18 "Bad value of precision");
22#if GEOGRAPHICLIB_PRECISION != 5
23 return numeric_limits<real>::digits;
25 return numeric_limits<real>::digits();
30#if GEOGRAPHICLIB_PRECISION != 5
33 mpfr::mpreal::set_default_prec(ndigits >= 2 ? ndigits : 2);
39#if GEOGRAPHICLIB_PRECISION != 5
40 return numeric_limits<real>::digits10;
42 return numeric_limits<real>::digits10();
48 digits10() > numeric_limits<double>::digits10 ?
49 digits10() - numeric_limits<double>::digits10 : 0;
60 t = s != 0 ? T(0) - (up + vpp) : s;
67 T y = remainder(x, T(
td));
68#if GEOGRAPHICLIB_PRECISION == 4
72 if (y == 0) y = copysign(y, x);
74 return fabs(y) == T(
hd) ? copysign(T(
hd), x) : y;
80 T d =
sum(remainder(-x, T(
td)), remainder( y, T(
td)), e);
83 d =
sum(remainder(d, T(
td)), e, e);
85 if (d == 0 || fabs(d) ==
hd)
88 d = copysign(d, e == 0 ? y - x : -e);
93 static const T z = T(1)/T(16);
97 y = w > 0 ? z - w : y;
98 return copysign(y, x);
105 d = remquo(x, T(
qd), &q);
108 T s = sin(r), c = cos(r);
109 if (2 * fabs(d) ==
qd) {
112 }
else if (3 * fabs(d) ==
qd) {
114 s = copysign(1/T(2), r);
116 switch (
unsigned(q) & 3U) {
117 case 0U: sinx = s; cosx = c;
break;
118 case 1U: sinx = c; cosx = -s;
break;
119 case 2U: sinx = -s; cosx = -c;
break;
120 default: sinx = -c; cosx = s;
break;
125 if (sinx == 0) sinx = copysign(sinx, x);
137 T s = sin(r), c = cos(r);
138 if (2 * fabs(d) ==
qd) {
141 }
else if (3 * fabs(d) ==
qd) {
143 s = copysign(1/T(2), r);
145 switch (
unsigned(q) & 3U) {
146 case 0U: sinx = s; cosx = c;
break;
147 case 1U: sinx = c; cosx = -s;
break;
148 case 2U: sinx = -s; cosx = -c;
break;
149 default: sinx = -c; cosx = s;
break;
154 if (sinx == 0) sinx = copysign(sinx, x+t);
160 T d = remquo(x, T(
qd), &q),
162 unsigned p = unsigned(q);
164 r = p & 1U ? (2 * fabs(d) ==
qd ? sqrt(1/T(2)) :
165 (3 * fabs(d) ==
qd ? sqrt(T(3))/2 : cos(r))) :
166 copysign(2 * fabs(d) ==
qd ? sqrt(1/T(2)) :
167 (3 * fabs(d) ==
qd ? 1/T(2) : sin(r)), r);
169 if (r == 0) r = copysign(r, x);
176 T d = remquo(x, T(
qd), &q),
178 unsigned p = unsigned(q + 1);
179 r = p & 1U ? (2 * fabs(d) ==
qd ? sqrt(1/T(2)) :
180 (3 * fabs(d) ==
qd ? sqrt(T(3))/2 : cos(r))) :
181 copysign(2 * fabs(d) ==
qd ? sqrt(1/T(2)) :
182 (3 * fabs(d) ==
qd ? 1/T(2) : sin(r)), r);
189 static const T overflow = 1 /
sq(numeric_limits<T>::epsilon());
196 return min(max(r, -overflow), overflow);
205 if (fabs(y) > fabs(x)) { swap(x, y); q = 2; }
206 if (signbit(x)) { x = -x; ++q; }
208 T ang = atan2(y, x) / degree<T>();
210 case 1: ang = copysign(T(
hd), y) - ang;
break;
211 case 2: ang =
qd - ang;
break;
212 case 3: ang = -
qd + ang;
break;
219 {
return atan2d(x, T(1)); }
222 return es > 0 ? es * atanh(es * x) : -es * atan(es * x);
228 T tau1 = hypot(T(1), tau),
229 sig = sinh(
eatanhe(tau / tau1, es ) );
230 return hypot(T(1), sig) * tau - sig * tau1;
236 static const int numit = 5;
238 static const T tol = sqrt(numeric_limits<T>::epsilon()) / 10;
239 static const T taumax = 2 / sqrt(numeric_limits<T>::epsilon());
252 tau = fabs(taup) > 70 ? taup * exp(
eatanhe(T(1), es)) : taup/e2m,
253 stol = tol * fmax(T(1), fabs(taup));
254 if (!(fabs(tau) < taumax))
return tau;
259 T taupa =
taupf(tau, es),
260 dtau = (taup - taupa) * (1 + e2m *
sq(tau)) /
261 ( e2m * hypot(T(1), tau) * hypot(T(1), taupa) );
263 if (!(fabs(dtau) >= stol))
270#if __cplusplus < 201703L || GEOGRAPHICLIB_PRECISION == 4
271 return sqrt(x*x + y*y + z*z);
273 return hypot(x, y, z);
279 return numeric_limits<T>::has_quiet_NaN ?
280 numeric_limits<T>::quiet_NaN() :
281 (numeric_limits<T>::max)();
283 return numeric_limits<T>::has_quiet_NaN ?
284 numeric_limits<T>::quiet_NaN() :
285 numeric_limits<T>::max();
291 return numeric_limits<T>::has_infinity ?
292 numeric_limits<T>::infinity() :
293 (numeric_limits<T>::max)();
295 return numeric_limits<T>::has_infinity ?
296 numeric_limits<T>::infinity() :
297 numeric_limits<T>::max();
303#define GEOGRAPHICLIB_MATH_INSTANTIATE(T) \
304 template T GEOGRAPHICLIB_EXPORT Math::sum <T>(T, T, T&); \
305 template T GEOGRAPHICLIB_EXPORT Math::AngNormalize <T>(T); \
306 template T GEOGRAPHICLIB_EXPORT Math::AngDiff <T>(T, T, T&); \
307 template T GEOGRAPHICLIB_EXPORT Math::AngRound <T>(T); \
308 template void GEOGRAPHICLIB_EXPORT Math::sincosd <T>(T, T&, T&); \
309 template void GEOGRAPHICLIB_EXPORT Math::sincosde <T>(T, T, T&, T&); \
310 template T GEOGRAPHICLIB_EXPORT Math::sind <T>(T); \
311 template T GEOGRAPHICLIB_EXPORT Math::cosd <T>(T); \
312 template T GEOGRAPHICLIB_EXPORT Math::tand <T>(T); \
313 template T GEOGRAPHICLIB_EXPORT Math::atan2d <T>(T, T); \
314 template T GEOGRAPHICLIB_EXPORT Math::atand <T>(T); \
315 template T GEOGRAPHICLIB_EXPORT Math::eatanhe <T>(T, T); \
316 template T GEOGRAPHICLIB_EXPORT Math::taupf <T>(T, T); \
317 template T GEOGRAPHICLIB_EXPORT Math::tauf <T>(T, T); \
318 template T GEOGRAPHICLIB_EXPORT Math::hypot3 <T>(T, T, T); \
319 template T GEOGRAPHICLIB_EXPORT Math::NaN <T>(); \
320 template T GEOGRAPHICLIB_EXPORT Math::infinity <T>();
323 GEOGRAPHICLIB_MATH_INSTANTIATE(
float)
324 GEOGRAPHICLIB_MATH_INSTANTIATE(
double)
325#if GEOGRAPHICLIB_HAVE_LONG_DOUBLE
327 GEOGRAPHICLIB_MATH_INSTANTIATE(
long double)
329#if GEOGRAPHICLIB_PRECISION > 3
334#undef GEOGRAPHICLIB_MATH_INSTANTIATE
#define GEOGRAPHICLIB_EXPORT
Header for GeographicLib::Math class.
#define GEOGRAPHICLIB_VOLATILE
#define GEOGRAPHICLIB_PANIC(msg)
#define GEOGRAPHICLIB_PRECISION
static void sincosd(T x, T &sinx, T &cosx)
static T atan2d(T y, T x)
static T sum(T u, T v, T &t)
static constexpr int qd
degrees per quarter turn
static T tauf(T taup, T es)
static T hypot3(T x, T y, T z)
static T AngNormalize(T x)
static constexpr int td
degrees per turn
static void sincosde(T x, T t, T &sinx, T &cosx)
static T taupf(T tau, T es)
static T AngDiff(T x, T y, T &e)
static constexpr int hd
degrees per half turn
static T eatanhe(T x, T es)
static int set_digits(int ndigits)
static int extra_digits()
Namespace for GeographicLib.