
GPS Programer’s Guide Documentation
Release 2018

AdaCore

Dec 11, 2018

CONTENTS

1 Introduction 1

2 System Setup 3

3 The GPS modules 5

4 Hello World walk through 7
4.1 Declaring the module . 7
4.2 Publicizing your module . 7
4.3 Compiling your module . 8
4.4 Registering the module . 8

5 The GPS Kernel 9

6 Intermodule communication 11

7 Documenting your module 13

8 Debugging 15
8.1 X11 server . 15
8.2 gtk+ library . 15
8.3 debugger . 15

9 Contexts 17

Index 19

i

ii

CHAPTER

ONE

INTRODUCTION

Important note: This document is not ready for release yet.

This document explains how to add your own modules to the GPS programming system.

GPS is a fully open architecture, to which one can add new features ranging from new menu items to launch external
tools to full support for new languages, including cross-references.

Some of these additions can be done solely through the use of text files. These are for instance adding new key
bindings to various parts of GPS, for instance in the editor. The end-user can also easily add new menus or toolbar
buttons. See the customization chapters in the GPS user’s guide.

This document will focus on these additions that can only be done through programming languages.

At this point, GPS can only be extended by programming in Ada. In addition, it is planned for the near future that
extensions in C or C++ can be done. Work is under way to extend python scripting in GPS.

Likewise, adding basic support for new languages will be made easier, and doable through external text files, requiring
no programming. This is not available for this first release of the GPS environment.

1

GPS Programer’s Guide Documentation, Release 2018

2 Chapter 1. Introduction

CHAPTER

TWO

SYSTEM SETUP

As explained in the introduction, GPS can currently only be extended by programming in Ada. This assumes that a
number of tools are available on your system, so that you can recompile your new module.

Most of these external tools and libraries are available from http://libre.act-europe.fr.

GNAT 3.15 or above

GNAT is the GNU Ada Compiler, integrated into the gcc tool chain, and developed by Ada Core Tech-
nologies and ACT Europe. GPS will not compile with other Ada compilers than GNAT.

Gtk+ 2.2.0 or above

gtk+ is a C toolkit used for the graphical interface of GPS. It is available on a number of platforms,
including most UNIX systems and Windows. Available from http://www.gtk.org.

GPS sources

The GPS sources include the corresponding GNAT, GtkAda and GVD sources needed to build it. If
needed, GNAT, GtkAda and GVD sources can be obtained seperately from anonymous cvs access from
http://libre.act-europe.fr

The GPS sources contain an INSTALL file that explains how to recompile GPS itself. GPS knows how to dynamically
load a module. As a result, you do not necessarily need to rebuild GPS itself to add new modules, although the
dynamic loading hasn’t been fully tested yet and might not work on all platforms.

3

http://libre.act-europe.fr
http://www.gtk.org
http://libre.act-europe.fr

GPS Programer’s Guide Documentation, Release 2018

4 Chapter 2. System Setup

CHAPTER

THREE

THE GPS MODULES

GPS is organized around the concept of modules. The only part of GPS that is mandatory is its kernel (The GPS
Kernel), all the other tools, menus and features are provided in optional modules.

Although currently all modules have to be loaded at startup, some proof of concept for dynamically loadable module
was implemented, and will most likely be part of a future version of GPS.

Every new feature you implement will be part of one or more modules. We will go through the details of creating new
modules all along this manual, starting from a simple Hello World module to more advanced features like providing
new shell or python commands.

Generally speaking, a module provides a limited set of features, and adds new GUI features in the GPS interface, like
menus, toolbar buttons, contextual menu entries, new windows,. . . As much as possible, a menu shouldn’t directly
depend on any other module, only on the GPS kernel itself.

See the file gps-kernel-modules.ads for more information on modules.

5

GPS Programer’s Guide Documentation, Release 2018

6 Chapter 3. The GPS modules

CHAPTER

FOUR

HELLO WORLD WALK THROUGH

Creating a new module is best demonstrated by going through the classical and simple example ‘hello world’. This
example will be refined as new extension possibilities are described later on in this document.

4.1 Declaring the module

A module is generally implemented in a separate source file, at this point an Ada package. The first thing that needs
to be done is to create the specs of this package. Most of the time, a single function has to be exported, which is called
Register_Module by convention. Therefore, we have to create a new directory to contain the module (we’ll call it
hello_world), at the same level as other modules like the source editor.

Still by convention, the sources are put in a directory called src, and the object files are kept in a separate directory
called obj:

mkdir hello_world
mkdir hello_world/src
mkdir hello_world/obj

In the source directory, we create the file hello_world.ads, which contains the declaration of the Regis-
ter_Module subprogram:

with GPS.Kernel;
package Hello_World is

procedure Register_Module
(Kernel : access GPS.Kernel.Kernel_Handle_Record'Class);

end Hello_World;

Before going over the details of the implementation of Register_Module, we have to make sure that the rest of GPS
knows about this module, and that we know how to compile it

4.2 Publicizing your module

Until GPS provides dynamic modules, you have to modify the main subprogram of GPS to make it aware of your
module.

This is done by modifying the file gps.adb, and adding two statements in there: a with statement that imports
hello_world.ads, and a call to Hello_World.Register_Module. See for instance how this is done for the keymanager
module.

7

GPS Programer’s Guide Documentation, Release 2018

4.3 Compiling your module

However, after the addition of the two statements in gps.adb, the file hello_world.ads will not be found
automatically by GPS. Therefore, you need to create a project file for your new module (we’ll call it hello_world.
gpr), and add a dependency to it in the root project file of GPS (gps/gps.gpr), as is currently done for all other
modules.

The project file hello_world.gpr is best created by copying the project file from any other module, for instance
the aliases module (aliases/aliases.gpr), and changing the name of the project to Hello_World.

You must also create a set of two Makfiles, which are used to add files other than Ada, even if your module only
uses Ada files. Once again, this is best done by copying the two Makefiles from the directory aliases, renaming
them into Makefile and Makefile.hello_world, and replacing the strings aliases and ALIASES by resp.
hello_world and HELLO_WORLD.

These steps will be made easier in the near future, but in any case are relatively straightforward, and only need to be
done once per module. The resulting setup automatically takes into account all sources files that will be added later on
to the module, either C or Ada, and compile them with the appropriate compiler.

You might also prefer in your first attempt at creating a new module to add your new files into the src directory of an
existing module. In this case, you don’t have to create any of the project files or Makefile, nor to modify the gps.adb
file.

Once the project file has been created, and a dependency added in gps.gpr, you might want to reload the GPS
project in GPS, so that the editing of your sources can be done in an Ada-friendly context.

4.4 Registering the module

Back to the source files of your modules. We now need to create a body for the procedure Register_Module. The
minimal thing this function has to do is indicate to the GPS kernel that a new module is being declared, and give it a
name. If you only do that, there is no direct impact on the rest of GPS. However, as we will see during in this guide,
having a specific Module_Id is mandatory for some of the advanced feature, so it is cleaner to always declare one from
the start.

This is done by creating the file hello_world.adb, with the following contents:

with GPS.Kernel.Modules; use GPS.Kernel, GPS.Kernel.Modules;

package Hello_World is
procedure Register_Module

(Kernel : access GPS.Kernel.Kernel_Handle_Record'Class)
is

Module : Module_ID;
begin

GPS.Kernel.Modules.Register_Module
(Module, Kernel, Module_Name => "hello_world");

end Register_Module;

end Hello_World;

At this point, the hello_world module is compilable, only it won’t do anything but be loaded in GPS.

The following sections will show how new features can be provided to the rest of GPS.

8 Chapter 4. Hello World walk through

CHAPTER

FIVE

THE GPS KERNEL

9

GPS Programer’s Guide Documentation, Release 2018

10 Chapter 5. The GPS Kernel

CHAPTER

SIX

INTERMODULE COMMUNICATION

As described above, GPS is organized into largely independent modules. For instance, the various views, browsers,
help, vcs support,. . . are separate modules, that can either be loaded at startup or not.

When they are not loaded, the correspondings features and menus are not available to the user.

These modules need to communicate with each other so as to provide the best possible integration between the tools.
There currently exists a number of ways to send information from one module to another. However, some of these
technics depend on Ada-specific types, and thus makes it harder to write modules in different languages like C or
Python.

The following communication technics are currently provided:

• Direct calls A module can explicitly specify that it depends on another one. This is done by changing the project
file, and adding the necessary “with” statements in the code. This technics is highly not recommended, and
should never be used when one of the other technics would do the job, since it defeats the module independency.
The only place it is currently used at is for direct calls to the Register_* commands. Most of the time, these Reg-
ister_* subprograms are also available through XML customization files, and thus limit the direct dependencies
between modules, while providing greated extensibility to the final user.

• Shell calls Each module can register new shell commands for the interactive shell window. Any other module
can call these commands. There is no direct dependency on the code, although this means that the module
that provide the command must be loaded before the other module. This technics is used for instance for the
codefix module, that needs a high degree of integration with the source editor module. It will also be used for
communicating with Emacs.

• Addition to contextual menus A module is free to add entries to the main menu bar or to any contextual menus
within GPS.

Most of the time, a module will decide to add new entries depending on what the contextual menu applies to
(the current context), although it might also decide to do that based on what module is displaying the contextual
menu. Modules are identified by their name, which can easily be tested by other menus.

• Context changes Every time a new MDI child is selected, or when a module chooses to emit such a signal, a
context change is reported via a gtk+ signal. A context is an Ada tagged type, created by the currently active
module. There exists different kinds of contexts, some for files (directories and project), others for entities
(same as before, but with an entity name in addition, other for a location (adding line and column),. . . New
types of contexts can be created by the modules without impacting the rest of GPS. All callbacks must test that
the context they receive matches what they can handle.

These contexts are also used for the contextual menus

A module can choose to emit the signal to report changes to its context by emitting the signal. Other modules
can they update their content accordingly. This is how the switches editor updates the project/directory/file it is
showing when a new selection is done in the project view.

11

GPS Programer’s Guide Documentation, Release 2018

• hooks and action hooks Hooks are similar to the usual gtk+ signals. Each hook is a named collection of sub-
programs to be called when the hook is executed. Such hooks are executed by various parts of GPS when some
actions take place, like reloading the project, loading a file,. . .

These are the most powerful way for a module to react to actions taking place in other parts of GPS, and to act
appropriately.

In most cases, all the subprograms in a hook are executed in turn, and thus they all get a chance to act.

However, in some other cases, the subprograms are only executed until one of them indicates that it has accom-
plished a useful action, and that no other subprogram from this hook should be called. These are called action
hooks. This is the fundamental mechanism used by GPS to request for instance the edition of a file: the module
that wishes to display a file executes the hook “open_file_action_hook” with the appropriate argument. At this
point, all subprograms bound to this hook are executed, until one of them acknowledge that it knows how to edit
this file (and hopefully opens an editor). Then no other subprogram from this hook is called, so that the file is
not open multiple times.

This mechanism is used for instance by the module that handles the external editors. It is setup so that it binds
to the “open_file_action_hook” hook. Any time a file needs to be open, the callback from this module is called
first. If the user has indicated that the external editor should always be used, this external editors module opens
the appropriate editor, and stops the execution of the hook. However, if the user didn’t wish to use an external
editor, this module does nothing, so that the callback from the source editor module is called in turn, and can
thus open the file itself.

See gps-kernel-hooks.ads for more information on hooks.

12 Chapter 6. Intermodule communication

CHAPTER

SEVEN

DOCUMENTING YOUR MODULE

All modules should be documented, so that the users are aware of all its capabilities.

There are several levels of documentation:

• Tooltips It is recommended that all new preferences and as much of the GUI as possible be documented through
tooltips. This is the only help that most users will read.

Tooltips are easily added directly with gtk+: Just call Gtk.Widget.Set_Tooltip_Text or
Gtk.Widget.Set_Tooltip_Markup

• extended documentation Extended documentation should be written in HTML. See the GPS user’s guide on
how to make new documentation available to users.

13

GPS Programer’s Guide Documentation, Release 2018

14 Chapter 7. Documenting your module

CHAPTER

EIGHT

DEBUGGING

8.1 X11 server

If you are developing on a linux system, it is recommended that you reconfigure your X11 server with the following
setup (see the file /etc/X11/XF86Config-4):

Section "ServerFlags"
Option "AllowDeactivateGrabs" "true" # Ctrl+Alt+Keypad *
Option "AllowClosedownGrabs" "true" # Ctrl+Alt+Keypad /

EndSection

The two key bindings described above are used to release any grab that a GUI application might have. This is especially
useful when debugging through gdb: it might happen that the breakpoint happens while such a grab is in place, and
would therefore prevent any input (mouse or keyboard) to any application in your X11 session, in particular the
debugger.

8.2 gtk+ library

It is also recommended that you recompile your own gtk+ library (on systems where this is easily doable such as Unix
systems), with the following configure command:

./configure --with-debug=yes

In addition to providing the usual debugging information in the debugger, this also activates several environment
variables which might be used to monitor the actions in gtk+ and its associated libraries.

These variables are the following:

export GTK_DEBUG=misc:plugsocket:text:tree:updates:keybindings;
export GDK_
→˓DEBUG=updates:nograbs:events:dnd:misc:xim:colormap:gdkrb:gc:pixmap:image:input:cursor;
→˓

export GOBJECT_DEBUG=objects:signals;

Some of the values for these variables can be omitted. The exact semantic (or even the exact list) of such variables
depends on your version of gtk+, and you should therefore consult its documentation.

8.3 debugger

When debugging with gdb, it is recommended that you always specify the flag –sync to gps. This forces any gtk+
application, and in particular GPS, to process X11 events synchronously, and therefore makes it easier to debug
possible problems.

15

GPS Programer’s Guide Documentation, Release 2018

If your application is printing some gtk+ warnings on the console, you should do the following in the debugger:

(gdb) set args --sync
(gdb) begin
(gdb) break g_log
(gdb) cont

This will stop the application as soon as the gtk+ warning is printed.

16 Chapter 8. Debugging

CHAPTER

NINE

CONTEXTS

17

GPS Programer’s Guide Documentation, Release 2018

18 Chapter 9. Contexts

INDEX

A
adding menus, 1

K
key bindings, 1

M
menus, 1

T
toolbar, 1

19

	Introduction
	System Setup
	The GPS modules
	Hello World walk through
	Declaring the module
	Publicizing your module
	Compiling your module
	Registering the module

	The GPS Kernel
	Intermodule communication
	Documenting your module
	Debugging
	X11 server
	gtk+ library
	debugger

	Contexts
	Index

