
Polycyclic

Computation with polycyclic groups

2.16

25 July 2020

Bettina Eick

Werner Nickel

Max Horn

Polycyclic 2

Bettina Eick
Email: beick@tu-bs.de
Homepage: http://www.iaa.tu-bs.de/beick
Address: Institut Analysis und Algebra

TU Braunschweig
Universitätsplatz 2
D-38106 Braunschweig
Germany

Werner Nickel

Homepage: http://www.mathematik.tu-darmstadt.de/~nickel/

Max Horn
Email: horn@mathematik.uni-kl.de
Homepage: https://www.quendi.de/math
Address: Fachbereich Mathematik

TU Kaiserslautern
Gottlieb-Daimler-Straße 48
67663 Kaiserslautern
Germany

mailto://beick@tu-bs.de
http://www.iaa.tu-bs.de/beick
http://www.mathematik.tu-darmstadt.de/~nickel/
mailto://horn@mathematik.uni-kl.de
https://www.quendi.de/math

Polycyclic 2

Copyright
© 2003-2018 by Bettina Eick, Max Horn and Werner Nickel

The Polycyclic package is free software;you can redistribute it and/or modify it under the terms of theGNU
General Public Licenseas published by the Free Software Foundation; either version 2 of the License,or (at
your option) any later version.

Acknowledgements

We appreciate very much all past and future comments, suggestions andcontributions to this package and its
documentation provided by GAPusers and developers.

http://www.fsf.org/licenses/gpl.html
http://www.fsf.org/licenses/gpl.html

Contents

1 Preface 5

2 Introduction to polycyclic presentations 6

3 Collectors 8
3.1 Constructing a Collector . 8
3.2 Accessing Parts of a Collector . 11
3.3 Special Features . 13

4 Pcp-groups - polycyclically presented groups 15
4.1 Pcp-elements – elements of a pc-presented group 15
4.2 Methods for pcp-elements . 16
4.3 Pcp-groups - groups of pcp-elements . 18

5 Basic methods and functions for pcp-groups 20
5.1 Elementary methods for pcp-groups . 20
5.2 Elementary properties of pcp-groups . 22
5.3 Subgroups of pcp-groups . 23
5.4 Polycyclic presentation sequences for subfactors . 24
5.5 Factor groups of pcp-groups . 27
5.6 Homomorphisms for pcp-groups . 27
5.7 Changing the defining pc-presentation . 28
5.8 Printing a pc-presentation . 29
5.9 Converting to and from a presentation . 29

6 Libraries and examples of pcp-groups 31
6.1 Libraries of various types of polycyclic groups . 31
6.2 Some assorted example groups . 32

7 Higher level methods for pcp-groups 34
7.1 Subgroup series in pcp-groups . 34
7.2 Orbit stabilizer methods for pcp-groups . 37
7.3 Centralizers, Normalizers and Intersections . 39
7.4 Finite subgroups . 39
7.5 Subgroups of finite index and maximal subgroups 41
7.6 Further attributes for pcp-groups based on the Fitting subgroup 42
7.7 Functions for nilpotent groups . 43

3

Polycyclic 4

7.8 Random methods for pcp-groups . 44
7.9 Non-abelian tensor product and Schur extensions 44
7.10 Schur covers . 49

8 Cohomology for pcp-groups 50
8.1 Cohomology records . 50
8.2 Cohomology groups . 51
8.3 Extended 1-cohomology . 52
8.4 Extensions and Complements . 53
8.5 Constructing pcp groups as extensions . 55

9 Matrix Representations 57
9.1 Unitriangular matrix groups . 57
9.2 Upper unitriangular matrix groups . 57

A Obsolete Functions and Name Changes 60

References 62

Index 63

Chapter 1

Preface

A group G is called polycyclic if there exists a subnormal series in G with cyclic factors. Every
polycyclic group is soluble and every supersoluble group is polycyclic. The class of polycyclic groups
is closed with respect to forming subgroups, factor groups and extensions. Polycyclic groups can also
be characterised as those soluble groups in which each subgroup is finitely generated.

K. A. Hirsch has initiated the investigation of polycyclic groups in 1938, see [Hir38a], [Hir38b],
[Hir46], [Hir52], [Hir54], and their central position in infinite group theory has been recognised since.

A well-known result of Hirsch asserts that each polycyclic group is finitely presented. In fact,
a polycyclic group has a presentation which exhibits its polycyclic structure: a pc-presentation as
defined in the Chapter ‘Introduction to polycyclic presentations’. Pc-presentations allow efficient
computations with the groups they define. In particular, the word problem is efficiently solvable in
a group given by a pc-presentation. Further, subgroups and factor groups of groups given by a pc-
presentation can be handled effectively.

The GAP 4 package Polycyclic is designed for computations with polycyclic groups which are
given by a pc-presentation. The package contains methods to solve the word problem in such groups
and to handle subgroups and factor groups of polycyclic groups. Based on these basic algorithms we
present a collection of methods to construct polycyclic groups and to investigate their structure.

In [BCRS91] and [Seg90] the theory of problems which are decidable in polycyclic-by-finite
groups has been started. As a result of these investigation we know that a large number of group
theoretic problems are decidable by algorithms in polycyclic groups. However, practical algorithms
which are suitable for computer implementations have not been obtained by this study. We have de-
veloped a new set of practical methods for groups given by pc-presentations, see for example [Eic00],
and this package is a collection of implementations for these and other methods.

We refer to [Rob82], page 147ff, and [Seg83] for background on polycyclic groups. Further, in
[Sim94] a variation of the basic methods for groups with pc-presentation is introduced. Finally, we
note that the main GAP library contains many practical algorithms to compute with finite polycyclic
groups. This is described in the Section on polycyclic groups in the reference manual.

5

Chapter 2

Introduction to polycyclic presentations

Let G be a polycyclic group and let G = C1 ▷C2 . . .Cn ▷Cn+1 = 1 be a polycyclic series, that is,
a subnormal series of G with non-trivial cyclic factors. For 1 ≤ i ≤ n we choose gi ∈ Ci such that
Ci = ⟨gi,Ci+1⟩. Then the sequence (g1, . . . ,gn) is called a polycyclic generating sequence of G. Let
I be the set of those i ∈ {1, . . . ,n} with ri := [Ci : Ci+1] finite. Each element of G can be written
uniquely as ge1

1 · · ·gen
n with ei ∈ Z for 1 ≤ i ≤ n and 0 ≤ ei < ri for i ∈ I.

Each polycyclic generating sequence of G gives rise to a power-conjugate (pc-) presentation for
G with the conjugate relations

ggi
j = ge(i, j,i+1)

i+1 · · ·ge(i, j,n)
n for 1 ≤ i < j ≤ n,

gg−1
i

j = g f (i, j,i+1)
i+1 · · ·g f (i, j,n)

n for 1 ≤ i < j ≤ n,

and the power relations
gri

i = gl(i,i+1)
i+1 · · ·gl(i,n)

n for i ∈ I.

Vice versa, we say that a group G is defined by a pc-presentation if G is given by a presentation
of the form above on generators g1, . . . ,gn. These generators are the defining generators of G. Here,
I is the set of 1 ≤ i ≤ n such that gi has a power relation. The positive integer ri for i ∈ I is called
the relative order of gi. If G is given by a pc-presentation, then G is polycyclic. The subgroups
Ci = ⟨gi, . . . ,gn⟩ form a subnormal series G = C1 ≥ . . . ≥ Cn+1 = 1 with cyclic factors and we have
that gri

i ∈Ci+1. However, some of the factors of this series may be smaller than ri for i ∈ I or finite if
i ̸∈ I.

If G is defined by a pc-presentation, then each element of G can be described by a word of the
form ge1

1 · · ·gen
n in the defining generators with ei ∈ Z for 1 ≤ i ≤ n and 0 ≤ ei < ri for i ∈ I. Such a

word is said to be in collected form. In general, an element of the group can be represented by more
than one collected word. If the pc-presentation has the property that each element of G has precisely
one word in collected form, then the presentation is called confluent or consistent. If that is the case,
the generators with a power relation correspond precisely to the finite factors in the polycyclic series
and ri is the order of Ci/Ci+1.

The GAP package Polycyclic is designed for computations with polycyclic groups which are
given by consistent pc-presentations. In particular, all the functions described below assume that we
compute with a group defined by a consistent pc-presentation. See Chapter ‘Collectors’ for a routine
that checks the consistency of a pc-presentation.

6

Polycyclic 7

A pc-presentation can be interpreted as a rewriting system in the following way. One needs to
add a new generator Gi for each generator gi together with the relations giGi = 1 and Gigi = 1. Any
occurrence in a relation of an inverse generator g−1

i is replaced by Gi. In this way one obtains a monoid
presentation for the group G. With respect to a particular ordering on the set of monoid words in the
generators g1, . . .gn,G1, . . .Gn, the wreath product ordering, this monoid presentation is a rewriting
system. If the pc-presentation is consistent, the rewriting system is confluent.

In this package we do not address this aspect of pc-presentations because it is of little relevance
for the algorithms implemented here. For the definition of rewriting systems and confluence in this
context as well as further details on the connections between pc-presentations and rewriting systems
we recommend the book [Sim94].

Chapter 3

Collectors

Let G be a group defined by a pc-presentation as described in the Chapter ‘Introduction to polycyclic
presentations’.

The process for computing the collected form for an arbitrary word in the generators of G is called
collection. The basic idea in collection is the following. Given a word in the defining generators, one
scans the word for occurrences of adjacent generators (or their inverses) in the wrong order or occur-
rences of subwords gei

i with i ∈ I and ei not in the range 0 . . .ri − 1. In the first case, the appropriate
conjugacy relation is used to move the generator with the smaller index to the left. In the second case,
one uses the appropriate power relation to move the exponent of gi into the required range. These
steps are repeated until a collected word is obtained.

There exist a number of different strategies for collecting a given word to collected form. The
strategies implemented in this package are collection from the left as described by [LGS90] and
[Sim94] and combinatorial collection from the left by [VL90]. In addition, the package provides
access to Hall polynomials computed by Deep Thought for the multiplication in a nilpotent group, see
[Mer97] and [LGS98].

The first step in defining a pc-presented group is setting up a data structure that knows the pc-
presentation and has routines that perform the collection algorithm with words in the generators of the
presentation. Such a data structure is called a collector.

To describe the right hand sides of the relations in a pc-presentation we use generator exponent
lists; the word ge1

i1 ge2
i2 . . .g

ek
ik is represented by the generator exponent list [i1,e1, i2,e2, . . . , ik,ek].

3.1 Constructing a Collector

A collector for a group given by a pc-presentation starts by setting up an empty data structure for the
collector. Then the relative orders, the power relations and the conjugate relations are added into the
data structure. The construction is finalised by calling a routine that completes the data structure for
the collector. The following functions provide the necessary tools for setting up a collector.

3.1.1 FromTheLeftCollector

▷ FromTheLeftCollector(n) (operation)

returns an empty data structure for a collector with n generators. No generator has a relative order,
no right hand sides of power and conjugate relations are defined. Two generators for which no right

8

Polycyclic 9

hand side of a conjugate relation is defined commute. Therefore, the collector returned by this function
can be used to define a free abelian group of rank n .

Example
gap> ftl := FromTheLeftCollector(4);

<<from the left collector with 4 generators>>

gap> PcpGroupByCollector(ftl);

Pcp-group with orders [0, 0, 0, 0]

gap> IsAbelian(last);

true

If the relative order of a generators has been defined (see SetRelativeOrder (3.1.2)), but the right
hand side of the corresponding power relation has not, then the order and the relative order of the
generator are the same.

3.1.2 SetRelativeOrder

▷ SetRelativeOrder(coll, i, ro) (operation)

▷ SetRelativeOrderNC(coll, i, ro) (operation)

set the relative order in collector coll for generator i to ro . The parameter coll is a collector
as returned by the function FromTheLeftCollector (3.1.1), i is a generator number and ro is a
non-negative integer. The generator number i is an integer in the range 1, . . . ,n where n is the number
of generators of the collector.

If ro is 0, then the generator with number i has infinite order and no power relation can be
specified. As a side effect in this case, a previously defined power relation is deleted.

If ro is the relative order of a generator with number i and no power relation is set for that
generator, then ro is the order of that generator.

The NC version of the function bypasses checks on the range of i .
Example

gap> ftl := FromTheLeftCollector(4);

<<from the left collector with 4 generators>>

gap> for i in [1..4] do SetRelativeOrder(ftl, i, 3); od;

gap> G := PcpGroupByCollector(ftl);

Pcp-group with orders [3, 3, 3, 3]

gap> IsElementaryAbelian(G);

true

3.1.3 SetPower

▷ SetPower(coll, i, rhs) (operation)

▷ SetPowerNC(coll, i, rhs) (operation)

set the right hand side of the power relation for generator i in collector coll to (a copy of) rhs .
An attempt to set the right hand side for a generator without a relative order results in an error.

Right hand sides are by default assumed to be trivial.
The parameter coll is a collector, i is a generator number and rhs is a generators exponent list

or an element from a free group.
The no-check (NC) version of the function bypasses checks on the range of i and stores rhs

(instead of a copy) in the collector.

Polycyclic 10

3.1.4 SetConjugate

▷ SetConjugate(coll, j, i, rhs) (operation)

▷ SetConjugateNC(coll, j, i, rhs) (operation)

set the right hand side of the conjugate relation for the generators j and i with j larger than i .
The parameter coll is a collector, j and i are generator numbers and rhs is a generator exponent
list or an element from a free group. Conjugate relations are by default assumed to be trivial.

The generator number i can be negative in order to define conjugation by the inverse of a genera-
tor.

The no-check (NC) version of the function bypasses checks on the range of i and j and stores
rhs (instead of a copy) in the collector.

3.1.5 SetCommutator

▷ SetCommutator(coll, j, i, rhs) (operation)

set the right hand side of the conjugate relation for the generators j and i with j larger than i

by specifying the commutator of j and i . The parameter coll is a collector, j and i are generator
numbers and rhs is a generator exponent list or an element from a free group.

The generator number i can be negative in order to define the right hand side of a commutator
relation with the second generator being the inverse of a generator.

3.1.6 UpdatePolycyclicCollector

▷ UpdatePolycyclicCollector(coll) (operation)

completes the data structures of a collector. This is usually the last step in setting up a collector.
Among the steps performed is the completion of the conjugate relations. For each non-trivial conjugate
relation of a generator, the corresponding conjugate relation of the inverse generator is calculated.

Note that UpdatePolycyclicCollector is automatically called by the function
PcpGroupByCollector (see PcpGroupByCollector (4.3.1)).

3.1.7 IsConfluent

▷ IsConfluent(coll) (property)

tests if the collector coll is confluent. The function returns true or false accordingly.
Compare Chapter 2 for a definition of confluence.
Note that confluence is automatically checked by the function PcpGroupByCollector (see

PcpGroupByCollector (4.3.1)).
The following example defines a collector for a semidirect product of the cyclic group of order 3

with the free abelian group of rank 2. The action of the cyclic group on the free abelian group is given
by the matrix (

0 1
−1 −1

)
.

Polycyclic 11

This leads to the following polycyclic presentation:

⟨g1,g2,g3|g3
1,g

g1
2 = g3,g

g1
3 = g−1

2 g−1
3 ,gg2

3 = g3⟩.
Example

gap> ftl := FromTheLeftCollector(3);

<<from the left collector with 3 generators>>

gap> SetRelativeOrder(ftl, 1, 3);

gap> SetConjugate(ftl, 2, 1, [3,1]);

gap> SetConjugate(ftl, 3, 1, [2,-1,3,-1]);

gap> UpdatePolycyclicCollector(ftl);

gap> IsConfluent(ftl);

true

The action of the inverse of g1 on ⟨g2,g2⟩ is given by the matrix(
−1 −1
1 0

)
.

The corresponding conjugate relations are automatically computed by
UpdatePolycyclicCollector. It is also possible to specify the conjugation by inverse gen-
erators. Note that you need to run UpdatePolycyclicCollector after one of the set functions has
been used.

Example
gap> SetConjugate(ftl, 2, -1, [2,-1,3,-1]);

gap> SetConjugate(ftl, 3, -1, [2,1]);

gap> IsConfluent(ftl);

Error, Collector is out of date called from

CollectWordOrFail(coll, ev1, [j, 1, i, 1]); called from

<function>(<arguments>) called from read-eval-loop

Entering break read-eval-print loop ...

you can 'quit;' to quit to outer loop, or

you can 'return;' to continue

brk>

gap> UpdatePolycyclicCollector(ftl);

gap> IsConfluent(ftl);

true

3.2 Accessing Parts of a Collector

3.2.1 RelativeOrders

▷ RelativeOrders(coll) (attribute)

returns (a copy of) the list of relative order stored in the collector coll .

3.2.2 GetPower

▷ GetPower(coll, i) (operation)

▷ GetPowerNC(coll, i) (operation)

Polycyclic 12

returns a copy of the generator exponent list stored for the right hand side of the power relation of
the generator i in the collector coll .

The no-check (NC) version of the function bypasses checks on the range of i and does not create
a copy before returning the right hand side of the power relation.

3.2.3 GetConjugate

▷ GetConjugate(coll, j, i) (operation)

▷ GetConjugateNC(coll, j, i) (operation)

returns a copy of the right hand side of the conjugate relation stored for the generators j and i in
the collector coll as generator exponent list. The generator j must be larger than i .

The no-check (NC) version of the function bypasses checks on the range of i and j and does not
create a copy before returning the right hand side of the power relation.

3.2.4 NumberOfGenerators

▷ NumberOfGenerators(coll) (operation)

returns the number of generators of the collector coll .

3.2.5 ObjByExponents

▷ ObjByExponents(coll, expvec) (operation)

returns a generator exponent list for the exponent vector expvec . This is the inverse operation to
ExponentsByObj. See ExponentsByObj (3.2.6) for an example.

3.2.6 ExponentsByObj

▷ ExponentsByObj(coll, genexp) (operation)

returns an exponent vector for the generator exponent list genexp . This is the inverse operation
to ObjByExponents. The function assumes that the generators in genexp are given in the right order
and that the exponents are in the right range.

Example
gap> G := UnitriangularPcpGroup(4, 0);

Pcp-group with orders [0, 0, 0, 0, 0, 0]

gap> coll := Collector (G);

<<from the left collector with 6 generators>>

gap> ObjByExponents(coll, [6,-5,4,3,-2,1]);

[1, 6, 2, -5, 3, 4, 4, 3, 5, -2, 6, 1]

gap> ExponentsByObj(coll, last);

[6, -5, 4, 3, -2, 1]

Polycyclic 13

3.3 Special Features

In this section we descibe collectors for nilpotent groups which make use of the special structure of
the given pc-presentation.

3.3.1 IsWeightedCollector

▷ IsWeightedCollector(coll) (property)

checks if there is a function w from the generators of the collector coll into the positive integers
such that w(g) ≥ w(x)+w(y) for all generators x, y and all generators g in (the normal of) [x,y]. If
such a function does not exist, false is returned. If such a function exists, it is computed and stored
in the collector. In addition, the default collection strategy for this collector is set to combinatorial
collection.

3.3.2 AddHallPolynomials

▷ AddHallPolynomials(coll) (function)

is applicable to a collector which passes IsWeightedCollector and computes the Hall multipli-
cation polynomials for the presentation stored in coll . The default strategy for this collector is set to
evaluating those polynomial when multiplying two elements.

3.3.3 String

▷ String(coll) (attribute)

converts a collector coll into a string.

3.3.4 FTLCollectorPrintTo

▷ FTLCollectorPrintTo(file, name, coll) (function)

stores a collector coll in the file file such that the file can be read back using the function
’Read’ into GAP and would then be stored in the variable name .

3.3.5 FTLCollectorAppendTo

▷ FTLCollectorAppendTo(file, name, coll) (function)

appends a collector coll in the file file such that the file can be read back into GAP and would
then be stored in the variable name .

3.3.6 UseLibraryCollector

▷ UseLibraryCollector (global variable)

Polycyclic 14

this property can be set to true for a collector to force a simple from-the-left collection strat-
egy implemented in the GAP language to be used. Its main purpose is to help debug the collection
routines.

3.3.7 USE_LIBRARY_COLLECTOR

▷ USE_LIBRARY_COLLECTOR (global variable)

this global variable can be set to true to force all collectors to use a simple from-the-left collection
strategy implemented in the GAP language to be used. Its main purpose is to help debug the collection
routines.

3.3.8 DEBUG_COMBINATORIAL_COLLECTOR

▷ DEBUG_COMBINATORIAL_COLLECTOR (global variable)

this global variable can be set to true to force the comparison of results from the combinatorial
collector with the result of an identical collection performed by a simple from-the-left collector. Its
main purpose is to help debug the collection routines.

3.3.9 USE_COMBINATORIAL_COLLECTOR

▷ USE_COMBINATORIAL_COLLECTOR (global variable)

this global variable can be set to false in order to prevent the combinatorial collector to be used.

Chapter 4

Pcp-groups - polycyclically presented
groups

4.1 Pcp-elements – elements of a pc-presented group

A pcp-element is an element of a group defined by a consistent pc-presentation given by a collector.
Suppose that g1, . . . ,gn are the defining generators of the collector. Recall that each element g in this
group can be written uniquely as a collected word ge1

1 · · ·gen
n with ei ∈ Z and 0 ≤ ei < ri for i ∈ I.

The integer vector [e1, . . . ,en] is called the exponent vector of g. The following functions can be
used to define pcp-elements via their exponent vector or via an arbitrary generator exponent word as
introduced in Chapter 3.

4.1.1 PcpElementByExponentsNC

▷ PcpElementByExponentsNC(coll, exp) (function)

▷ PcpElementByExponents(coll, exp) (function)

returns the pcp-element with exponent vector exp . The exponent vector is considered relative to
the defining generators of the pc-presentation.

4.1.2 PcpElementByGenExpListNC

▷ PcpElementByGenExpListNC(coll, word) (function)

▷ PcpElementByGenExpList(coll, word) (function)

returns the pcp-element with generators exponent list word . This list word consists of a sequence
of generator numbers and their corresponding exponents and is of the form [i1,ei1 , i2,ei2 , . . . , ir,eir].
The generators exponent list is considered relative to the defining generators of the pc-presentation.

These functions return pcp-elements in the category IsPcpElement. Presently, the only represen-
tation implemented for this category is IsPcpElementRep. (This allows us to be a little sloppy right
now. The basic set of operations for IsPcpElement has not been defined yet. This is going to happen
in one of the next version, certainly as soon as the need for different representations arises.)

15

Polycyclic 16

4.1.3 IsPcpElement

▷ IsPcpElement(obj) (Category)

returns true if the object obj is a pcp-element.

4.1.4 IsPcpElementCollection

▷ IsPcpElementCollection(obj) (Category)

returns true if the object obj is a collection of pcp-elements.

4.1.5 IsPcpElementRep

▷ IsPcpElementRep(obj) (Representation)

returns true if the object obj is represented as a pcp-element.

4.1.6 IsPcpGroup

▷ IsPcpGroup(obj) (Filter)

returns true if the object obj is a group and also a pcp-element collection.

4.2 Methods for pcp-elements

Now we can describe attributes and functions for pcp-elements. The four basic attributes of a pcp-
element, Collector, Exponents, GenExpList and NameTag are computed at the creation of the
pcp-element. All other attributes are determined at runtime.

Let g be a pcp-element and g1, . . . ,gn a polycyclic generating sequence of the underlying pc-
presented group. Let C1, . . . ,Cn be the polycyclic series defined by g1, . . . ,gn.

The depth of a non-trivial element g of a pcp-group (with respect to the defining generators) is the
integer i such that g ∈ Ci \Ci+1. The depth of the trivial element is defined to be n+ 1. If g ̸= 1 has
depth i and gei

i · · ·gen
n is the collected word for g, then ei is the leading exponent of g.

If g has depth i, then we call ri = [Ci : Ci+1] the factor order of g. If r < ∞, then the smallest
positive integer l with gl ∈Ci+1 is the called relative order of g. If r = ∞, then the relative order of g
is defined to be 0. The index e of ⟨g,Ci+1⟩ in Ci is called relative index of g. We have that r = el.

We call a pcp-element normed, if its leading exponent is equal to its relative index. For each
pcp-element g there exists an integer e such that ge is normed.

4.2.1 Collector

▷ Collector(g) (operation)

the collector to which the pcp-element g belongs.

Polycyclic 17

4.2.2 Exponents

▷ Exponents(g) (operation)

returns the exponent vector of the pcp-element g with respect to the defining generating set of the
underlying collector.

4.2.3 GenExpList

▷ GenExpList(g) (operation)

returns the generators exponent list of the pcp-element g with respect to the defining generating
set of the underlying collector.

4.2.4 NameTag

▷ NameTag(g) (operation)

the name used for printing the pcp-element g . Printing is done by using the name tag and append-
ing the generator number of g .

4.2.5 Depth

▷ Depth(g) (operation)

returns the depth of the pcp-element g relative to the defining generators.

4.2.6 LeadingExponent

▷ LeadingExponent(g) (operation)

returns the leading exponent of pcp-element g relative to the defining generators. If g is the
identity element, the functions returns ’fail’

4.2.7 RelativeOrder

▷ RelativeOrder(g) (attribute)

returns the relative order of the pcp-element g with respect to the defining generators.

4.2.8 RelativeIndex

▷ RelativeIndex(g) (attribute)

returns the relative index of the pcp-element g with respect to the defining generators.

Polycyclic 18

4.2.9 FactorOrder

▷ FactorOrder(g) (attribute)

returns the factor order of the pcp-element g with respect to the defining generators.

4.2.10 NormingExponent

▷ NormingExponent(g) (function)

returns a positive integer e such that the pcp-element g raised to the power of e is normed.

4.2.11 NormedPcpElement

▷ NormedPcpElement(g) (function)

returns the normed element corresponding to the pcp-element g .

4.3 Pcp-groups - groups of pcp-elements

A pcp-group is a group consisting of pcp-elements such that all pcp-elements in the group share the
same collector. Thus the group G defined by a polycyclic presentation and all its subgroups are pcp-
groups.

4.3.1 PcpGroupByCollector

▷ PcpGroupByCollector(coll) (function)

▷ PcpGroupByCollectorNC(coll) (function)

returns a pcp-group build from the collector coll .
The function calls UpdatePolycyclicCollector (3.1.6) and checks the confluence (see

IsConfluent (3.1.7)) of the collector.
The non-check version bypasses these checks.

4.3.2 Group

▷ Group(gens, id) (function)

returns the group generated by the pcp-elements gens with identity id .

4.3.3 Subgroup

▷ Subgroup(G, gens) (function)

returns a subgroup of the pcp-group G generated by the list gens of pcp-elements from G .

Polycyclic 19

Example
gap> ftl := FromTheLeftCollector(2);;

gap> SetRelativeOrder(ftl, 1, 2);

gap> SetConjugate(ftl, 2, 1, [2,-1]);

gap> UpdatePolycyclicCollector(ftl);

gap> G:= PcpGroupByCollectorNC(ftl);

Pcp-group with orders [2, 0]

gap> Subgroup(G, GeneratorsOfGroup(G){[2]});

Pcp-group with orders [0]

Chapter 5

Basic methods and functions for
pcp-groups

Pcp-groups are groups in the GAP sense and hence all generic GAP methods for groups can be applied
for pcp-groups. However, for a number of group theoretic questions GAP does not provide generic
methods that can be applied to pcp-groups. For some of these questions there are functions provided
in Polycyclic.

5.1 Elementary methods for pcp-groups

In this chapter we describe some important basic functions which are available for pcp-groups. A
number of higher level functions are outlined in later sections and chapters.

Let U,V and N be subgroups of a pcp-group.

5.1.1 \=

▷ \=(U, V) (method)

decides if U and V are equal as sets.

5.1.2 Size

▷ Size(U) (method)

returns the size of U .

5.1.3 Random

▷ Random(U) (method)

returns a random element of U .

20

Polycyclic 21

5.1.4 Index

▷ Index(U, V) (method)

returns the index of V in U if V is a subgroup of U . The function does not check if V is a subgroup
of U and if it is not, the result is not meaningful.

5.1.5 \in

▷ \in(g, U) (method)

checks if g is an element of U .

5.1.6 Elements

▷ Elements(U) (method)

returns a list containing all elements of U if U is finite and it returns the list [fail] otherwise.

5.1.7 ClosureGroup

▷ ClosureGroup(U, V) (method)

returns the group generated by U and V .

5.1.8 NormalClosure

▷ NormalClosure(U, V) (method)

returns the normal closure of V under action of U .

5.1.9 HirschLength

▷ HirschLength(U) (method)

returns the Hirsch length of U .

5.1.10 CommutatorSubgroup

▷ CommutatorSubgroup(U, V) (method)

returns the group generated by all commutators [u,v] with u in U and v in V .

5.1.11 PRump

▷ PRump(U, p) (method)

returns the subgroup U ′U p of U where p is a prime number.

Polycyclic 22

5.1.12 SmallGeneratingSet

▷ SmallGeneratingSet(U) (method)

returns a small generating set for U .

5.2 Elementary properties of pcp-groups

5.2.1 IsSubgroup

▷ IsSubgroup(U, V) (function)

tests if V is a subgroup of U .

5.2.2 IsNormal

▷ IsNormal(U, V) (function)

tests if V is normal in U .

5.2.3 IsNilpotentGroup

▷ IsNilpotentGroup(U) (method)

checks whether U is nilpotent.

5.2.4 IsAbelian

▷ IsAbelian(U) (method)

checks whether U is abelian.

5.2.5 IsElementaryAbelian

▷ IsElementaryAbelian(U) (method)

checks whether U is elementary abelian.

5.2.6 IsFreeAbelian

▷ IsFreeAbelian(U) (property)

checks whether U is free abelian.

Polycyclic 23

5.3 Subgroups of pcp-groups

A subgroup of a pcp-group G can be defined by a set of generators as described in Section 4.3. How-
ever, many computations with a subgroup U need an induced generating sequence or igs of U . An
igs is a sequence of generators of U whose list of exponent vectors form a matrix in upper triangular
form. Note that there may exist many igs of U . The first one calculated for U is stored as an attribute.

An induced generating sequence of a subgroup of a pcp-group G is a list of elements of G. An
igs is called normed, if each element in the list is normed. Moreover, it is canonical, if the exponent
vector matrix is in Hermite Normal Form. The following functions can be used to compute induced
generating sequence for a given subgroup U of G .

5.3.1 Igs

▷ Igs(U) (attribute)

▷ Igs(gens) (function)

▷ IgsParallel(gens, gens2) (function)

returns an induced generating sequence of the subgroup U of a pcp-group. In the second form
the subgroup is given via a generating set gens . The third form computes an igs for the subgroup
generated by gens carrying gens2 through as shadows. This means that each operation that is applied
to the first list is also applied to the second list.

5.3.2 Ngs

▷ Ngs(U) (attribute)

▷ Ngs(igs) (function)

returns a normed induced generating sequence of the subgroup U of a pcp-group. The second form
takes an igs as input and norms it.

5.3.3 Cgs

▷ Cgs(U) (attribute)

▷ Cgs(igs) (function)

▷ CgsParallel(gens, gens2) (function)

returns a canonical generating sequence of the subgroup U of a pcp-group. In the second form the
function takes an igs as input and returns a canonical generating sequence. The third version takes
a generating set and computes a canonical generating sequence carrying gens2 through as shadows.
This means that each operation that is applied to the first list is also applied to the second list.

For a large number of methods for pcp-groups U we will first of all determine an igs for U . Hence
it might speed up computations, if a known igs for a group U is set a priori. The following functions
can be used for this purpose.

5.3.4 SubgroupByIgs

▷ SubgroupByIgs(G, igs) (function)

▷ SubgroupByIgs(G, igs, gens) (function)

Polycyclic 24

returns the subgroup of the pcp-group G generated by the elements of the induced generating
sequence igs . Note that igs must be an induced generating sequence of the subgroup generated by
the elements of the igs . In the second form igs is a igs for a subgroup and gens are some generators.
The function returns the subgroup generated by igs and gens .

5.3.5 AddToIgs

▷ AddToIgs(igs, gens) (function)

▷ AddToIgsParallel(igs, gens, igs2, gens2) (function)

▷ AddIgsToIgs(igs, igs2) (function)

sifts the elements in the list gens into igs. The second version has the same functionality and
carries shadows. This means that each operation that is applied to the first list and the element gens
is also applied to the second list and the element gens2 . The third version is available for efficiency
reasons and assumes that the second list igs2 is not only a generating set, but an igs.

5.4 Polycyclic presentation sequences for subfactors

A subfactor of a pcp-group G is again a polycyclic group for which a polycyclic presentation can
be computed. However, to compute a polycyclic presentation for a given subfactor can be time-
consuming. Hence we introduce polycyclic presentation sequences or Pcp to compute more efficiently
with subfactors. (Note that a subgroup is also a subfactor and thus can be handled by a pcp)

A pcp for a pcp-group U or a subfactor U/N can be created with one of the following functions.

5.4.1 Pcp

▷ Pcp(U[, flag]) (function)

▷ Pcp(U, N[, flag]) (function)

returns a polycyclic presentation sequence for the subgroup U or the quotient group U modulo N .
If the parameter flag is present and equals the string “snf”, the function can only be applied to an
abelian subgroup U or abelian subfactor U /N . The pcp returned will correspond to a decomposition of
the abelian group into a direct product of cyclic groups.

A pcp is a component object which behaves similar to a list representing an igs of the subfactor in
question. The basic functions to obtain the stored values of this component object are as follows. Let
pcp be a pcp for a subfactor U/N of the defining pcp-group G.

5.4.2 GeneratorsOfPcp

▷ GeneratorsOfPcp(pcp) (function)

this returns a list of elements of U corresponding to an igs of U/N.

Polycyclic 25

5.4.3 \[\]

▷ \[\](pcp, i) (method)

returns the i -th element of pcp .

5.4.4 Length

▷ Length(pcp) (method)

returns the number of generators in pcp .

5.4.5 RelativeOrdersOfPcp

▷ RelativeOrdersOfPcp(pcp) (function)

the relative orders of the igs in U/N .

5.4.6 DenominatorOfPcp

▷ DenominatorOfPcp(pcp) (function)

returns an igs of N .

5.4.7 NumeratorOfPcp

▷ NumeratorOfPcp(pcp) (function)

returns an igs of U .

5.4.8 GroupOfPcp

▷ GroupOfPcp(pcp) (function)

returns U .

5.4.9 OneOfPcp

▷ OneOfPcp(pcp) (function)

returns the identity element of G .
The main feature of a pcp are the possibility to compute exponent vectors without having to deter-

mine an explicit pcp-group corresponding to the subfactor that is represented by the pcp. Nonetheless,
it is possible to determine this subfactor.

Polycyclic 26

5.4.10 ExponentsByPcp

▷ ExponentsByPcp(pcp, g) (function)

returns the exponent vector of g with respect to the generators of pcp . This is the exponent vector
of gN with respect to the igs of U/N .

5.4.11 PcpGroupByPcp

▷ PcpGroupByPcp(pcp) (function)

let pcp be a Pcp of a subgroup or a factor group of a pcp-group. This function computes a new
pcp-group whose defining generators correspond to the generators in pcp .

Example
gap> G := DihedralPcpGroup(0);

Pcp-group with orders [2, 0]

gap> pcp := Pcp(G);

Pcp [g1, g2] with orders [2, 0]

gap> pcp[1];

g1

gap> Length(pcp);

2

gap> RelativeOrdersOfPcp(pcp);

[2, 0]

gap> DenominatorOfPcp(pcp);

[]

gap> NumeratorOfPcp(pcp);

[g1, g2]

gap> GroupOfPcp(pcp);

Pcp-group with orders [2, 0]

gap> OneOfPcp(pcp);

identity

Example
gap> G := ExamplesOfSomePcpGroups(5);

Pcp-group with orders [2, 0, 0, 0]

gap> D := DerivedSubgroup(G);

Pcp-group with orders [0, 0, 0]

gap> GeneratorsOfGroup(G);

[g1, g2, g3, g4]

gap> GeneratorsOfGroup(D);

[g2^-2, g3^-2, g4^2]

an ordinary pcp for G / D

gap> pcp1 := Pcp(G, D);

Pcp [g1, g2, g3, g4] with orders [2, 2, 2, 2]

a pcp for G/D in independent generators

gap> pcp2 := Pcp(G, D, "snf");

Pcp [g2, g3, g1] with orders [2, 2, 4]

gap> g := Random(G);

g1*g2^-4*g3*g4^2

Polycyclic 27

compute the exponent vector of g in G/D with respect to pcp1

gap> ExponentsByPcp(pcp1, g);

[1, 0, 1, 0]

compute the exponent vector of g in G/D with respect to pcp2

gap> ExponentsByPcp(pcp2, g);

[0, 1, 1]

5.5 Factor groups of pcp-groups

Pcp’s for subfactors of pcp-groups have already been described above. These are usually used within
algorithms to compute with pcp-groups. However, it is also possible to explicitly construct factor
groups and their corresponding natural homomorphisms.

5.5.1 NaturalHomomorphismByNormalSubgroup

▷ NaturalHomomorphismByNormalSubgroup(G, N) (method)

returns the natural homomorphism G → G/N. Its image is the factor group G/N.

5.5.2 \/

▷ \/(G, N) (method)

▷ FactorGroup(G, N) (method)

returns the desired factor as pcp-group without giving the explicit homomorphism. This function
is just a wrapper for PcpGroupByPcp(Pcp(G, N)).

5.6 Homomorphisms for pcp-groups

Polycyclic provides code for defining group homomorphisms by generators and images where ei-
ther the source or the range or both are pcp groups. All methods provided by GAP for such group
homomorphisms are supported, in particular the following:

5.6.1 GroupHomomorphismByImages

▷ GroupHomomorphismByImages(G, H, gens, imgs) (function)

returns the homomorphism from the (pcp-) group G to the pcp-group H mapping the generators of
G in the list gens to the corresponding images in the list imgs of elements of H .

5.6.2 Kernel

▷ Kernel(hom) (function)

returns the kernel of the homomorphism hom from a pcp-group to a pcp-group.

Polycyclic 28

5.6.3 Image

▷ Image(hom) (operation)

▷ Image(hom, U) (function)

▷ Image(hom, g) (function)

returns the image of the whole group, of U and of g , respectively, under the homomorphism hom .

5.6.4 PreImage

▷ PreImage(hom, U) (function)

returns the complete preimage of the subgroup U under the homomorphism hom . If the domain of
hom is not a pcp-group, then this function only works properly if hom is injective.

5.6.5 PreImagesRepresentative

▷ PreImagesRepresentative(hom, g) (method)

returns a preimage of the element g under the homomorphism hom .

5.6.6 IsInjective

▷ IsInjective(hom) (method)

checks if the homomorphism hom is injective.

5.7 Changing the defining pc-presentation

5.7.1 RefinedPcpGroup

▷ RefinedPcpGroup(G) (function)

returns a new pcp-group isomorphic to G whose defining polycyclic presentation is refined; that
is, the corresponding polycyclic series has prime or infinite factors only. If H is the new group, then
H!.bi jection is the isomorphism G → H.

5.7.2 PcpGroupBySeries

▷ PcpGroupBySeries(ser[, flag]) (function)

returns a new pcp-group isomorphic to the first subgroup G of the given series ser such that its
defining pcp refines the given series. The series must be subnormal and H!.bi jection is the isomor-
phism G → H. If the parameter flag is present and equals the string “snf”, the series must have
abelian factors. The pcp of the group returned corresponds to a decomposition of each abelian factor
into a direct product of cyclic groups.

Polycyclic 29

Example
gap> G := DihedralPcpGroup(0);

Pcp-group with orders [2, 0]

gap> U := Subgroup(G, [Pcp(G)[2]^1440]);

Pcp-group with orders [0]

gap> F := G/U;

Pcp-group with orders [2, 1440]

gap> RefinedPcpGroup(F);

Pcp-group with orders [2, 2, 2, 2, 2, 2, 3, 3, 5]

gap> ser := [G, U, TrivialSubgroup(G)];

[Pcp-group with orders [2, 0],

Pcp-group with orders [0],

Pcp-group with orders []]

gap> PcpGroupBySeries(ser);

Pcp-group with orders [2, 1440, 0]

5.8 Printing a pc-presentation

By default, a pcp-group is printed using its relative orders only. The following methods can be used
to view the pcp presentation of the group.

5.8.1 PrintPcpPresentation

▷ PrintPcpPresentation(G[, flag]) (function)

▷ PrintPcpPresentation(pcp[, flag]) (function)

prints the pcp presentation defined by the igs of G or the pcp pcp . By default, the trivial conjugator
relations are omitted from this presentation to shorten notation. Also, the relations obtained from
conjugating with inverse generators are included only if the conjugating generator has infinite order.
If this generator has finite order, then the conjugation relation is a consequence of the remaining
relations. If the parameter flag is present and equals the string “all”, all conjugate relations are
printed, including the trivial conjugate relations as well as those involving conjugation with inverses.

5.9 Converting to and from a presentation

5.9.1 IsomorphismPcpGroup

▷ IsomorphismPcpGroup(G) (attribute)

returns an isomorphism from G onto a pcp-group H . There are various methods installed for this
operation and some of these methods are part of the Polycyclic package, while others may be part of
other packages.

For example, Polycyclic contains methods for this function in the case that G is a finite pc-group
or a finite solvable permutation group.

Other examples for methods for IsomorphismPcpGroup are the methods for the case that G is a
crystallographic group (see Cryst) or the case that G is an almost crystallographic group (see AClib).
A method for the case that G is a rational polycyclic matrix group is included in the Polenta package.

Polycyclic 30

5.9.2 IsomorphismPcpGroupFromFpGroupWithPcPres

▷ IsomorphismPcpGroupFromFpGroupWithPcPres(G) (function)

This function can convert a finitely presented group with a polycyclic presentation into a pcp
group.

5.9.3 IsomorphismPcGroup

▷ IsomorphismPcGroup(G) (method)

pc-groups are a representation for finite polycyclic groups. This function can convert finite pcp-
groups to pc-groups.

5.9.4 IsomorphismFpGroup

▷ IsomorphismFpGroup(G) (method)

This function can convert pcp-groups to a finitely presented group.

Chapter 6

Libraries and examples of pcp-groups

6.1 Libraries of various types of polycyclic groups

There are the following generic pcp-groups available.

6.1.1 AbelianPcpGroup

▷ AbelianPcpGroup(n, rels) (function)

constructs the abelian group on n generators such that generator i has order rels[i]. If this order is
infinite, then rels[i] should be either unbound or 0.

6.1.2 DihedralPcpGroup

▷ DihedralPcpGroup(n) (function)

constructs the dihedral group of order n . If n is an odd integer, then ’fail’ is returned. If n is zero
or not an integer, then the infinite dihedral group is returned.

6.1.3 UnitriangularPcpGroup

▷ UnitriangularPcpGroup(n, c) (function)

returns a pcp-group isomorphic to the group of upper triangular in GL(n,R) where R = Z if c = 0
and R = Fp if c = p. The natural unitriangular matrix representation of the returned pcp-group G can
be obtained as G!.isomorphism.

6.1.4 SubgroupUnitriangularPcpGroup

▷ SubgroupUnitriangularPcpGroup(mats) (function)

mats should be a list of upper unitriangular n×n matrices over Z or over Fp. This function returns
the subgroup of the corresponding ’UnitriangularPcpGroup’ generated by the matrices in mats .

31

Polycyclic 32

6.1.5 InfiniteMetacyclicPcpGroup

▷ InfiniteMetacyclicPcpGroup(n, m, r) (function)

Infinite metacyclic groups are classified in [BK00]. Every infinite metacyclic group G is iso-
morphic to a finitely presented group G(m,n,r) with two generators a and b and relations of the
form am = bn = 1 and [a,b] = a1−r, where (differing from the conventions used by GAP) we have
[a,b] = aba−1b−1, and m,n,r are three non-negative integers with mn = 0 and r relatively prime to m.
If r ≡−1 mod m then n is even, and if r ≡ 1 mod m then m = 0. Also m and n must not be 1.

Moreover, G(m,n,r) ∼= G(m′,n′,s) if and only if m = m′, n = n′, and either r ≡ s or r ≡ s−1 mod
m.

This function returns the metacyclic group with parameters n , m and r as a pcp-group with the
pc-presentation ⟨x,y|xn,ym,yx = yr⟩. This presentation is easily transformed into the one above via the
mapping x 7→ b−1,y 7→ a.

6.1.6 HeisenbergPcpGroup

▷ HeisenbergPcpGroup(n) (function)

returns the Heisenberg group on 2n + 1 generators as pcp-group. This gives a group of Hirsch
length 2n +1.

6.1.7 MaximalOrderByUnitsPcpGroup

▷ MaximalOrderByUnitsPcpGroup(f) (function)

takes as input a normed, irreducible polynomial over the integers. Thus f defines a field extension
F over the rationals. This function returns the split extension of the maximal order O of F by the unit
group U of O , where U acts by right multiplication on O .

6.1.8 BurdeGrunewaldPcpGroup

▷ BurdeGrunewaldPcpGroup(s, t) (function)

returns a nilpotent group of Hirsch length 11 which has been constructed by Burde und Grunewald.
If s is not 0, then this group has no faithful 12-dimensional linear representation.

6.2 Some assorted example groups

The functions in this section provide some more example groups to play with. They come with no
further description and their investigation is left to the interested user.

6.2.1 ExampleOfMetabelianPcpGroup

▷ ExampleOfMetabelianPcpGroup(a, k) (function)

returns an example of a metabelian group. The input parameters must be two positive integers
greater than 1.

Polycyclic 33

6.2.2 ExamplesOfSomePcpGroups

▷ ExamplesOfSomePcpGroups(n) (function)

this function takes values n in 1 up to 16 and returns for each input an example of a pcp-group.
The groups in this example list have been used as test groups for the functions in this package.

Chapter 7

Higher level methods for pcp-groups

This is a description of some higher level functions of the Polycyclic package of GAP 4. Throughout
this chapter we let G be a pc-presented group and we consider algorithms for subgroups U and V of G .
For background and a description of the underlying algorithms we refer to [Eic01a].

7.1 Subgroup series in pcp-groups

Many algorithm for pcp-groups work by induction using some series through the group. In this section
we provide a number of useful series for pcp-groups. An efa series is a normal series with elementary
or free abelian factors. See [Eic00] for outlines on the algorithms of a number of the available series.

7.1.1 PcpSeries

▷ PcpSeries(U) (function)

returns the polycyclic series of U defined by an igs of U .

7.1.2 EfaSeries

▷ EfaSeries(U) (attribute)

returns a normal series of U with elementary or free abelian factors.

7.1.3 SemiSimpleEfaSeries

▷ SemiSimpleEfaSeries(U) (attribute)

returns an efa series of U such that every factor in the series is semisimple as a module for U over
a finite field or over the rationals.

7.1.4 DerivedSeriesOfGroup

▷ DerivedSeriesOfGroup(U) (method)

the derived series of U .

34

Polycyclic 35

7.1.5 RefinedDerivedSeries

▷ RefinedDerivedSeries(U) (function)

the derived series of U refined to an efa series such that in each abelian factor of the derived series
the free abelian factor is at the top.

7.1.6 RefinedDerivedSeriesDown

▷ RefinedDerivedSeriesDown(U) (function)

the derived series of U refined to an efa series such that in each abelian factor of the derived series
the free abelian factor is at the bottom.

7.1.7 LowerCentralSeriesOfGroup

▷ LowerCentralSeriesOfGroup(U) (method)

the lower central series of U . If U does not have a largest nilpotent quotient group, then this
function may not terminate.

7.1.8 UpperCentralSeriesOfGroup

▷ UpperCentralSeriesOfGroup(U) (method)

the upper central series of U . This function always terminates, but it may terminate at a proper
subgroup of U .

7.1.9 TorsionByPolyEFSeries

▷ TorsionByPolyEFSeries(U) (function)

returns an efa series of U such that all torsion-free factors are at the top and all finite factors are at
the bottom. Such a series might not exist for U and in this case the function returns fail.

Example
gap> G := ExamplesOfSomePcpGroups(5);

Pcp-group with orders [2, 0, 0, 0]

gap> Igs(G);

[g1, g2, g3, g4]

gap> PcpSeries(G);

[Pcp-group with orders [2, 0, 0, 0],

Pcp-group with orders [0, 0, 0],

Pcp-group with orders [0, 0],

Pcp-group with orders [0],

Pcp-group with orders []]

gap> List(PcpSeries(G), Igs);

[[g1, g2, g3, g4], [g2, g3, g4], [g3, g4], [g4], []]

Polycyclic 36

Algorithms for pcp-groups often use an efa series of G and work down over the factors of this
series. Usually, pcp’s of the factors are more useful than the actual factors. Hence we provide the
following.

7.1.10 PcpsBySeries

▷ PcpsBySeries(ser[, flag]) (function)

returns a list of pcp’s corresponding to the factors of the series. If the parameter flag is present
and equals the string “snf”, then each pcp corresponds to a decomposition of the abelian groups into
direct factors.

7.1.11 PcpsOfEfaSeries

▷ PcpsOfEfaSeries(U) (attribute)

returns a list of pcps corresponding to an efa series of U .
Example

gap> G := ExamplesOfSomePcpGroups(5);

Pcp-group with orders [2, 0, 0, 0]

gap> PcpsBySeries(DerivedSeriesOfGroup(G));

[Pcp [g1, g2, g3, g4] with orders [2, 2, 2, 2],

Pcp [g2^-2, g3^-2, g4^2] with orders [0, 0, 4],

Pcp [g4^8] with orders [0]]

gap> PcpsBySeries(RefinedDerivedSeries(G));

[Pcp [g1, g2, g3] with orders [2, 2, 2],

Pcp [g4] with orders [2],

Pcp [g2^2, g3^2] with orders [0, 0],

Pcp [g4^2] with orders [2],

Pcp [g4^4] with orders [2],

Pcp [g4^8] with orders [0]]

gap> PcpsBySeries(DerivedSeriesOfGroup(G), "snf");

[Pcp [g2, g3, g1] with orders [2, 2, 4],

Pcp [g4^2, g3^-2, g2^2*g4^2] with orders [4, 0, 0],

Pcp [g4^8] with orders [0]]

gap> G.1^4 in DerivedSubgroup(G);

true

gap> G.1^2 = G.4;

true

gap> PcpsOfEfaSeries(G);

[Pcp [g1] with orders [2],

Pcp [g2] with orders [0],

Pcp [g3] with orders [0],

Pcp [g4] with orders [0]]

Polycyclic 37

7.2 Orbit stabilizer methods for pcp-groups

Let U be a pcp-group which acts on a set Ω. One of the fundamental problems in algorithmic group
theory is the determination of orbits and stabilizers of points in Ω under the action of U . We distinguish
two cases: the case that all considered orbits are finite and the case that there are infinite orbits. In the
latter case, an orbit cannot be listed and a description of the orbit and its corresponding stabilizer is
much harder to obtain.

If the considered orbits are finite, then the following two functions can be applied to compute the
considered orbits and their corresponding stabilizers.

7.2.1 PcpOrbitStabilizer

▷ PcpOrbitStabilizer(point, gens, acts, oper) (function)

▷ PcpOrbitsStabilizers(points, gens, acts, oper) (function)

The input gens can be an igs or a pcp of a pcp-group U . The elements in the list gens act as the el-
ements in the list acts via the function oper on the given points; that is, oper(point, acts[i])

applies the ith generator to a given point. Thus the group defined by acts must be a homomorphic
image of the group defined by gens . The first function returns a record containing the orbit as com-
ponent ’orbit’ and and igs for the stabilizer as component ’stab’. The second function returns a list of
records, each record contains ’repr’ and ’stab’. Both of these functions run forever on infinite orbits.

Example
gap> G := DihedralPcpGroup(0);

Pcp-group with orders [2, 0]

gap> mats := [[[-1,0],[0,1]], [[1,1],[0,1]]];;

gap> pcp := Pcp(G);

Pcp [g1, g2] with orders [2, 0]

gap> PcpOrbitStabilizer([0,1], pcp, mats, OnRight);

rec(orbit := [[0, 1]],

stab := [g1, g2],

word := [[[1, 1]], [[2, 1]]])

If the considered orbits are infinite, then it may not always be possible to determine a description of
the orbits and their stabilizers. However, as shown in [EO02] and [Eic02], it is possible to determine
stabilizers and check if two elements are contained in the same orbit if the given action of the poly-
cyclic group is a unimodular linear action on a vector space. The following functions are available for
this case.

7.2.2 StabilizerIntegralAction

▷ StabilizerIntegralAction(U, mats, v) (function)

▷ OrbitIntegralAction(U, mats, v, w) (function)

The first function computes the stabilizer in U of the vector v where the pcp group U acts via mats
on an integral space and v and w are elements in this integral space. The second function checks
whether v and w are in the same orbit and the function returns either false or a record containing an
element in U mapping v to w and the stabilizer of v .

Polycyclic 38

7.2.3 NormalizerIntegralAction

▷ NormalizerIntegralAction(U, mats, B) (function)

▷ ConjugacyIntegralAction(U, mats, B, C) (function)

The first function computes the normalizer in U of the lattice with the basis B , where the pcp group
U acts via mats on an integral space and B is a subspace of this integral space. The second functions
checks whether the two lattices with the bases B and C are contained in the same orbit under U . The
function returns either false or a record with an element in U mapping B to C and the stabilizer of B .

Example
get a pcp group and a free abelian normal subgroup

gap> G := ExamplesOfSomePcpGroups(8);

Pcp-group with orders [0, 0, 0, 0, 0]

gap> efa := EfaSeries(G);

[Pcp-group with orders [0, 0, 0, 0, 0],

Pcp-group with orders [0, 0, 0, 0],

Pcp-group with orders [0, 0, 0],

Pcp-group with orders []]

gap> N := efa[3];

Pcp-group with orders [0, 0, 0]

gap> IsFreeAbelian(N);

true

create conjugation action on N

gap> mats := LinearActionOnPcp(Igs(G), Pcp(N));

[[[1, 0, 0], [0, 1, 0], [0, 0, 1]],

[[0, 0, 1], [1, -1, 1], [0, 1, 0]],

[[1, 0, 0], [0, 1, 0], [0, 0, 1]],

[[1, 0, 0], [0, 1, 0], [0, 0, 1]],

[[1, 0, 0], [0, 1, 0], [0, 0, 1]]]

take an arbitrary vector and compute its stabilizer

gap> StabilizerIntegralAction(G,mats, [2,3,4]);

Pcp-group with orders [0, 0, 0, 0]

gap> Igs(last);

[g1, g3, g4, g5]

check orbits with some other vectors

gap> OrbitIntegralAction(G,mats, [2,3,4],[3,1,5]);

rec(stab := Pcp-group with orders [0, 0, 0, 0], prei := g2)

gap> OrbitIntegralAction(G,mats, [2,3,4], [4,6,8]);

false

compute the orbit of a subgroup of Z^3 under the action of G

gap> NormalizerIntegralAction(G, mats, [[1,0,0],[0,1,0]]);

Pcp-group with orders [0, 0, 0, 0, 0]

gap> Igs(last);

[g1, g2^2, g3, g4, g5]

Polycyclic 39

7.3 Centralizers, Normalizers and Intersections

In this section we list a number of operations for which there are methods installed to compute the
corresponding features in polycyclic groups.

7.3.1 Centralizer

▷ Centralizer(U, g) (method)

▷ IsConjugate(U, g, h) (method)

These functions solve the conjugacy problem for elements in pcp-groups and they can be used to
compute centralizers. The first method returns a subgroup of the given group U , the second method
either returns a conjugating element or false if no such element exists.

The methods are based on the orbit stabilizer algorithms described in [EO02]. For nilpotent
groups, an algorithm to solve the conjugacy problem for elements is described in [Sim94].

7.3.2 Centralizer

▷ Centralizer(U, V) (method)

▷ Normalizer(U, V) (method)

▷ IsConjugate(U, V, W) (method)

These three functions solve the conjugacy problem for subgroups and compute centralizers and
normalizers of subgroups. The first two functions return subgroups of the input group U , the third
function returns a conjugating element or false if no such element exists.

The methods are based on the orbit stabilizer algorithms described in [Eic02]. For nilpotent
groups, an algorithm to solve the conjugacy problems for subgroups is described in [Lo98b].

7.3.3 Intersection

▷ Intersection(U, N) (function)

A general method to compute intersections of subgroups of a pcp-group is described in [Eic01a],
but it is not yet implemented here. However, intersections of subgroups U,N ≤ G can be computed if
N is normalising U . See [Sim94] for an outline of the algorithm.

7.4 Finite subgroups

There are various finite subgroups of interest in polycyclic groups. See [Eic00] for a description of
the algorithms underlying the functions in this section.

7.4.1 TorsionSubgroup

▷ TorsionSubgroup(U) (attribute)

Polycyclic 40

If the set of elements of finite order forms a subgroup, then we call it the torsion subgroup. This
function determines the torsion subgroup of U , if it exists, and returns fail otherwise. Note that a
torsion subgroup does always exist if U is nilpotent.

7.4.2 NormalTorsionSubgroup

▷ NormalTorsionSubgroup(U) (attribute)

Each polycyclic groups has a unique largest finite normal subgroup. This function computes it for
U .

7.4.3 IsTorsionFree

▷ IsTorsionFree(U) (property)

This function checks if U is torsion free. It returns true or false.

7.4.4 FiniteSubgroupClasses

▷ FiniteSubgroupClasses(U) (attribute)

There exist only finitely many conjugacy classes of finite subgroups in a polycyclic group U and
this function can be used to compute them. The algorithm underlying this function proceeds by work-
ing down a normal series of U with elementary or free abelian factors. The following function can be
used to give the algorithm a specific series.

7.4.5 FiniteSubgroupClassesBySeries

▷ FiniteSubgroupClassesBySeries(U, pcps) (function)

Example
gap> G := ExamplesOfSomePcpGroups(15);

Pcp-group with orders [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 4, 0]

gap> TorsionSubgroup(G);

Pcp-group with orders [5, 2]

gap> NormalTorsionSubgroup(G);

Pcp-group with orders [5, 2]

gap> IsTorsionFree(G);

false

gap> FiniteSubgroupClasses(G);

[Pcp-group with orders [5, 2]^G,

Pcp-group with orders [2]^G,

Pcp-group with orders [5]^G,

Pcp-group with orders []^G]

gap> G := DihedralPcpGroup(0);

Pcp-group with orders [2, 0]

gap> TorsionSubgroup(G);

fail

gap> NormalTorsionSubgroup(G);

Polycyclic 41

Pcp-group with orders []

gap> IsTorsionFree(G);

false

gap> FiniteSubgroupClasses(G);

[Pcp-group with orders [2]^G,

Pcp-group with orders [2]^G,

Pcp-group with orders []^G]

7.5 Subgroups of finite index and maximal subgroups

Here we outline functions to determine various types of subgroups of finite index in polycyclic groups.
Again, see [Eic00] for a description of the algorithms underlying the functions in this section. Also,
we refer to [Lo98a] for an alternative approach.

7.5.1 MaximalSubgroupClassesByIndex

▷ MaximalSubgroupClassesByIndex(U, p) (operation)

Each maximal subgroup of a polycyclic group U has p -power index for some prime p . This
function can be used to determine the conjugacy classes of all maximal subgroups of p -power index
for a given prime p .

7.5.2 LowIndexSubgroupClasses

▷ LowIndexSubgroupClasses(U, n) (operation)

There are only finitely many subgroups of a given index in a polycyclic group U . This function
computes conjugacy classes of all subgroups of index n in U .

7.5.3 LowIndexNormalSubgroups

▷ LowIndexNormalSubgroups(U, n) (operation)

This function computes the normal subgroups of index n in U .

7.5.4 NilpotentByAbelianNormalSubgroup

▷ NilpotentByAbelianNormalSubgroup(U) (function)

This function returns a normal subgroup N of finite index in U such that N is nilpotent-by-abelian.
Such a subgroup exists in every polycyclic group and this function computes such a subgroup using
LowIndexNormal. However, we note that this function is not very efficient and the function Nilpo-
tentByAbelianByFiniteSeries may well be more efficient on this task.

Example
gap> G := ExamplesOfSomePcpGroups(2);

Pcp-group with orders [0, 0, 0, 0, 0, 0]

gap> MaximalSubgroupClassesByIndex(G, 61);;

Polycyclic 42

gap> max := List(last, Representative);;

gap> List(max, x -> Index(G, x));

[61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61,

61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61,

61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61,

61, 61, 61, 61, 61, 61, 226981]

gap> LowIndexSubgroupClasses(G, 61);;

gap> low := List(last, Representative);;

gap> List(low, x -> Index(G, x));

[61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61,

61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61,

61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61,

61, 61, 61, 61, 61, 61]

7.6 Further attributes for pcp-groups based on the Fitting subgroup

In this section we provide a variety of other attributes for pcp-groups. Most of the methods below are
based or related to the Fitting subgroup of the given group. We refer to [Eic01b] for a description of
the underlying methods.

7.6.1 FittingSubgroup

▷ FittingSubgroup(U) (attribute)

returns the Fitting subgroup of U ; that is, the largest nilpotent normal subgroup of U .

7.6.2 IsNilpotentByFinite

▷ IsNilpotentByFinite(U) (property)

checks whether the Fitting subgroup of U has finite index.

7.6.3 Centre

▷ Centre(U) (method)

returns the centre of U .

7.6.4 FCCentre

▷ FCCentre(U) (method)

returns the FC-centre of U ; that is, the subgroup containing all elements having a finite conjugacy
class in U .

Polycyclic 43

7.6.5 PolyZNormalSubgroup

▷ PolyZNormalSubgroup(U) (function)

returns a normal subgroup N of finite index in U , such that N has a polycyclic series with infinite
factors only.

7.6.6 NilpotentByAbelianByFiniteSeries

▷ NilpotentByAbelianByFiniteSeries(U) (function)

returns a normal series 1 ≤ F ≤ A ≤U such that F is nilpotent, A/F is abelian and U/A is finite.
This series is computed using the Fitting subgroup and the centre of the Fitting factor.

7.7 Functions for nilpotent groups

There are (very few) functions which are available for nilpotent groups only. First, there are the
different central series. These are available for all groups, but for nilpotent groups they terminate
and provide series through the full group. Secondly, the determination of a minimal generating set is
available for nilpotent groups only.

7.7.1 MinimalGeneratingSet

▷ MinimalGeneratingSet(U) (method)

Example
gap> G := ExamplesOfSomePcpGroups(14);

Pcp-group with orders [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 4, 0, 5, 5, 4, 0, 6,

5, 5, 4, 0, 10, 6]

gap> IsNilpotent(G);

true

gap> PcpsBySeries(LowerCentralSeriesOfGroup(G));

[Pcp [g1, g2] with orders [0, 0],

Pcp [g3] with orders [0],

Pcp [g4] with orders [0],

Pcp [g5] with orders [0],

Pcp [g6, g7] with orders [0, 0],

Pcp [g8] with orders [0],

Pcp [g9, g10] with orders [0, 0],

Pcp [g11, g12, g13] with orders [5, 4, 0],

Pcp [g14, g15, g16, g17, g18] with orders [5, 5, 4, 0, 6],

Pcp [g19, g20, g21, g22, g23, g24] with orders [5, 5, 4, 0, 10, 6]]

gap> PcpsBySeries(UpperCentralSeriesOfGroup(G));

[Pcp [g1, g2] with orders [0, 0],

Pcp [g3] with orders [0],

Pcp [g4] with orders [0],

Pcp [g5] with orders [0],

Pcp [g6, g7] with orders [0, 0],

Polycyclic 44

Pcp [g8] with orders [0],

Pcp [g9, g10] with orders [0, 0],

Pcp [g11, g12, g13] with orders [5, 4, 0],

Pcp [g14, g15, g16, g17, g18] with orders [5, 5, 4, 0, 6],

Pcp [g19, g20, g21, g22, g23, g24] with orders [5, 5, 4, 0, 10, 6]]

gap> MinimalGeneratingSet(G);

[g1, g2]

7.8 Random methods for pcp-groups

Below we introduce a function which computes orbit and stabilizer using a random method. This
function tries to approximate the orbit and the stabilizer, but the returned orbit or stabilizer may be
incomplete. This function is used in the random methods to compute normalizers and centralizers.
Note that deterministic methods for these purposes are also available.

7.8.1 RandomCentralizerPcpGroup

▷ RandomCentralizerPcpGroup(U, g) (function)

▷ RandomCentralizerPcpGroup(U, V) (function)

▷ RandomNormalizerPcpGroup(U, V) (function)

Example
gap> G := DihedralPcpGroup(0);

Pcp-group with orders [2, 0]

gap> mats := [[[-1, 0],[0,1]], [[1,1],[0,1]]];

[[[-1, 0], [0, 1]], [[1, 1], [0, 1]]]

gap> pcp := Pcp(G);

Pcp [g1, g2] with orders [2, 0]

gap> RandomPcpOrbitStabilizer([1,0], pcp, mats, OnRight).stab;

#I Orbit longer than limit: exiting.

[]

gap> g := Igs(G)[1];

g1

gap> RandomCentralizerPcpGroup(G, g);

#I Stabilizer not increasing: exiting.

Pcp-group with orders [2]

gap> Igs(last);

[g1]

7.9 Non-abelian tensor product and Schur extensions

7.9.1 SchurExtension

▷ SchurExtension(G) (attribute)

Polycyclic 45

Let G be a polycyclic group with a polycyclic generating sequence consisting of n elements. This
function computes the largest central extension H of G such that H is generated by n elements. If F/R
is the underlying polycyclic presentation for G , then H is isomorphic to F/[R,F].

Example
gap> G := DihedralPcpGroup(0);

Pcp-group with orders [2, 0]

gap> Centre(G);

Pcp-group with orders []

gap> H := SchurExtension(G);

Pcp-group with orders [2, 0, 0, 0]

gap> Centre(H);

Pcp-group with orders [0, 0]

gap> H/Centre(H);

Pcp-group with orders [2, 0]

gap> Subgroup(H, [H.1,H.2]) = H;

true

7.9.2 SchurExtensionEpimorphism

▷ SchurExtensionEpimorphism(G) (attribute)

returns the projection from the Schur extension G∗ of G onto G . See the function
SchurExtension. The kernel of this epimorphism is the direct product of the Schur multiplicator
of G and a direct product of n copies of Z where n is the number of generators in the polycyclic pre-
sentation for G . The Schur multiplicator is the intersection of the kernel and the derived group of the
source. See also the function SchurCover.

Example
gap> gl23 := Range(IsomorphismPcpGroup(GL(2,3)));

Pcp-group with orders [2, 3, 2, 2, 2]

gap> SchurExtensionEpimorphism(gl23);

[g1, g2, g3, g4, g5, g6, g7, g8, g9, g10] -> [g1, g2, g3, g4, g5,

id, id, id, id, id]

gap> Kernel(last);

Pcp-group with orders [0, 0, 0, 0, 0]

gap> AbelianInvariantsMultiplier(gl23);

[]

gap> Intersection(Kernel(epi), DerivedSubgroup(Source(epi)));

[]

There is a crossed pairing from G into (G∗)′ which can be defined via this epimorphism:
Example

gap> G := DihedralPcpGroup(0);

Pcp-group with orders [2, 0]

gap> epi := SchurExtensionEpimorphism(G);

[g1, g2, g3, g4] -> [g1, g2, id, id]

gap> PreImagesRepresentative(epi, G.1);

g1

gap> PreImagesRepresentative(epi, G.2);

g2

gap> Comm(last, last2);

g2^-2*g4

Polycyclic 46

7.9.3 SchurCover

▷ SchurCover(G) (function)

computes a Schur covering group of the polycyclic group G . A Schur covering is a largest central
extension H of G such that the kernel M of the projection of H onto G is contained in the commutator
subgroup of H .

If G is given by a presentation F/R, then M is isomorphic to the subgroup R∩ [F,F]/[R,F]. Let C
be a complement to R∩ [F,F]/[R,F] in R/[R,F]. Then F/C is isomorphic to H and R/C is isomorphic
to M .

Example
gap> G := AbelianPcpGroup(3,[]);

Pcp-group with orders [0, 0, 0]

gap> ext := SchurCover(G);

Pcp-group with orders [0, 0, 0, 0, 0, 0]

gap> Centre(ext);

Pcp-group with orders [0, 0, 0]

gap> IsSubgroup(DerivedSubgroup(ext), last);

true

7.9.4 AbelianInvariantsMultiplier

▷ AbelianInvariantsMultiplier(G) (attribute)

returns a list of the abelian invariants of the Schur multiplier of G.
Note that the Schur multiplicator of a polycyclic group is a finitely generated abelian group.

Example
gap> G := DihedralPcpGroup(0);

Pcp-group with orders [2, 0]

gap> DirectProduct(G, AbelianPcpGroup(2, []));

Pcp-group with orders [0, 0, 2, 0]

gap> AbelianInvariantsMultiplier(last);

[0, 2, 2, 2, 2]

7.9.5 NonAbelianExteriorSquareEpimorphism

▷ NonAbelianExteriorSquareEpimorphism(G) (function)

returns the epimorphism of the non-abelian exterior square of a polycyclic group G onto the derived
group of G . The non-abelian exterior square can be defined as the derived subgroup of a Schur cover
of G . The isomorphism type of the non-abelian exterior square is unique despite the fact that the
isomorphism type of a Schur cover of a polycyclic groups need not be unique. The derived group of a
Schur cover has a natural projection onto the derived group of G which is what the function returns.

The kernel of the epimorphism is isomorphic to the Schur multiplicator of G .
Example

gap> G := ExamplesOfSomePcpGroups(3);

Pcp-group with orders [0, 0]

gap> G := DirectProduct(G,G);

Pcp-group with orders [0, 0, 0, 0]

gap> AbelianInvariantsMultiplier(G);

Polycyclic 47

[[0, 1], [2, 3]]

gap> epi := NonAbelianExteriorSquareEpimorphism(G);

[g2^-2*g5, g4^-2*g10, g6, g7, g8, g9] -> [g2^-2, g4^-2, id, id, id, id]

gap> Kernel(epi);

Pcp-group with orders [0, 2, 2, 2]

gap> Collected(AbelianInvariants(last));

[[0, 1], [2, 3]]

7.9.6 NonAbelianExteriorSquare

▷ NonAbelianExteriorSquare(G) (attribute)

computes the non-abelian exterior square of a polycylic group G . See the explanation for
NonAbelianExteriorSquareEpimorphism. The natural projection of the non-abelian exterior
square onto the derived group of G is stored in the component !.epimorphism.

There is a crossed pairing from G into G∧G. See the function SchurExtensionEpimorphism

for details. The crossed pairing is stored in the component !.crossedPairing. This is the crossed
pairing λ in [EN08].

Example
gap> G := DihedralPcpGroup(0);

Pcp-group with orders [2, 0]

gap> GwG := NonAbelianExteriorSquare(G);

Pcp-group with orders [0]

gap> lambda := GwG!.crossedPairing;

function(g, h) ... end

gap> lambda(G.1, G.2);

g2^2*g4^-1

7.9.7 NonAbelianTensorSquareEpimorphism

▷ NonAbelianTensorSquareEpimorphism(G) (function)

returns for a polycyclic group G the projection of the non-abelian tensor square G⊗G onto the non-
abelian exterior square G∧G. The range of that epimorphism has the component !.epimorphism set
to the projection of the non-abelian exterior square onto the derived group of G . See also the function
NonAbelianExteriorSquare.

With the result of this function one can compute the groups in the commutative diagram at the
beginning of the paper [EN08]. The kernel of the returned epimorphism is the group ∇(G). The
kernel of the composition of this epimorphism and the above mention projection onto G′ is the group
J(G).

Example
gap> G := DihedralPcpGroup(0);

Pcp-group with orders [2, 0]

gap> G := DirectProduct(G,G);

Pcp-group with orders [2, 0, 2, 0]

gap> alpha := NonAbelianTensorSquareEpimorphism(G);

[g9*g25^-1, g10*g26^-1, g11*g27, g12*g28, g13*g29, g14*g30, g15, g16,

g17,

g18, g19, g20, g21, g22, g23, g24] -> [g2^-2*g6, g4^-2*g12, g8,

Polycyclic 48

g9, g10,

g11, id, id, id, id, id, id, id, id, id, id]

gap> gamma := Range(alpha)!.epimorphism;

[g2^-2*g6, g4^-2*g12, g8, g9, g10, g11] -> [g2^-2, g4^-2, id, id,

id, id]

gap> JG := Kernel(alpha * gamma);

Pcp-group with orders [2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]

gap> Image(alpha, JG);

Pcp-group with orders [2, 2, 2, 2]

gap> AbelianInvariantsMultiplier(G);

[[2, 4]]

7.9.8 NonAbelianTensorSquare

▷ NonAbelianTensorSquare(G) (attribute)

computes for a polycyclic group G the non-abelian tensor square G⊗G.
Example

gap> G := AlternatingGroup(IsPcGroup, 4);

<pc group of size 12 with 3 generators>

gap> PcGroupToPcpGroup(G);

Pcp-group with orders [3, 2, 2]

gap> NonAbelianTensorSquare(last);

Pcp-group with orders [2, 2, 2, 3]

gap> PcpGroupToPcGroup(last);

<pc group of size 24 with 4 generators>

gap> DirectFactorsOfGroup(last);

[Group([f1, f2, f3]), Group([f4])]

gap> List(last, Size);

[8, 3]

gap> IdGroup(last2[1]);

[8, 4] # the quaternion group of Order 8

gap> G := DihedralPcpGroup(0);

Pcp-group with orders [2, 0]

gap> ten := NonAbelianTensorSquare(G);

Pcp-group with orders [0, 2, 2, 2]

gap> IsAbelian(ten);

true

7.9.9 NonAbelianExteriorSquarePlusEmbedding

▷ NonAbelianExteriorSquarePlusEmbedding(G) (function)

returns an embedding from the non-abelian exterior square G∧G into an extensions of G∧G by
G×G. For the significance of the group see the paper [EN08]. The range of the epimorphism is the
group τ(G) in that paper.

Polycyclic 49

7.9.10 NonAbelianTensorSquarePlusEpimorphism

▷ NonAbelianTensorSquarePlusEpimorphism(G) (function)

returns an epimorphisms of ν(G) onto τ(G). The group ν(G) is an extension of the non-abelian
tensor square G⊗G of G by G×G. The group τ(G) is an extension of the non-abelian exterior square
G∧G by G×G. For details see [EN08].

7.9.11 NonAbelianTensorSquarePlus

▷ NonAbelianTensorSquarePlus(G) (function)

returns the group ν(G) in [EN08].

7.9.12 WhiteheadQuadraticFunctor

▷ WhiteheadQuadraticFunctor(G) (function)

returns Whitehead’s universal quadratic functor of G, see [EN08] for a description.

7.10 Schur covers

This section contains a function to determine the Schur covers of a finite p-group up to isomorphism.

7.10.1 SchurCovers

▷ SchurCovers(G) (function)

Let G be a finite p-group defined as a pcp group. This function returns a complete and irredundant
set of isomorphism types of Schur covers of G . The algorithm implements a method of Nickel’s Phd
Thesis.

Chapter 8

Cohomology for pcp-groups

The GAP 4 package Polycyclic provides methods to compute the first and second cohomology group
for a pcp-group U and a finite dimensional ZU or FU module A where F is a finite field. The algorithm
for determining the first cohomology group is outlined in [Eic00].

As a preparation for the cohomology computation, we introduce the cohomology records. These
records provide the technical setup for our cohomology computations.

8.1 Cohomology records

Cohomology records provide the necessary technical setup for the cohomology computations for poly-
cyclic groups.

8.1.1 CRRecordByMats

▷ CRRecordByMats(U, mats) (function)

creates an external module. Let U be a pcp group which acts via the list of matrices mats on a
vector space of the form Zn or Fn

p. Then this function creates a record which can be used as input for
the cohomology computations.

8.1.2 CRRecordBySubgroup

▷ CRRecordBySubgroup(U, A) (function)

▷ CRRecordByPcp(U, pcp) (function)

creates an internal module. Let U be a pcp group and let A be a normal elementary or free abelian
normal subgroup of U or let pcp be a pcp of a normal elementary of free abelian subfactor of U . Then
this function creates a record which can be used as input for the cohomology computations.

The returned cohomology record C contains the following entries:

factor

a pcp of the acting group. If the module is external, then this is Pcp(U) . If the module is
internal, then this is Pcp(U, A) or Pcp(U, GroupOfPcp(pcp)) .

mats , invs and one

the matrix action of factor with acting matrices, their inverses and the identity matrix.

50

Polycyclic 51

dim and char

the dimension and characteristic of the matrices.

relators and enumrels

the right hand sides of the polycyclic relators of factor as generator exponents lists and a
description for the corresponding left hand sides.

central

is true, if the matrices mats are all trivial. This is used locally for efficiency reasons.

And additionally, if C defines an internal module, then it contains:

group

the original group U .

normal

this is either Pcp(A) or the input pcp .

extension

information on the extension of A by U/A .

8.2 Cohomology groups

Let U be a pcp-group and A a free or elementary abelian pcp-group and a U-module. By Zi(U,A) be
denote the group of i-th cocycles and by Bi(U,A) the i-th coboundaries. The factor Zi(U,A)/Bi(U,A)
is the i-th cohomology group. Since A is elementary or free abelian, the groups Zi(U,A) and Bi(U,A)
are elementary or free abelian groups as well.

The Polycyclic package provides methods to compute first and second cohomology group for a
polycyclic group U . We write all involved groups additively and we use an explicit description by
bases for them. Let C be the cohomology record corresponding to U and A.

Let f1, . . . , fn be the elements in the entry f actor of the cohomology record C. Then we
use the following embedding of the first cocycle group to describe 1-cocycles and 1-coboundaries:
Z1(U,A)→ An : δ 7→ (δ (f1), . . . ,δ (fn))

For the second cohomology group we recall that each element of Z2(U,A) defines an extension
H of A by U . Thus there is a pc-presentation of H extending the pc-presentation of U given by the
record C. The extended presentation is defined by tails in A; that is, each relator in the record entry
relators is extended by an element of A. The concatenation of these tails yields a vector in Al where
l is the length of the record entry relators of C. We use these tail vectors to describe Z2(U,A) and
B2(U,A). Note that this description is dependent on the chosen presentation in C. However, the factor
Z2(U,A)/B2(U,A) is independent of the chosen presentation.

The following functions are available to compute explicitly the first and second cohomology group
as described above.

8.2.1 OneCoboundariesCR

▷ OneCoboundariesCR(C) (function)

▷ OneCocyclesCR(C) (function)

▷ TwoCoboundariesCR(C) (function)

▷ TwoCocyclesCR(C) (function)

Polycyclic 52

▷ OneCohomologyCR(C) (function)

▷ TwoCohomologyCR(C) (function)

The first four functions return bases of the corresponding group. The last two functions need to
describe a factor of additive abelian groups. They return the following descriptions for these factors.

gcc the basis of the cocycles of C .

gcb the basis of the coboundaries of C .

factor

a description of the factor of cocycles by coboundaries. Usually, it would be most convenient to
use additive mappings here. However, these are not available in case that A is free abelian and
thus we use a description of this additive map as record. This record contains

gens

a base for the image.

rels

relative orders for the image.

imgs

the images for the elements in gcc .

prei

preimages for the elements in gens .

denom

the kernel of the map; that is, another basis for gcb .

There is an additional function which can be used to compute the second cohomology group over an
arbitrary finitely generated abelian group. The finitely generated abelian group should be realized as
a factor of a free abelian group modulo a lattice. The function is called as

8.2.2 TwoCohomologyModCR

▷ TwoCohomologyModCR(C, lat) (function)

where C is a cohomology record and lat is a basis for a sublattice of a free abelian module. The
output format is the same as for TwoCohomologyCR.

8.3 Extended 1-cohomology

In some cases more information on the first cohomology group is of interest. In particular, if we have
an internal module given and we want to compute the complements using the first cohomology group,
then we need additional information. This extended version of first cohomology is obtained by the
following functions.

Polycyclic 53

8.3.1 OneCoboundariesEX

▷ OneCoboundariesEX(C) (function)

returns a record consisting of the entries

basis

a basis for B1(U,A)≤ An.

transf

There is a derivation mapping from A to B1(U,A). This mapping is described here as transfor-
mation from A to basis .

fixpts

the fixpoints of A. This is also the kernel of the derivation mapping.

8.3.2 OneCocyclesEX

▷ OneCocyclesEX(C) (function)

returns a record consisting of the entries

basis

a basis for Z1(U,A)≤ An.

transl

a special solution. This is only of interest in case that C is an internal module and in this case it
gives the translation vector in An used to obtain complements corresponding to the elements in
basis. If C is not an internal module, then this vector is always the zero vector.

8.3.3 OneCohomologyEX

▷ OneCohomologyEX(C) (function)

returns the combined information on the first cohomology group.

8.4 Extensions and Complements

The natural applications of first and second cohomology group is the determination of extensions and
complements. Let C be a cohomology record.

8.4.1 ComplementCR

▷ ComplementCR(C, c) (function)

returns the complement corresponding to the 1-cocycle c . In the case that C is an external module,
we construct the split extension of U with A first and then determine the complement. In the case that
C is an internal module, the vector c must be an element of the affine space corresponding to the
complements as described by OneCocyclesEX.

Polycyclic 54

8.4.2 ComplementsCR

▷ ComplementsCR(C) (function)

returns all complements using the correspondence to Z1(U,A). Further, this function returns fail,
if Z1(U,A) is infinite.

8.4.3 ComplementClassesCR

▷ ComplementClassesCR(C) (function)

returns complement classes using the correspondence to H1(U,A). Further, this function returns
fail, if H1(U,A) is infinite.

8.4.4 ComplementClassesEfaPcps

▷ ComplementClassesEfaPcps(U, N, pcps) (function)

Let N be a normal subgroup of U . This function returns the complement classes to N in U . The
classes are computed by iteration over the U-invariant efa series of N described by pcps . If at some
stage in this iteration infinitely many complements are discovered, then the function returns fail. (Even
though there might be only finitely many conjugacy classes of complements to N in U .)

8.4.5 ComplementClasses

▷ ComplementClasses([V,]U, N) (function)

Let N and U be normal subgroups of V with N ≤ U ≤ V . This function attempts to compute the
V -conjugacy classes of complements to N in U . The algorithm proceeds by iteration over a V -invariant
efa series of N. If at some stage in this iteration infinitely many complements are discovered, then the
algorithm returns fail.

8.4.6 ExtensionCR

▷ ExtensionCR(C, c) (function)

returns the extension corresponding to the 2-cocycle c.

8.4.7 ExtensionsCR

▷ ExtensionsCR(C) (function)

returns all extensions using the correspondence to Z2(U,A). Further, this function returns fail, if
Z2(U,A) is infinite.

Polycyclic 55

8.4.8 ExtensionClassesCR

▷ ExtensionClassesCR(C) (function)

returns extension classes using the correspondence to H2(U,A). Further, this function returns fail,
if H2(U,A) is infinite.

8.4.9 SplitExtensionPcpGroup

▷ SplitExtensionPcpGroup(U, mats) (function)

returns the split extension of U by the U-module described by mats .

8.5 Constructing pcp groups as extensions

This section contains an example application of the second cohomology group to the construction of
pcp groups as extensions. The following constructs extensions of the group of upper unitriangular
matrices with its natural lattice.

Example
get the group and its matrix action

gap> G := UnitriangularPcpGroup(3,0);

Pcp-group with orders [0, 0, 0]

gap> mats := G!.mats;

[[[1, 1, 0], [0, 1, 0], [0, 0, 1]],

[[1, 0, 0], [0, 1, 1], [0, 0, 1]],

[[1, 0, 1], [0, 1, 0], [0, 0, 1]]]

set up the cohomology record

gap> C := CRRecordByMats(G,mats);;

compute the second cohomology group

gap> cc := TwoCohomologyCR(C);;

the abelian invariants of H^2(G,M)

gap> cc.factor.rels;

[2, 0, 0]

construct an extension which corresponds to a cocycle that has

infinite image in H^2(G,M)

gap> c := cc.factor.prei[2];

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, -1, 1]

gap> H := ExtensionCR(CR, c);

Pcp-group with orders [0, 0, 0, 0, 0, 0]

check that the extension does not split - get the normal subgroup

gap> N := H!.module;

Pcp-group with orders [0, 0, 0]

create the interal module

gap> C := CRRecordBySubgroup(H,N);;

Polycyclic 56

use the complements routine

gap> ComplementClassesCR(C);

[]

Chapter 9

Matrix Representations

This chapter describes functions which compute with matrix representations for pcp-groups. So far
the routines in this package are only able to compute matrix representations for torsion-free nilpotent
groups.

9.1 Unitriangular matrix groups

9.1.1 UnitriangularMatrixRepresentation

▷ UnitriangularMatrixRepresentation(G) (operation)

computes a faithful representation of a torsion-free nilpotent group G as unipotent lower triangular
matrices over the integers. The pc-presentation for G must not contain any power relations. The
algorithm is described in [dGN02].

9.1.2 IsMatrixRepresentation

▷ IsMatrixRepresentation(G, matrices) (function)

checks if the map defined by mapping the i-th generator of the pcp-group G to the i-th matrix of
matrices defines a homomorphism.

9.2 Upper unitriangular matrix groups

We call a matrix upper unitriangular if it is an upper triangular matrix with ones on the main diagonal.
The weight of an upper unitriangular matrix is the number of diagonals above the main diagonal that
contain zeroes only.

The subgroup of all upper unitriangular matrices of GL(n,Z) is torsion-free nilpotent. The k-th
term of its lower central series is the set of all matrices of weight k−1. The Z-rank of the k-th term of
the lower central series modulo the (k+1)-th term is n− k.

9.2.1 IsomorphismUpperUnitriMatGroupPcpGroup

▷ IsomorphismUpperUnitriMatGroupPcpGroup(G) (function)

57

Polycyclic 58

takes a group G generated by upper unitriangular matrices over the integers and computes a poly-
cylic presentation for the group. The function returns an isomorphism from the matrix group to the
pcp group. Note that a group generated by upper unitriangular matrices is necessarily torsion-free
nilpotent.

9.2.2 SiftUpperUnitriMatGroup

▷ SiftUpperUnitriMatGroup(G) (function)

takes a group G generated by upper unitriangular matrices over the integers and returns a recursive
data structure L with the following properties: L contains a polycyclic generating sequence for G ,
using L one can decide if a given upper unitriangular matrix is contained in G , a given element of G
can be written as a word in the polycyclic generating sequence. L is a representation of a chain of
subgroups of G refining the lower centrals series of G .. It contains for each subgroup in the chain a
minimal generating set.

9.2.3 RanksLevels

▷ RanksLevels(L) (function)

takes the data structure returned by SiftUpperUnitriMat and prints the Z-rank of each the sub-
group in L .

9.2.4 MakeNewLevel

▷ MakeNewLevel(m) (function)

creates one level of the data structure returned by SiftUpperUnitriMat and initialises it with
weight m .

9.2.5 SiftUpperUnitriMat

▷ SiftUpperUnitriMat(gens, level, M) (function)

takes the generators gens of an upper unitriangular group, the data structure returned level by
SiftUpperUnitriMat and another upper unitriangular matrix M . It sift M through level and adds M
at the appropriate place if M is not contained in the subgroup represented by level .

The function SiftUpperUnitriMatGroup illustrates the use of SiftUpperUnitriMat.
Example

InstallGlobalFunction("SiftUpperUnitriMatGroup", function(G)

local firstlevel, g;

firstlevel := MakeNewLevel(0);

for g in GeneratorsOfGroup(G) do

SiftUpperUnitriMat(GeneratorsOfGroup(G), firstlevel, g);

od;

return firstlevel;

end);

Polycyclic 59

9.2.6 DecomposeUpperUnitriMat

▷ DecomposeUpperUnitriMat(level, M) (function)

takes the data structure level returned by SiftUpperUnitriMatGroup and a upper unitriangular
matrix M and decomposes M into a word in the polycyclic generating sequence of level .

Appendix A

Obsolete Functions and Name Changes

Over time, the interface of Polycyclic has changed. This was done to get the names of Polycyclic
functions to agree with the general naming conventions used throughout GAP. Also, some Polycyclic
operations duplicated functionality that was already available in the core of GAP under a different
name. In these cases, whenever possible we now install the Polycyclic code as methods for the
existing GAP operations instead of introducing new operations.

For backward compatibility, we still provide the old, obsolete names as aliases. However, please
consider switching to the new names as soon as possible. The old names may be completely removed
at some point in the future.

The following function names were changed.

OLD NOW USE
SchurCovering SchurCover (7.9.3)
SchurMultPcpGroup AbelianInvariantsMultiplier (7.9.4)

60

References

[BCRS91] G. Baumslag, F. B. Cannonito, D. J. S. Robinson, and D. Segal. The algorithmic theory of
polycyclic-by-finite groups. J. Algebra, 142:118–149, 1991. 5

[BK00] J. R. Beuerle and L.-C. Kappe. Infinite metacyclic groups and their non-abelian tensor
squares. Proc. Edinburgh Math. Soc. (2), 43(3):651–662, 2000. 32

[dGN02] W. A. de Graaf and W. Nickel. Constructing faithful representations of finitely-generated
torsion-free nilpotent groups. J. Symbolic Comput., 33(1):31–41, 2002. 57

[Eic00] B. Eick. Computing with infinite polycyclic groups. In Groups and Computation III,
Amer. Math. Soc. DIMACS Series. (DIMACS, 1999), 2000. 5, 34, 39, 41, 50

[Eic01a] B. Eick. Computations with polycyclic groups. Habilitationsschrift, Kassel, 2001. 34, 39

[Eic01b] B. Eick. On the Fitting subgroup of a polycyclic-by-finite group and its applications. J.
Algebra, 242:176–187, 2001. 42

[Eic02] B. Eick. Orbit-stabilizer problems and computing normalizers for polycyclic groups. J.
Symbolic Comput., 34:1–19, 2002. 37, 39

[EN08] B. Eick and W. Nickel. Computing the schur multiplicator and the non-abelian tensor
square of a polycyclic group. J. Algebra, 320(2):927––944, 2008. 47, 48, 49

[EO02] B. Eick and G. Ostheimer. On the orbit stabilizer problem for integral matrix actions of
polycyclic groups. Accepted by Math. Comp, 2002. 37, 39

[Hir38a] K. A. Hirsch. On infinite soluble groups (I). Proc. London Math. Soc., 44(2):53–60, 1938.
5

[Hir38b] K. A. Hirsch. On infinite soluble groups (II). Proc. London Math. Soc., 44(2):336–414,
1938. 5

[Hir46] K. A. Hirsch. On infinite soluble groups (III). J. London Math. Soc., 49(2):184–94, 1946.
5

[Hir52] K. A. Hirsch. On infinite soluble groups (IV). J. London Math. Soc., 27:81–85, 1952. 5

[Hir54] K. A. Hirsch. On infinite soluble groups (V). J. London Math. Soc., 29:250–251, 1954. 5

[LGS90] C. R. Leedham-Green and L. H. Soicher. Collection from the left and other strategies. J.
Symbolic Comput., 9(5-6):665–675, 1990. 8

61

Polycyclic 62

[LGS98] C. R. Leedham-Green and L. H. Soicher. Symbolic collection using Deep Thought. LMS
J. Comput. Math., 1:9–24 (electronic), 1998. 8

[Lo98a] E. H. Lo. Enumerating finite index subgroups of polycyclic groups. Unpublished report,
1998. 41

[Lo98b] E. H. Lo. Finding intersection and normalizer in finitely generated nilpotent groups. J.
Symbolic Comput., 25:45–59, 1998. 39

[Mer97] W. W. Merkwitz. Symbolische Multiplikation in nilpotenten Gruppen mit Deep Thought.
Diplomarbeit, RWTH Aachen, 1997. 8

[Rob82] D. J. Robinson. A Course in the Theory of Groups, volume 80 of Graduate Texts in Math.
Springer-Verlag, New York, Heidelberg, Berlin, 1982. 5

[Seg83] D. Segal. Polycyclic Groups. Cambridge University Press, Cambridge, 1983. 5

[Seg90] D. Segal. Decidable properties of polycyclic groups. Proc. London Math. Soc. (3), 61:497–
528, 1990. 5

[Sim94] C. C. Sims. Computation with finitely presented groups, volume 48 of Encyclopedia of
Mathematics and its Applications. Cambridge University Press, Cambridge, 1994. 5, 7,
8, 39

[VL90] M. R. Vaughan-Lee. Collection from the left. J. Symbolic Comput., 9(5-6):725–733, 1990.
8

Index

\/, 27
\=, 20
\[\], 25
\in, 21

ComplementClasses, 54
ComplementClassesCR, 54
ComplementClassesEfaPcps, 54
ComplementCR, 53
ComplementsCR, 54

AbelianInvariantsMultiplier, 46
AbelianPcpGroup, 31
AddHallPolynomials, 13
AddIgsToIgs, 24
AddToIgs, 24
AddToIgsParallel, 24

BurdeGrunewaldPcpGroup, 32

Centralizer, 39
Centre, 42
Cgs, 23
CgsParallel, 23
ClosureGroup, 21
Collector, 16
CommutatorSubgroup, 21
ConjugacyIntegralAction, 38
CRRecordByMats, 50
CRRecordByPcp, 50
CRRecordBySubgroup, 50

DEBUG_COMBINATORIAL_COLLECTOR, 14
DecomposeUpperUnitriMat, 59
DenominatorOfPcp, 25
Depth, 17
DerivedSeriesOfGroup, 34
DihedralPcpGroup, 31

EfaSeries, 34

Elements, 21
ExampleOfMetabelianPcpGroup, 32
ExamplesOfSomePcpGroups, 33
Exponents, 17
ExponentsByObj, 12
ExponentsByPcp, 26
ExtensionClassesCR, 55
ExtensionCR, 54
ExtensionsCR, 54

FactorGroup, 27
FactorOrder, 18
FCCentre, 42
FiniteSubgroupClasses, 40
FiniteSubgroupClassesBySeries, 40
FittingSubgroup, 42
FromTheLeftCollector, 8
FTLCollectorAppendTo, 13
FTLCollectorPrintTo, 13

GeneratorsOfPcp, 24
GenExpList, 17
GetConjugate, 12
GetConjugateNC, 12
GetPower, 11
GetPowerNC, 11
Group, 18
GroupHomomorphismByImages, 27
GroupOfPcp, 25

HeisenbergPcpGroup, 32
HirschLength, 21

Igs, 23
IgsParallel, 23
Image, 28
Index, 21
InfiniteMetacyclicPcpGroup, 32
Intersection, 39
IsAbelian, 22

63

Polycyclic 64

IsConfluent, 10
IsConjugate, 39
IsElementaryAbelian, 22
IsFreeAbelian, 22
IsInjective, 28
IsMatrixRepresentation, 57
IsNilpotentByFinite, 42
IsNilpotentGroup, 22
IsNormal, 22
IsomorphismFpGroup, 30
IsomorphismPcGroup, 30
IsomorphismPcpGroup, 29
IsomorphismPcpGroupFromFpGroupWithPc-

Pres, 30
IsomorphismUpperUnitriMatGroupPcp-

Group, 57
IsPcpElement, 16
IsPcpElementCollection, 16
IsPcpElementRep, 16
IsPcpGroup, 16
IsSubgroup, 22
IsTorsionFree, 40
IsWeightedCollector, 13

Kernel, 27

LeadingExponent, 17
Length, 25
License, 2
LowerCentralSeriesOfGroup, 35
LowIndexNormalSubgroups, 41
LowIndexSubgroupClasses, 41

MakeNewLevel, 58
MaximalOrderByUnitsPcpGroup, 32
MaximalSubgroupClassesByIndex, 41
MinimalGeneratingSet, 43

NameTag, 17
NaturalHomomorphismByNormalSubgroup, 27
Ngs, 23
NilpotentByAbelianByFiniteSeries, 43
NilpotentByAbelianNormalSubgroup, 41
NonAbelianExteriorSquare, 47
NonAbelianExteriorSquareEpimorphism, 46
NonAbelianExteriorSquarePlusEmbedding,

48
NonAbelianTensorSquare, 48

NonAbelianTensorSquareEpimorphism, 47
NonAbelianTensorSquarePlus, 49
NonAbelianTensorSquarePlusEpimorphism,

49
NormalClosure, 21
Normalizer, 39
NormalizerIntegralAction, 38
NormalTorsionSubgroup, 40
NormedPcpElement, 18
NormingExponent, 18
NumberOfGenerators, 12
NumeratorOfPcp, 25

ObjByExponents, 12
OneCoboundariesCR, 51
OneCoboundariesEX, 53
OneCocyclesCR, 51
OneCocyclesEX, 53
OneCohomologyCR, 52
OneCohomologyEX, 53
OneOfPcp, 25
OrbitIntegralAction, 37

Pcp, 24
PcpElementByExponents, 15
PcpElementByExponentsNC, 15
PcpElementByGenExpList, 15
PcpElementByGenExpListNC, 15
PcpGroupByCollector, 18
PcpGroupByCollectorNC, 18
PcpGroupByPcp, 26
PcpGroupBySeries, 28
PcpOrbitsStabilizers, 37
PcpOrbitStabilizer, 37
PcpsBySeries, 36
PcpSeries, 34
PcpsOfEfaSeries, 36
PolyZNormalSubgroup, 43
PreImage, 28
PreImagesRepresentative, 28
PrintPcpPresentation, 29
PRump, 21

Random, 20
RandomCentralizerPcpGroup, 44
RandomNormalizerPcpGroup, 44
RanksLevels, 58

Polycyclic 65

RefinedDerivedSeries, 35
RefinedDerivedSeriesDown, 35
RefinedPcpGroup, 28
RelativeIndex, 17
RelativeOrder, 17
RelativeOrders, 11
RelativeOrdersOfPcp, 25

SchurCover, 46
SchurCovering, 60
SchurCovers, 49
SchurExtension, 44
SchurExtensionEpimorphism, 45
SchurMultPcpGroup, 60
SemiSimpleEfaSeries, 34
SetCommutator, 10
SetConjugate, 10
SetConjugateNC, 10
SetPower, 9
SetPowerNC, 9
SetRelativeOrder, 9
SetRelativeOrderNC, 9
SiftUpperUnitriMat, 58
SiftUpperUnitriMatGroup, 58
Size, 20
SmallGeneratingSet, 22
SplitExtensionPcpGroup, 55
StabilizerIntegralAction, 37
String, 13
Subgroup, 18
SubgroupByIgs, 23
SubgroupUnitriangularPcpGroup, 31

TorsionByPolyEFSeries, 35
TorsionSubgroup, 39
TwoCoboundariesCR, 51
TwoCocyclesCR, 51
TwoCohomologyCR, 52
TwoCohomologyModCR, 52

UnitriangularMatrixRepresentation, 57
UnitriangularPcpGroup, 31
UpdatePolycyclicCollector, 10
UpperCentralSeriesOfGroup, 35
UseLibraryCollector, 13
USE_COMBINATORIAL_COLLECTOR, 14
USE_LIBRARY_COLLECTOR, 14

WhiteheadQuadraticFunctor, 49

	Preface
	Introduction to polycyclic presentations
	Collectors
	Constructing a Collector
	Accessing Parts of a Collector
	Special Features

	Pcp-groups - polycyclically presented groups
	Pcp-elements – elements of a pc-presented group
	Methods for pcp-elements
	Pcp-groups - groups of pcp-elements

	Basic methods and functions for pcp-groups
	Elementary methods for pcp-groups
	Elementary properties of pcp-groups
	Subgroups of pcp-groups
	Polycyclic presentation sequences for subfactors
	Factor groups of pcp-groups
	Homomorphisms for pcp-groups
	Changing the defining pc-presentation
	Printing a pc-presentation
	Converting to and from a presentation

	Libraries and examples of pcp-groups
	Libraries of various types of polycyclic groups
	Some assorted example groups

	Higher level methods for pcp-groups
	Subgroup series in pcp-groups
	Orbit stabilizer methods for pcp-groups
	Centralizers, Normalizers and Intersections
	Finite subgroups
	Subgroups of finite index and maximal subgroups
	Further attributes for pcp-groups based on the Fitting subgroup
	Functions for nilpotent groups
	Random methods for pcp-groups
	Non-abelian tensor product and Schur extensions
	Schur covers

	Cohomology for pcp-groups
	Cohomology records
	Cohomology groups
	Extended 1-cohomology
	Extensions and Complements
	Constructing pcp groups as extensions

	Matrix Representations
	Unitriangular matrix groups
	Upper unitriangular matrix groups

	Obsolete Functions and Name Changes
	References
	Index

