

Release Notes Documentation
Release 6.2

AdaCore

Dec 11, 2018

CONTENTS

1 GNATdoc 3

2 Editors 5
2.1 Multicursors . 5
2.2 There’s more . 5

3 C support 7

4 Ada support 9
4.1 Ada 2012 and SPARK 2014 . 9

5 Python 11

6 Browsers 13

7 Views 15
7.1 Project View . 15

8 Projects 19

9 Extensibility / Customizability 21

10 Cross-references engine 23

11 Key shortcuts 25

12 Miscellaneous UI improvements 27

13 CodePeer 29

14 Bareboard support 31

i

ii

Release Notes Documentation, Release 6.2

Release date: June 2016

CONTENTS 1

Release Notes Documentation, Release 6.2

2 CONTENTS

CHAPTER

ONE

GNATDOC

GPS comes with a new engine for documentation generation. This comes in the form of a command-line tool called
GNATdoc.

Amongst the features of GNATdoc are:

• support of Javadoc/Doxygen style of tags in documentation comments

• support for comment placement detection

• support for separating documentation comments from code comments

• a new extensible HTML back-end

– support for users defined image directory

– support for package groups

Here is an example of code annotated with GNATdoc tags:

function Set_Alarm
(Message : String;
-- The text to display

Minutes : Natural
-- The number of minutes to wait
) return Boolean;

-- Display a message after the given time.
-- @exception System.Assertions.Assert_Failure raised
-- if Minutes = 0 or Minutes > 300 if Minutes = 0
-- @return True iff the alarm was successfully registered

GNATdoc is available from the GPS interface, and also as a command-line tool, so it can be easily automated.

The full documentation for GNATdoc can be found at http://www.adacore.com/developers/documentation/
gnatdoc-users-guide/.

3

http://www.adacore.com/developers/documentation/gnatdoc-users-guide/

http://www.adacore.com/developers/documentation/gnatdoc-users-guide/

Release Notes Documentation, Release 6.2

4 Chapter 1. GNATdoc

CHAPTER

TWO

EDITORS

We have a new preference for showing only some line numbers. c .. NF-61-MC02-016 GPS: Automatic indentation
of pasted content (2013-12-17)

When you paste content in a source editor that supports automatic indentation, it will be indented automatically,
provided you have switched the feature on via the preferences dialog (Editor -> Auto indent on paste)

The dialog that pops up when a file has been modified on the disk has been modified. It will now list all such files
in a single dialog (as opposed to having one dialog per file when it gets the focus). There is now also an option for
automatically reloading files (which can be undone).

The dialog is also smart enough not to pop-up if the file on disk has the same contents as the GPS the editor.

2.1 Multicursors

We have made a number of improvements in the handling of multicursors.

When multiple cursors are active, it is now possible to select simultaneously with all cursors as you would with one.
It is also possible to cut/copy/paste with multicursors. If the copy buffer has been filled with the same cursors, then
the content of each individual cursor will be pasted. If the buffer was filled with only the main cursor, or with other
cursors in a precedent operation, the content of the main buffer will be replicated on every cursor’s location. Cut and
copy works as you would expect.

2.2 There’s more

Several other improvements in the editors: the “Delete Line” actions are now atomic, there is a new plugin vim.py to
emulate a few behaviors from vim. There is also a preference to change the background color of expanded code.

5

Release Notes Documentation, Release 6.2

6 Chapter 2. Editors

CHAPTER

THREE

C SUPPORT

We have a new syntax highlighting engine for C, which has a number of nice capabilities: for instance it can highlight
escape sequences in strings.

It is also entirely written in Python and is easy to extend.

7

Release Notes Documentation, Release 6.2

8 Chapter 3. C support

CHAPTER

FOUR

ADA SUPPORT

Several editor enhancements for Ada in general:

• the alignment action preserves the selection

• improved auto-alignment for comments

• new block completions are available

4.1 Ada 2012 and SPARK 2014

We have improved the auto indentation support for conditional expressions and subtype predicates.

9

Release Notes Documentation, Release 6.2

10 Chapter 4. Ada support

CHAPTER

FIVE

PYTHON

This release of GPS contains a lot of improvements to the support of Python.

GPS now provides smart completion in Python files, providing completion for modules found in the standard Python
search paths and all source directories for projects that list “Python” as their language. This is done through an
integration of the Jedi library: https://github.com/davidhalter/jedi.

We also support auto-indentation in Python, and on-the-fly reporting of syntax and style errors.

11

https://github.com/davidhalter/jedi

Release Notes Documentation, Release 6.2

12 Chapter 5. Python

CHAPTER

SIX

BROWSERS

We have completely rewritten the engine for rendering browsers. This gives a brand new look and feel to the Project
browser, the Entity browser and the call graph browser.

We have smarter layout algorithms, and animations to show the transitions when adding nodes or rebalancing the
graph.

The Project browser now has a filter which allows searching for a given pattern directly in the browser. This allowed
us to remove the corresponding scope entry in the Search dialog.

The Entity browser now has support for folding compartments.

And the contents of browsers is now saved accross GPS sessions!

13

Release Notes Documentation, Release 6.2

14 Chapter 6. Browsers

CHAPTER

SEVEN

VIEWS

Several small enhancements to views:

• The Outline view for Ada can now show the “withs”.

• There are buttons to move to the previous/next entry in call trees.

• The Messages view can now highlight custom patterns.

• In the Locations view, you can now remove entries for an individual file.

We have also removed completely the GPS shell console, which has been rendered obsolete by the Python console.

7.1 Project View

15

Release Notes Documentation, Release 6.2

There are been a lot of enhancements to the Project view.

• There is now a filter directly in the Project view. This allowed us to remove yet another scope entry from the
Search dialog.

• Several new options in the local menu:

– you can filter out the empty directories

– you can show files directly under the project, rather than grouped by directories

– you can list the Ada runtime in the Project view

• Some other enhancements:

– you can open an OS shell from a directory in the Project view

– the icon for the root project now has its own color, which is useful to distinguish it when showing the flat
view.

Due to popular demand, we have added back a menu for File operations in the project view.

16 Chapter 7. Views

Release Notes Documentation, Release 6.2

7.1. Project View 17

Release Notes Documentation, Release 6.2

18 Chapter 7. Views

CHAPTER

EIGHT

PROJECTS

GPS now supports aggregate projects.

The new Project attributes Target and Runtime are also supported. This is now the recommendation for handling cross
projects.

The project wizard has support for gnatname, to create a project from a hierarchy of sources that have a non-GNAT
naming convention.

The settings of the scenario for a given project are saved accross GPS sessions.

19

Release Notes Documentation, Release 6.2

20 Chapter 8. Projects

CHAPTER

NINE

EXTENSIBILITY / CUSTOMIZABILITY

There is support for per-project customization: when loading a project, GPS will load project-specific plugin named
<project>.ide.py if it exists in the same directory as the project.

The command GPS.BuildTarget.execute now accepts an extra parameter on_exit: a function which is called when the
build target terminates.

The GPS menus are now entirely described in an XML file (menus.xml) which allows you to control the layout of
menus in a given GPS install.

We have added support for defining completion resolvers entirely in Python.

There is also support for defining workflows: a sequence of asynchronous actions described as a single Python corou-
tine - this eases the programming of complex sequences.

21

Release Notes Documentation, Release 6.2

22 Chapter 9. Extensibility / Customizability

CHAPTER

TEN

CROSS-REFERENCES ENGINE

We have several fixes and enhancements to the engine for cross-references: a fix for growing database files, support of
Ada separates, better fallbacks when the code is not in compiled state.

A new project attribute allows controlling the location of the databases, so it can be placed on local drives rather than
networked drives, for instance.

GPS also automatically cleans up the databases that it creates when creating a default project - for instance when using
GPS to edit a single file.

23

Release Notes Documentation, Release 6.2

24 Chapter 10. Cross-references engine

CHAPTER

ELEVEN

KEY SHORTCUTS

The key shortcut dialog can now be embedded in the main GPS window, and kept open. Changes are automatically
changed (the save button was removed). A filter has been added to make it easy to find the proper action or shortcut.
User-defined shortcuts are displayed in bold. The icons associated with actions are displayed, for consistency with
the rest of GPS. Menus are no longer displayed in the dialog, since it is better to associate the shortcuts with the
corresponding action instead. Multiple key themes are provided and can dynamically be switched (the emacs.py
plugin was removed and replaced with an Emacs key theme instead)

GPS uses the primary modifier key instead of the control key in several places: this means that, under Mac OS, GPS

25

Release Notes Documentation, Release 6.2

uses the Command key for many actions, to better match the system settings.

The new action “Edit project source file” provides fastest way to open the source of the current project in a GPS editor.

26 Chapter 11. Key shortcuts

CHAPTER

TWELVE

MISCELLANEOUS UI IMPROVEMENTS

We have removed the “busy” mouse cursor - this is replaced by the background activity indicator in the main toolbar.

The width of the omni-search field can be controlled, which can be useful in projects with very long file names for
instance.

The ClearCase integration now supports “diff against working”.

There were minor enhancements to the tip-of-the-day.

You can now apply all auto-fixes to the current file only.

There are default key shortcut (alt+arrows) bound to the next/previous location.

The GNATcoverage detailed messages can be viewed in the editor.

There is an auto-refresh mode for the debugger Memory view.

27

Release Notes Documentation, Release 6.2

28 Chapter 12. Miscellaneous UI improvements

CHAPTER

THIRTEEN

CODEPEER

GPS now displays the check kinds for CodePeer precondition messages - this means you can filter out messages based
on these check kinds.

The CodePeer message review dialog now prevents changing the message review status when a message was reviewed
in the source code with pragma Annotate.

All CodePeer messages (SCIL compilation errors, warnings and checks, race conditions) are displayed under one
category in the Locations view.

29

Release Notes Documentation, Release 6.2

30 Chapter 13. CodePeer

CHAPTER

FOURTEEN

BAREBOARD SUPPORT

There is a new Project template to start a demo project for the STM32F4 board.

We have also added four workflows to execute complete sequences of actions at the press of a single button:

• a workflow to build the program, flash it on the board, and run it

• a workflow to build the program, flash it on the board, and launch a debugger connected to it

• a workflow to build the program and run it in the emulator

• a workflow to build the program and debug it in the emulator

31

Release Notes Documentation, Release 6.2

32 Chapter 14. Bareboard support

		GNATdoc

		Editors

		Multicursors

		There’s more

		C support

		Ada support

		Ada 2012 and SPARK 2014

		Python

		Browsers

		Views

		Project View

		Projects

		Extensibility / Customizability

		Cross-references engine

		Key shortcuts

		Miscellaneous UI improvements

		CodePeer

		Bareboard support

