stokes basis |
dsem | geometrical length in geometrical units |
|
virtual |
Function defining the object interior.
A potential, distance, or whatever function such that operator()(double const coord[4]) < Standard::critical_value_ if and only if coord is inside the object. This function is used by the default implmenetation of Impact(). If Impact() is overloaded, it is not necessary to overload operator()(double coord[4]). The default implementation throws an error.
Implements Gyoto::Astrobj::Standard.
|
pure virtualinherited |
The actual function.
Implemented in Gyoto::Astrobj::ThinDisk.
|
inherited |
Query whether object is optically thin.
|
inherited |
Set whether the object is optically thin.
Set flag indicating that radiative transfer should be integrated, i.e. the object is to be considered optically thin.
flag | 1 if optically thin, 0 if optically thick. |
|
virtualinherited |
Fills Astrobj::Properties.
processHitQuantities fills the requested data in Impact. To use it, you need to call it in the Impact() method for your object in case of hit. It will fill Redshift, Intensity, Spectrum, BinSpectrum and update the Photon's transmission by calling Photon::transmit(), only if data==NULL.
You can overload it for your Astrobj. The generic implementation calls emission(), integrateEmission() and transmission() below.
Reimplemented in Gyoto::Astrobj::PageThorneDisk, Gyoto::Astrobj::DynamicalDiskBolometric, and Gyoto::Astrobj::ThinDiskProfile.
|
inherited |
|
virtualinherited |
Compute the increment of Stokes parameters and transmission matrix. Polarised version of RadiaveQ.
First function to be called for radiative quantities. If exist, i.e. implemented in an Astrobj, return the Stokes parameters emitted by the small volume of length dsem.
Warning :
See example in SimplePolarStar.C.
Inu[nbnu] | Output increment of intensity (must be set to a previously allocated array of doubles) |
Qnu[nbnu] | Output increment of Stokes parameter Q (must be set to a previously allocated array of doubles) |
Unu[nbnu] | Output increment of Stokes parameter U (must be set to a previously allocated array of doubles) |
Vnu[nbnu] | Output increment of Stokes parameter V (must be set to a previously allocated array of doubles) |
Onu[nbnu] | Output transmission (Eigen) matrix (must be set to a previously allocated array of Matrix4d) |
nu_em[nbnu] | Frequencies at emission |
nbnu | Size of nu_em[], Inu[], Qnu[], Unu[], Vnu[], and Onu[] |
dsem | Length over which to integrate inside the object |
cph | Photon coordinate |
co | Emitter coordinate at current photon position |
Reimplemented in Gyoto::Astrobj::EquatorialHotSpot, Gyoto::Astrobj::PageThorneDisk, Gyoto::Astrobj::Star, and Gyoto::Astrobj::ThickDisk.
|
protectedvirtual |
emission and transmission together
Reimplemented from Gyoto::Astrobj::Generic.
|
virtualinherited |
Get maximal distance from center of coordinate system.
Get maximal distance from center of coordinate system at which a Photon may hit the object.
Child classes may use the rmax_ member to cache this value, if its current value is DBL_MAX.
It can also be set using rMax().
Reimplemented in Gyoto::Astrobj::Complex, Gyoto::Astrobj::FixedStar, Gyoto::Astrobj::Star, and Gyoto::Astrobj::Torus.
|
virtualinherited |
|
virtualinherited |
Set maximal distance from center of coordinate system.
Call Generic::rMax(double val) after converting val from unit to geometrical units.
val | rmax_ expressed in unit "unit"; |
unit | string... |
|
virtualinherited |
Get rmax_ is specified unit.
Call rMax() and convert result to unit.
unit | string |
|
inherited |
Apply the rotation matrix with angle Chi to the emission Stokes vector constructed in the fonction from the individual coefficients
|
virtual |
Set parameter by Property (and name)
This function is used when parsing an XML description, if Property (p) of this name is found (i.e. either p.name or p.name_false is equal to name). Implementation should fall-back on calling the direct's parent implementation:
p | Property that matches name (p.name == name or p.name_false == name) |
name | XML name of the parameter (XML entity) |
content | string representation of the value |
unit | string representation of the unit |
Reimplemented from Gyoto::Object.
|
virtualinherited |
Set parameter by name.
This function is used when parsing an XML description, if no Property of this name is found. Overriding implementation should fall-back on calling the direct's parent implementation:
name | XML name of the parameter (XML entity). This may have a path component, e.g. "Astrobj::Radius", in which case a property named "Astrobj" will be sought in the current object, and setParameter will be called recusrively on this Astrobj with Radius as name. |
content | string representation of the value |
unit | string representation of the unit |
Reimplemented in Gyoto::Astrobj::EquatorialHotSpot, Gyoto::Metric::KerrKS, Gyoto::Astrobj::Star, and Gyoto::Metric::RotStar3_1.
|
virtualinherited |
Main loop in Subcontractor_t function.
The Subcontractor_t function for each Astrobj kind should look somewhat like this (templated as Gyoto::Astrobj::Subcontractor<MyKind>):
Each object kind should implement setParameter(string name, string content, string unit) to interpret the individual XML elements. setParameters() can be overloaded in case the specific Astrobj class needs low level access to the FactoryMessenger. See UniformSphere::setParameters().
Reimplemented from Gyoto::Object.
Reimplemented in Gyoto::Astrobj::Complex, Gyoto::Astrobj::EquatorialHotSpot, Gyoto::Astrobj::Star, and Gyoto::Astrobj::OscilTorus.
|
protectedvirtual |
|
virtualinherited |
Transmission: exp( αν * dsem )
transmission() computes the transmission of this fluid element or 0 if optically thick. The default implementation returns 1. (no attenuation) if optically thin, 0. if optically thick.
nuem | frequency in the fluid's frame |
coord | Photon coordinate |
dsem | geometrical length in geometrical units |
Reimplemented in Gyoto::Astrobj::PatternDisk, and Gyoto::Astrobj::DynamicalDisk3D.
|
privateinherited |
Whether some virtual methods are implemented.
The default implementations of some methods call one-another. This member is used internally to avoid infinite recursion.
|
protectedinherited |
Maximum Photon integration step inside rmax_ [geometrical units].
Maximum step for Photon integation when inside the sphere of radius rmax_.
deltamaxinsidermax_ is in geometrical units.
|
protected |
fraction of thermal energy in non-thermal electrons
Obsiously, 0 means no non-thermal electrons at all. In this case, the (trivial) non-thermal computations are skipped. Ther is thus non need for an additional "nonthermal_" flag. Fraction of electrons emitting powerlaw synchro
|
protectedinherited |
The "kind" that is output in the XML entity.
E.g. for an Astrobj, fillElement() will ensure
is written.
|
privateinherited |
A mutex.
When compiled with libpthread
|
protectedinherited |
The plug-ins that needs to be loaded to access this instance's class.
E.g. for an Astrobj, fillElement() will ensure
is written.
|
protectedinherited |
Maximum distance to the center of the coordinate system [geometrical units].
Maximum distance from the center of the coordinate system at which a photon may hit the object. Child classes may compute a decent value for rmax_ at any time if rmax_ is DBL_MAX. External classes (Photons in particular) must use rMax() to access this information.
rmax_ is in geometrical units.