GeographicLib 2.5
SphericalHarmonic.hpp
Go to the documentation of this file.
1/**
2 * \file SphericalHarmonic.hpp
3 * \brief Header for GeographicLib::SphericalHarmonic class
4 *
5 * Copyright (c) Charles Karney (2011-2019) <karney@alum.mit.edu> and licensed
6 * under the MIT/X11 License. For more information, see
7 * https://geographiclib.sourceforge.io/
8 **********************************************************************/
9
10#if !defined(GEOGRAPHICLIB_SPHERICALHARMONIC_HPP)
11#define GEOGRAPHICLIB_SPHERICALHARMONIC_HPP 1
12
13#include <vector>
17
18namespace GeographicLib {
19
20 /**
21 * \brief Spherical harmonic series
22 *
23 * This class evaluates the spherical harmonic sum \verbatim
24 V(x, y, z) = sum(n = 0..N)[ q^(n+1) * sum(m = 0..n)[
25 (C[n,m] * cos(m*lambda) + S[n,m] * sin(m*lambda)) *
26 P[n,m](cos(theta)) ] ]
27 \endverbatim
28 * where
29 * - <i>p</i><sup>2</sup> = <i>x</i><sup>2</sup> + <i>y</i><sup>2</sup>,
30 * - <i>r</i><sup>2</sup> = <i>p</i><sup>2</sup> + <i>z</i><sup>2</sup>,
31 * - \e q = <i>a</i>/<i>r</i>,
32 * - &theta; = atan2(\e p, \e z) = the spherical \e colatitude,
33 * - &lambda; = atan2(\e y, \e x) = the longitude.
34 * - P<sub><i>nm</i></sub>(\e t) is the associated Legendre polynomial of
35 * degree \e n and order \e m.
36 *
37 * Two normalizations are supported for P<sub><i>nm</i></sub>
38 * - fully normalized denoted by SphericalHarmonic::FULL.
39 * - Schmidt semi-normalized denoted by SphericalHarmonic::SCHMIDT.
40 *
41 * Clenshaw summation is used for the sums over both \e n and \e m. This
42 * allows the computation to be carried out without the need for any
43 * temporary arrays. See SphericalEngine.cpp for more information on the
44 * implementation.
45 *
46 * References:
47 * - C. W. Clenshaw,
48 * <a href="https://doi.org/10.1090/S0025-5718-1955-0071856-0">
49 * A note on the summation of Chebyshev series</a>,
50 * %Math. Tables Aids Comput. 9(51), 118--120 (1955).
51 * - R. E. Deakin, Derivatives of the earth's potentials, Geomatics
52 * Research Australasia 68, 31--60, (June 1998).
53 * - W. A. Heiskanen and H. Moritz, Physical Geodesy, (Freeman, San
54 * Francisco, 1967).
55 * https://archive.org/details/HeiskanenMoritz1967PhysicalGeodesy
56 * (See Sec. 1-14, for a definition of Pbar.)
57 * - S. A. Holmes and W. E. Featherstone,
58 * <a href="https://doi.org/10.1007/s00190-002-0216-2">
59 * A unified approach to the Clenshaw summation and the recursive
60 * computation of very high degree and order normalised associated Legendre
61 * functions</a>, J. Geodesy 76(5), 279--299 (2002).
62 * - C. C. Tscherning and K. Poder,
63 * <a href="http://cct.gfy.ku.dk/publ_cct/cct80.pdf">
64 * Some geodetic applications of Clenshaw summation</a>,
65 * Boll. Geod. Sci. Aff. 41(4), 349--375 (1982).
66 *
67 * Example of use:
68 * \include example-SphericalHarmonic.cpp
69 **********************************************************************/
70
72 public:
73 /**
74 * Supported normalizations for the associated Legendre polynomials.
75 **********************************************************************/
77 /**
78 * Fully normalized associated Legendre polynomials.
79 *
80 * These are defined by
81 * <i>P</i><sub><i>nm</i></sub><sup>full</sup>(\e z)
82 * = (&minus;1)<sup><i>m</i></sup>
83 * sqrt(\e k (2\e n + 1) (\e n &minus; \e m)! / (\e n + \e m)!)
84 * <b>P</b><sub><i>n</i></sub><sup><i>m</i></sup>(\e z), where
85 * <b>P</b><sub><i>n</i></sub><sup><i>m</i></sup>(\e z) is Ferrers
86 * function (also known as the Legendre function on the cut or the
87 * associated Legendre polynomial) https://dlmf.nist.gov/14.7.E10 and
88 * \e k = 1 for \e m = 0 and \e k = 2 otherwise.
89 *
90 * The mean squared value of
91 * <i>P</i><sub><i>nm</i></sub><sup>full</sup>(cos&theta;)
92 * cos(<i>m</i>&lambda;) and
93 * <i>P</i><sub><i>nm</i></sub><sup>full</sup>(cos&theta;)
94 * sin(<i>m</i>&lambda;) over the sphere is 1.
95 *
96 * @hideinitializer
97 **********************************************************************/
98 FULL = SphericalEngine::FULL,
99 /**
100 * Schmidt semi-normalized associated Legendre polynomials.
101 *
102 * These are defined by
103 * <i>P</i><sub><i>nm</i></sub><sup>schmidt</sup>(\e z)
104 * = (&minus;1)<sup><i>m</i></sup>
105 * sqrt(\e k (\e n &minus; \e m)! / (\e n + \e m)!)
106 * <b>P</b><sub><i>n</i></sub><sup><i>m</i></sup>(\e z), where
107 * <b>P</b><sub><i>n</i></sub><sup><i>m</i></sup>(\e z) is Ferrers
108 * function (also known as the Legendre function on the cut or the
109 * associated Legendre polynomial) https://dlmf.nist.gov/14.7.E10 and
110 * \e k = 1 for \e m = 0 and \e k = 2 otherwise.
111 *
112 * The mean squared value of
113 * <i>P</i><sub><i>nm</i></sub><sup>schmidt</sup>(cos&theta;)
114 * cos(<i>m</i>&lambda;) and
115 * <i>P</i><sub><i>nm</i></sub><sup>schmidt</sup>(cos&theta;)
116 * sin(<i>m</i>&lambda;) over the sphere is 1/(2\e n + 1).
117 *
118 * @hideinitializer
119 **********************************************************************/
120 SCHMIDT = SphericalEngine::SCHMIDT,
121 };
122
123 private:
124 typedef Math::real real;
126 real _a;
127 unsigned _norm;
128
129 public:
130 /**
131 * Constructor with a full set of coefficients specified.
132 *
133 * @param[in] C the coefficients <i>C</i><sub><i>nm</i></sub>.
134 * @param[in] S the coefficients <i>S</i><sub><i>nm</i></sub>.
135 * @param[in] N the maximum degree and order of the sum
136 * @param[in] a the reference radius appearing in the definition of the
137 * sum.
138 * @param[in] norm the normalization for the associated Legendre
139 * polynomials, either SphericalHarmonic::FULL (the default) or
140 * SphericalHarmonic::SCHMIDT.
141 * @exception GeographicErr if \e N does not satisfy \e N &ge; &minus;1.
142 * @exception GeographicErr if \e C or \e S is not big enough to hold the
143 * coefficients.
144 *
145 * The coefficients <i>C</i><sub><i>nm</i></sub> and
146 * <i>S</i><sub><i>nm</i></sub> are stored in the one-dimensional vectors
147 * \e C and \e S which must contain (\e N + 1)(\e N + 2)/2 and \e N (\e N +
148 * 1)/2 elements, respectively, stored in "column-major" order. Thus for
149 * \e N = 3, the order would be:
150 * <i>C</i><sub>00</sub>,
151 * <i>C</i><sub>10</sub>,
152 * <i>C</i><sub>20</sub>,
153 * <i>C</i><sub>30</sub>,
154 * <i>C</i><sub>11</sub>,
155 * <i>C</i><sub>21</sub>,
156 * <i>C</i><sub>31</sub>,
157 * <i>C</i><sub>22</sub>,
158 * <i>C</i><sub>32</sub>,
159 * <i>C</i><sub>33</sub>.
160 * In general the (\e n,\e m) element is at index \e m \e N &minus; \e m
161 * (\e m &minus; 1)/2 + \e n. The layout of \e S is the same except that
162 * the first column is omitted (since the \e m = 0 terms never contribute
163 * to the sum) and the 0th element is <i>S</i><sub>11</sub>
164 *
165 * The class stores <i>pointers</i> to the first elements of \e C and \e S.
166 * These arrays should not be altered or destroyed during the lifetime of a
167 * SphericalHarmonic object.
168 **********************************************************************/
169 SphericalHarmonic(const std::vector<real>& C,
170 const std::vector<real>& S,
171 int N, real a, unsigned norm = FULL)
172 : _a(a)
173 , _norm(norm)
174 { _c[0] = SphericalEngine::coeff(C, S, N); }
175
176 /**
177 * Constructor with a subset of coefficients specified.
178 *
179 * @param[in] C the coefficients <i>C</i><sub><i>nm</i></sub>.
180 * @param[in] S the coefficients <i>S</i><sub><i>nm</i></sub>.
181 * @param[in] N the degree used to determine the layout of \e C and \e S.
182 * @param[in] nmx the maximum degree used in the sum. The sum over \e n is
183 * from 0 thru \e nmx.
184 * @param[in] mmx the maximum order used in the sum. The sum over \e m is
185 * from 0 thru min(\e n, \e mmx).
186 * @param[in] a the reference radius appearing in the definition of the
187 * sum.
188 * @param[in] norm the normalization for the associated Legendre
189 * polynomials, either SphericalHarmonic::FULL (the default) or
190 * SphericalHarmonic::SCHMIDT.
191 * @exception GeographicErr if \e N, \e nmx, and \e mmx do not satisfy
192 * \e N &ge; \e nmx &ge; \e mmx &ge; &minus;1.
193 * @exception GeographicErr if \e C or \e S is not big enough to hold the
194 * coefficients.
195 *
196 * The class stores <i>pointers</i> to the first elements of \e C and \e S.
197 * These arrays should not be altered or destroyed during the lifetime of a
198 * SphericalHarmonic object.
199 **********************************************************************/
200 SphericalHarmonic(const std::vector<real>& C,
201 const std::vector<real>& S,
202 int N, int nmx, int mmx,
203 real a, unsigned norm = FULL)
204 : _a(a)
205 , _norm(norm)
206 { _c[0] = SphericalEngine::coeff(C, S, N, nmx, mmx); }
207
208 /**
209 * A default constructor so that the object can be created when the
210 * constructor for another object is initialized. This default object can
211 * then be reset with the default copy assignment operator.
212 **********************************************************************/
214
215 /**
216 * Compute the spherical harmonic sum.
217 *
218 * @param[in] x cartesian coordinate.
219 * @param[in] y cartesian coordinate.
220 * @param[in] z cartesian coordinate.
221 * @return \e V the spherical harmonic sum.
222 *
223 * This routine requires constant memory and thus never throws an
224 * exception.
225 **********************************************************************/
226 Math::real operator()(real x, real y, real z) const {
227 real f[] = {1};
228 real v = 0;
229 real dummy;
230 switch (_norm) {
231 case FULL:
232 v = SphericalEngine::Value<false, SphericalEngine::FULL, 1>
233 (_c, f, x, y, z, _a, dummy, dummy, dummy);
234 break;
235 case SCHMIDT:
236 default: // To avoid compiler warnings
237 v = SphericalEngine::Value<false, SphericalEngine::SCHMIDT, 1>
238 (_c, f, x, y, z, _a, dummy, dummy, dummy);
239 break;
240 }
241 return v;
242 }
243
244 /**
245 * Compute a spherical harmonic sum and its gradient.
246 *
247 * @param[in] x cartesian coordinate.
248 * @param[in] y cartesian coordinate.
249 * @param[in] z cartesian coordinate.
250 * @param[out] gradx \e x component of the gradient
251 * @param[out] grady \e y component of the gradient
252 * @param[out] gradz \e z component of the gradient
253 * @return \e V the spherical harmonic sum.
254 *
255 * This is the same as the previous function, except that the components of
256 * the gradients of the sum in the \e x, \e y, and \e z directions are
257 * computed. This routine requires constant memory and thus never throws
258 * an exception.
259 **********************************************************************/
260 Math::real operator()(real x, real y, real z,
261 real& gradx, real& grady, real& gradz) const {
262 real f[] = {1};
263 real v = 0;
264 switch (_norm) {
265 case FULL:
266 v = SphericalEngine::Value<true, SphericalEngine::FULL, 1>
267 (_c, f, x, y, z, _a, gradx, grady, gradz);
268 break;
269 case SCHMIDT:
270 default: // To avoid compiler warnings
271 v = SphericalEngine::Value<true, SphericalEngine::SCHMIDT, 1>
272 (_c, f, x, y, z, _a, gradx, grady, gradz);
273 break;
274 }
275 return v;
276 }
277
278 /**
279 * Create a CircularEngine to allow the efficient evaluation of several
280 * points on a circle of latitude.
281 *
282 * @param[in] p the radius of the circle.
283 * @param[in] z the height of the circle above the equatorial plane.
284 * @param[in] gradp if true the returned object will be able to compute the
285 * gradient of the sum.
286 * @exception std::bad_alloc if the memory for the CircularEngine can't be
287 * allocated.
288 * @return the CircularEngine object.
289 *
290 * SphericalHarmonic::operator()() exchanges the order of the sums in the
291 * definition, i.e., &sum;<sub><i>n</i> = 0..<i>N</i></sub>
292 * &sum;<sub><i>m</i> = 0..<i>n</i></sub> becomes &sum;<sub><i>m</i> =
293 * 0..<i>N</i></sub> &sum;<sub><i>n</i> = <i>m</i>..<i>N</i></sub>.
294 * SphericalHarmonic::Circle performs the inner sum over degree \e n (which
295 * entails about <i>N</i><sup>2</sup> operations). Calling
296 * CircularEngine::operator()() on the returned object performs the outer
297 * sum over the order \e m (about \e N operations).
298 *
299 * Here's an example of computing the spherical sum at a sequence of
300 * longitudes without using a CircularEngine object \code
301 SphericalHarmonic h(...); // Create the SphericalHarmonic object
302 double r = 2, lat = 33, lon0 = 44, dlon = 0.01;
303 double
304 phi = lat * Math::degree<double>(),
305 z = r * sin(phi), p = r * cos(phi);
306 for (int i = 0; i <= 100; ++i) {
307 real
308 lon = lon0 + i * dlon,
309 lam = lon * Math::degree<double>();
310 std::cout << lon << " " << h(p * cos(lam), p * sin(lam), z) << "\n";
311 }
312 \endcode
313 * Here is the same calculation done using a CircularEngine object. This
314 * will be about <i>N</i>/2 times faster. \code
315 SphericalHarmonic h(...); // Create the SphericalHarmonic object
316 double r = 2, lat = 33, lon0 = 44, dlon = 0.01;
317 double
318 phi = lat * Math::degree<double>(),
319 z = r * sin(phi), p = r * cos(phi);
320 CircularEngine c(h(p, z, false)); // Create the CircularEngine object
321 for (int i = 0; i <= 100; ++i) {
322 real
323 lon = lon0 + i * dlon;
324 std::cout << lon << " " << c(lon) << "\n";
325 }
326 \endcode
327 **********************************************************************/
328 CircularEngine Circle(real p, real z, bool gradp) const {
329 real f[] = {1};
330 switch (_norm) {
331 case FULL:
332 return gradp ?
333 SphericalEngine::Circle<true, SphericalEngine::FULL, 1>
334 (_c, f, p, z, _a) :
335 SphericalEngine::Circle<false, SphericalEngine::FULL, 1>
336 (_c, f, p, z, _a);
337 break;
338 case SCHMIDT:
339 default: // To avoid compiler warnings
340 return gradp ?
341 SphericalEngine::Circle<true, SphericalEngine::SCHMIDT, 1>
342 (_c, f, p, z, _a) :
343 SphericalEngine::Circle<false, SphericalEngine::SCHMIDT, 1>
344 (_c, f, p, z, _a);
345 break;
346 }
347 }
348
349 /**
350 * @return the zeroth SphericalEngine::coeff object.
351 **********************************************************************/
353 { return _c[0]; }
354 };
355
356} // namespace GeographicLib
357
358#endif // GEOGRAPHICLIB_SPHERICALHARMONIC_HPP
Header for GeographicLib::CircularEngine class.
Header for GeographicLib::Constants class.
#define GEOGRAPHICLIB_EXPORT
Definition Constants.hpp:67
GeographicLib::Math::real real
Definition GeodSolve.cpp:28
Header for GeographicLib::SphericalEngine class.
Spherical harmonic sums for a circle.
Package up coefficients for SphericalEngine.
Math::real operator()(real x, real y, real z) const
Math::real operator()(real x, real y, real z, real &gradx, real &grady, real &gradz) const
SphericalHarmonic(const std::vector< real > &C, const std::vector< real > &S, int N, int nmx, int mmx, real a, unsigned norm=FULL)
const SphericalEngine::coeff & Coefficients() const
CircularEngine Circle(real p, real z, bool gradp) const
SphericalHarmonic(const std::vector< real > &C, const std::vector< real > &S, int N, real a, unsigned norm=FULL)
Namespace for GeographicLib.