GeographicLib 2.1.2
GeographicLib::MagneticModel Class Reference

Model of the earth's magnetic field. More...

#include <GeographicLib/MagneticModel.hpp>

Public Member Functions

Setting up the magnetic model
 MagneticModel (const std::string &name, const std::string &path="", const Geocentric &earth=Geocentric::WGS84(), int Nmax=-1, int Mmax=-1)
 
Inspector functions
const std::string & Description () const
 
const std::string & DateTime () const
 
const std::string & MagneticFile () const
 
const std::string & MagneticModelName () const
 
const std::string & MagneticModelDirectory () const
 
Math::real MinHeight () const
 
Math::real MaxHeight () const
 
Math::real MinTime () const
 
Math::real MaxTime () const
 
Math::real EquatorialRadius () const
 
Math::real Flattening () const
 
int Degree () const
 
int Order () const
 

Static Public Member Functions

static std::string DefaultMagneticPath ()
 
static std::string DefaultMagneticName ()
 

Compute the magnetic field

void operator() (real t, real lat, real lon, real h, real &Bx, real &By, real &Bz) const
 
void operator() (real t, real lat, real lon, real h, real &Bx, real &By, real &Bz, real &Bxt, real &Byt, real &Bzt) const
 
MagneticCircle Circle (real t, real lat, real h) const
 
void FieldGeocentric (real t, real X, real Y, real Z, real &BX, real &BY, real &BZ, real &BXt, real &BYt, real &BZt) const
 
static void FieldComponents (real Bx, real By, real Bz, real &H, real &F, real &D, real &I)
 
static void FieldComponents (real Bx, real By, real Bz, real Bxt, real Byt, real Bzt, real &H, real &F, real &D, real &I, real &Ht, real &Ft, real &Dt, real &It)
 

Detailed Description

Model of the earth's magnetic field.

Evaluate the earth's magnetic field according to a model. At present only internal magnetic fields are handled. These are due to the earth's code and crust; these vary slowly (over many years). Excluded are the effects of currents in the ionosphere and magnetosphere which have daily and annual variations.

See Magnetic models for details of how to install the magnetic models and the data format.

See

Example of use:

// Example of using the GeographicLib::MagneticModel class
// This requires that the wmm2010 magnetic model be installed; see
// https://geographiclib.sourceforge.io/C++/doc/magnetic.html#magneticinst
#include <iostream>
#include <exception>
using namespace std;
using namespace GeographicLib;
int main() {
try {
MagneticModel mag("wmm2010");
double lat = 27.99, lon = 86.93, h = 8820, t = 2012; // Mt Everest
double Bx, By, Bz;
mag(t, lat,lon, h, Bx, By, Bz);
double H, F, D, I;
MagneticModel::FieldComponents(Bx, By, Bz, H, F, D, I);
cout << H << " " << F << " " << D << " " << I << "\n";
}
catch (const exception& e) {
cerr << "Caught exception: " << e.what() << "\n";
return 1;
}
}
int main(int argc, const char *const argv[])
Definition: CartConvert.cpp:29
Header for GeographicLib::MagneticModel class.
Model of the earth's magnetic field.
static void FieldComponents(real Bx, real By, real Bz, real &H, real &F, real &D, real &I)
Namespace for GeographicLib.
Definition: Accumulator.cpp:12

MagneticField is a command-line utility providing access to the functionality of MagneticModel and MagneticCircle.

Definition at line 75 of file MagneticModel.hpp.

Constructor & Destructor Documentation

◆ MagneticModel()

GeographicLib::MagneticModel::MagneticModel ( const std::string &  name,
const std::string &  path = "",
const Geocentric earth = Geocentric::WGS84(),
int  Nmax = -1,
int  Mmax = -1 
)
explicit

Construct a magnetic model.

Parameters
[in]namethe name of the model.
[in]path(optional) directory for data file.
[in]earth(optional) Geocentric object for converting coordinates; default Geocentric::WGS84().
[in]Nmax(optional) if non-negative, truncate the degree of the model this value.
[in]Mmax(optional) if non-negative, truncate the order of the model this value.
Exceptions
GeographicErrif the data file cannot be found, is unreadable, or is corrupt, or if Mmax > Nmax.
std::bad_allocif the memory necessary for storing the model can't be allocated.

A filename is formed by appending ".wmm" (World Magnetic Model) to the name. If path is specified (and is non-empty), then the file is loaded from directory, path. Otherwise the path is given by the DefaultMagneticPath().

This file contains the metadata which specifies the properties of the model. The coefficients for the spherical harmonic sums are obtained from a file obtained by appending ".cof" to metadata file (so the filename ends in ".wwm.cof").

The model is not tied to a particular ellipsoidal model of the earth. The final earth argument to the constructor specifies an ellipsoid to allow geodetic coordinates to the transformed into the spherical coordinates used in the spherical harmonic sum.

If Nmax ≥ 0 and Mmax < 0, then Mmax is set to Nmax. After the model is loaded, the maximum degree and order of the model can be found by the Degree() and Order() methods.

Definition at line 37 of file MagneticModel.cpp.

References DefaultMagneticPath(), and GeographicLib::SphericalEngine::coeff::readcoeffs().

Member Function Documentation

◆ operator()() [1/2]

void GeographicLib::MagneticModel::operator() ( real  t,
real  lat,
real  lon,
real  h,
real &  Bx,
real &  By,
real &  Bz 
) const
inline

Evaluate the components of the geomagnetic field.

Parameters
[in]tthe time (fractional years).
[in]latlatitude of the point (degrees).
[in]lonlongitude of the point (degrees).
[in]hthe height of the point above the ellipsoid (meters).
[out]Bxthe easterly component of the magnetic field (nanotesla).
[out]Bythe northerly component of the magnetic field (nanotesla).
[out]Bzthe vertical (up) component of the magnetic field (nanotesla).

Use Utility::fractionalyear to convert a date of the form yyyy-mm or yyyy-mm-dd into a fractional year.

Definition at line 160 of file MagneticModel.hpp.

◆ operator()() [2/2]

void GeographicLib::MagneticModel::operator() ( real  t,
real  lat,
real  lon,
real  h,
real &  Bx,
real &  By,
real &  Bz,
real &  Bxt,
real &  Byt,
real &  Bzt 
) const
inline

Evaluate the components of the geomagnetic field and their time derivatives

Parameters
[in]tthe time (fractional years).
[in]latlatitude of the point (degrees).
[in]lonlongitude of the point (degrees).
[in]hthe height of the point above the ellipsoid (meters).
[out]Bxthe easterly component of the magnetic field (nanotesla).
[out]Bythe northerly component of the magnetic field (nanotesla).
[out]Bzthe vertical (up) component of the magnetic field (nanotesla).
[out]Bxtthe rate of change of Bx (nT/yr).
[out]Bytthe rate of change of By (nT/yr).
[out]Bztthe rate of change of Bz (nT/yr).

Use Utility::fractionalyear to convert a date of the form yyyy-mm or yyyy-mm-dd into a fractional year.

Definition at line 186 of file MagneticModel.hpp.

◆ Circle()

MagneticCircle GeographicLib::MagneticModel::Circle ( real  t,
real  lat,
real  h 
) const

Create a MagneticCircle object to allow the geomagnetic field at many points with constant lat, h, and t and varying lon to be computed efficiently.

Parameters
[in]tthe time (fractional years).
[in]latlatitude of the point (degrees).
[in]hthe height of the point above the ellipsoid (meters).
Exceptions
std::bad_allocif the memory necessary for creating a MagneticCircle can't be allocated.
Returns
a MagneticCircle object whose MagneticCircle::operator()(real lon) member function computes the field at particular values of lon.

If the field at several points on a circle of latitude need to be calculated then creating a MagneticCircle and using its member functions will be substantially faster, especially for high-degree models.

Use Utility::fractionalyear to convert a date of the form yyyy-mm or yyyy-mm-dd into a fractional year.

Definition at line 233 of file MagneticModel.cpp.

Referenced by main().

◆ FieldGeocentric()

void GeographicLib::MagneticModel::FieldGeocentric ( real  t,
real  X,
real  Y,
real  Z,
real &  BX,
real &  BY,
real &  BZ,
real &  BXt,
real &  BYt,
real &  BZt 
) const

Compute the magnetic field in geocentric coordinate.

Parameters
[in]tthe time (fractional years).
[in]Xgeocentric coordinate (meters).
[in]Ygeocentric coordinate (meters).
[in]Zgeocentric coordinate (meters).
[out]BXthe X component of the magnetic field (nT).
[out]BYthe Y component of the magnetic field (nT).
[out]BZthe Z component of the magnetic field (nT).
[out]BXtthe rate of change of BX (nT/yr).
[out]BYtthe rate of change of BY (nT/yr).
[out]BZtthe rate of change of BZ (nT/yr).

Use Utility::fractionalyear to convert a date of the form yyyy-mm or yyyy-mm-dd into a fractional year.

Definition at line 185 of file MagneticModel.cpp.

◆ FieldComponents() [1/2]

static void GeographicLib::MagneticModel::FieldComponents ( real  Bx,
real  By,
real  Bz,
real &  H,
real &  F,
real &  D,
real &  I 
)
inlinestatic

Compute various quantities dependent on the magnetic field.

Parameters
[in]Bxthe x (easterly) component of the magnetic field (nT).
[in]Bythe y (northerly) component of the magnetic field (nT).
[in]Bzthe z (vertical, up positive) component of the magnetic field (nT).
[out]Hthe horizontal magnetic field (nT).
[out]Fthe total magnetic field (nT).
[out]Dthe declination of the field (degrees east of north).
[out]Ithe inclination of the field (degrees down from horizontal).

Definition at line 249 of file MagneticModel.hpp.

◆ FieldComponents() [2/2]

void GeographicLib::MagneticModel::FieldComponents ( real  Bx,
real  By,
real  Bz,
real  Bxt,
real  Byt,
real  Bzt,
real &  H,
real &  F,
real &  D,
real &  I,
real &  Ht,
real &  Ft,
real &  Dt,
real &  It 
)
static

Compute various quantities dependent on the magnetic field and its rate of change.

Parameters
[in]Bxthe x (easterly) component of the magnetic field (nT).
[in]Bythe y (northerly) component of the magnetic field (nT).
[in]Bzthe z (vertical, up positive) component of the magnetic field (nT).
[in]Bxtthe rate of change of Bx (nT/yr).
[in]Bytthe rate of change of By (nT/yr).
[in]Bztthe rate of change of Bz (nT/yr).
[out]Hthe horizontal magnetic field (nT).
[out]Fthe total magnetic field (nT).
[out]Dthe declination of the field (degrees east of north).
[out]Ithe inclination of the field (degrees down from horizontal).
[out]Htthe rate of change of H (nT/yr).
[out]Ftthe rate of change of F (nT/yr).
[out]Dtthe rate of change of D (degrees/yr).
[out]Itthe rate of change of I (degrees/yr).

Definition at line 254 of file MagneticModel.cpp.

References GeographicLib::Math::atan2d(), GeographicLib::Math::degree(), and GeographicLib::Math::sq().

◆ Description()

const std::string & GeographicLib::MagneticModel::Description ( ) const
inline
Returns
the description of the magnetic model, if available, from the Description file in the data file; if absent, return "NONE".

Definition at line 290 of file MagneticModel.hpp.

Referenced by main().

◆ DateTime()

const std::string & GeographicLib::MagneticModel::DateTime ( ) const
inline
Returns
date of the model, if available, from the ReleaseDate field in the data file; if absent, return "UNKNOWN".

Definition at line 296 of file MagneticModel.hpp.

Referenced by main().

◆ MagneticFile()

const std::string & GeographicLib::MagneticModel::MagneticFile ( ) const
inline
Returns
full file name used to load the magnetic model.

Definition at line 301 of file MagneticModel.hpp.

Referenced by main().

◆ MagneticModelName()

const std::string & GeographicLib::MagneticModel::MagneticModelName ( ) const
inline
Returns
"name" used to load the magnetic model (from the first argument of the constructor, but this may be overridden by the model file).

Definition at line 307 of file MagneticModel.hpp.

Referenced by main().

◆ MagneticModelDirectory()

const std::string & GeographicLib::MagneticModel::MagneticModelDirectory ( ) const
inline
Returns
directory used to load the magnetic model.

Definition at line 312 of file MagneticModel.hpp.

◆ MinHeight()

Math::real GeographicLib::MagneticModel::MinHeight ( ) const
inline
Returns
the minimum height above the ellipsoid (in meters) for which this MagneticModel should be used.

Because the model will typically provide useful results slightly outside the range of allowed heights, no check of t argument is made by MagneticModel::operator()() or MagneticModel::Circle.

Definition at line 323 of file MagneticModel.hpp.

Referenced by main().

◆ MaxHeight()

Math::real GeographicLib::MagneticModel::MaxHeight ( ) const
inline
Returns
the maximum height above the ellipsoid (in meters) for which this MagneticModel should be used.

Because the model will typically provide useful results slightly outside the range of allowed heights, no check of t argument is made by MagneticModel::operator()() or MagneticModel::Circle.

Definition at line 334 of file MagneticModel.hpp.

Referenced by main().

◆ MinTime()

Math::real GeographicLib::MagneticModel::MinTime ( ) const
inline
Returns
the minimum time (in years) for which this MagneticModel should be used.

Because the model will typically provide useful results slightly outside the range of allowed times, no check of t argument is made by MagneticModel::operator()() or MagneticModel::Circle.

Definition at line 345 of file MagneticModel.hpp.

Referenced by main().

◆ MaxTime()

Math::real GeographicLib::MagneticModel::MaxTime ( ) const
inline
Returns
the maximum time (in years) for which this MagneticModel should be used.

Because the model will typically provide useful results slightly outside the range of allowed times, no check of t argument is made by MagneticModel::operator()() or MagneticModel::Circle.

Definition at line 356 of file MagneticModel.hpp.

Referenced by main().

◆ EquatorialRadius()

Math::real GeographicLib::MagneticModel::EquatorialRadius ( ) const
inline
Returns
a the equatorial radius of the ellipsoid (meters). This is the value of a inherited from the Geocentric object used in the constructor.

Definition at line 363 of file MagneticModel.hpp.

References GeographicLib::Geocentric::EquatorialRadius().

◆ Flattening()

Math::real GeographicLib::MagneticModel::Flattening ( ) const
inline
Returns
f the flattening of the ellipsoid. This is the value inherited from the Geocentric object used in the constructor.

Definition at line 369 of file MagneticModel.hpp.

References GeographicLib::Geocentric::Flattening().

◆ Degree()

int GeographicLib::MagneticModel::Degree ( ) const
inline
Returns
Nmax the maximum degree of the components of the model.

Definition at line 374 of file MagneticModel.hpp.

◆ Order()

int GeographicLib::MagneticModel::Order ( ) const
inline
Returns
Mmax the maximum order of the components of the model.

Definition at line 379 of file MagneticModel.hpp.

◆ DefaultMagneticPath()

string GeographicLib::MagneticModel::DefaultMagneticPath ( )
static
Returns
the default path for magnetic model data files.

This is the value of the environment variable GEOGRAPHICLIB_MAGNETIC_PATH, if set; otherwise, it is $GEOGRAPHICLIB_DATA/magnetic if the environment variable GEOGRAPHICLIB_DATA is set; otherwise, it is a compile-time default (/usr/local/share/GeographicLib/magnetic on non-Windows systems and C:/ProgramData/GeographicLib/magnetic on Windows systems).

Definition at line 269 of file MagneticModel.cpp.

References GEOGRAPHICLIB_DATA.

Referenced by MagneticModel().

◆ DefaultMagneticName()

string GeographicLib::MagneticModel::DefaultMagneticName ( )
static
Returns
the default name for the magnetic model.

This is the value of the environment variable GEOGRAPHICLIB_MAGNETIC_NAME, if set; otherwise, it is "wmm2020". The MagneticModel class does not use this function; it is just provided as a convenience for a calling program when constructing a MagneticModel object.

Definition at line 282 of file MagneticModel.cpp.

References GEOGRAPHICLIB_MAGNETIC_DEFAULT_NAME.


The documentation for this class was generated from the following files: