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Abstract
The title “LAGUNA” stands for “Lie AlGebras and UNits of group Algebras”. This is the new name of the
GAP4 package LAG, which is thus replaced by LAGUNA.

LAGUNA extends the GAP functionality for computations in group rings. Besides computing some general
properties and attributes of group rings and their elements, LAGUNA is able to perform two main kinds of
computations. Namely, it can verify whether a group algebra of a finite group satisfies certain Lie properties;
and it can calculate the structure of the normalized unit group of a group algebra of a finite p-group over the
field of p elements.
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Chapter 1

Introduction

1.1 General aims

LAGUNA – Lie AlGebras and UNits of group Algebras – is the new name of the GAP4 package
LAG. The LAG package arose as a byproduct of the third author’s PhD thesis [Ros97]. Its first version
was ported to GAP4 and was brought into the standard GAP4 package format during his visit to St
Andrews in September 1998.

The main objective of LAG is to deal with Lie algebras associated with some associative algebras,
and, in particular, Lie algebras of group algebras. Using LAG it is possible to verify some properties
or calculate certain Lie ideals of such Lie algebras very efficiently, due to their special structure. In
the current version of LAGUNA the main part of the Lie algebra functionality is heavily built on the
previous LAG releases.

The GAP4 package LAGUNA also extends the GAP functionality for calculations with units of
modular group algebras. In particular, using this package, one can check whether an element of such
a group algebra is invertible. LAGUNA also contains an implementation of an efficient algorithm to
calculate the (normalized) unit group of the group algebra of a finite p-group over the field of p ele-
ments. Thus, the present version of LAGUNA provides a part of the functionality of the SISYPHOS
program, which was developed by Martin Wursthorn to study the modular isomorphism problem; see
[Wur93].

The corresponding functions of LAGUNA use the same algorithmic and theoretical approach as
those in SISYPHOS. The reason why we reimplemented the normalised unit group algorithms in
the LAGUNA package is that SISYPHOS has no interface to GAP4, and, even in GAP3, it is cum-
bersome to use the SISYPHOS output for further computation with the normalised unit group. For
instance, using SISYPHOS with its GAP3 interface, it is difficult to embed a finite p-group into the
normalized unit group of its group algebra over the field of p elements, but this can easily be done
with LAGUNA.

1.2 General computations in group rings

The LAGUNA package provides a set of functions to carry out some basic computations with a group
ring and its elements. Among other things, LAGUNA provides elementary functions to compute such
basic notions as support, length, trace and augmentation of an element. For modular group algebras
of finite p-groups LAGUNA is able to calculate the power-structure of the augmentation ideal, which
is useful for the construction of the normalised unit group; see Sections 4.1–4.3 for more details.
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1.3 Computations in the normalized unit group

One of the aims of the LAGUNA package is to carry out efficient computations in the normalised
unit group of the group algebra FG of a finite p-group G over the field F of p elements. If U is
the unit group of FG then it is easy to see that U is the direct product of F∗ and V (FG), where
F∗ is the multiplicative group of F , and V (FG) is the group of normalised units. A unit of FG of
the form α1 · g1 +α2 · g2 + · · ·+αk · gk with αi ∈ F and gi ∈ G is said to be normalised if the sum
α1 +α2 + · · ·+αk is equal to 1.

It is well-known that the normalised unit group V has order |F ||G|−1, and so V is a finite p-group.
Thus computing V efficiently means to compute a polycyclic presentation for V . For the theory of
polycyclic presentations refer to [Sim94, Chapter 9]. For this computation we use an algorithm that
was also used in the SISYPHOS package. For a brief description see Chapter 3. The functions that
compute the structure of the normalised unit group are described in Section 4.4.

1.4 Computing Lie properties of the group algebra

The functions that are used to compute Lie properties of p-modular group algebras were already
included in the previous versions of LAG. The bracket operation [·, ·] on a p-modular group algebra
FG is defined by [a,b] = ab−ba. It is well-known and very easy to check that (FG,+, [·, ·]) is a Lie
algebra. Then we may ask what kind of Lie algebra properties are satisfied by FG. The results in
[LR86], [PPS73], and [Ros00] give fast, practical algorithms to check whether the Lie algebra FG is
abelian, nilpotent, soluble, centre-by-metabelian, etc. The functions that implement these algorithms
are described in Section 4.5.

1.5 Installation and system requirements

LAGUNA does not use external binaries and, therefore, works without restrictions on the type of the
operating system. It is designed for GAP4.4 or later and no compatibility with previous releases of
GAP4 is guaranteed.

To use the LAGUNA online help it is necessary to install the GAP4 package GAP-
Doc by Frank Lübeck and Max Neunhöffer, which is available from the GAP site or from
https://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc/.

LAGUNA is distributed as a tar.gz archive file and can be obtained from
https://gap-packages.github.io/laguna/. To unpack the archive laguna-X.X.X.tar.gz

you need the program tar. To install LAGUNA, copy this archive into the pkg subdirectory of your
GAP4 installation. The subdirectory laguna will be created in the pkg directory after the following
command:

tar -xf laguna-X.X.X.tar.gz

https://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc/
https://gap-packages.github.io/laguna/


Chapter 2

A sample calculation with LAGUNA

Before explaining the theory behind the LAGUNA package we present a sample calculation to show
the reader what LAGUNA is able to compute. We will carry out some calculations in the group algebra
of the dihedral group of order 16 over the field of two elements. First we create this modular group
algebra.

Example

gap> K := GF( 2 );

GF(2)

gap> G := DihedralGroup( 16 );

<pc group of size 16 with 4 generators>

gap> KG := GroupRing( K, G );

<algebra-with-one over GF(2), with 4 generators>

The group algebra KG has some properties and attributes that are direct consequences of its definition.
These can be checked very quickly.

Example

gap> IsGroupAlgebra( KG );

true

gap> IsPModularGroupAlgebra( KG );

true

gap> IsFModularGroupAlgebra( KG );

true

gap> UnderlyingGroup( KG );

<pc group of size 16 with 4 generators>

gap> LeftActingDomain( KG );

GF(2)

Since KG is naturally a group algebra, the information provided by LeftActingDomain can also be
obtained using two other functions as follows.

Example

gap> UnderlyingRing( KG );

GF(2)

gap> UnderlyingField( KG );

6
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GF(2)

Let us construct a certain element of the group algebra. For example, we take a minimal generating
system of the group G and find the corresponding elements in KG.

Example

gap> MinimalGeneratingSet( G );

[ f1, f2 ]

gap> l := List( last, g -> g^Embedding( G, KG ) );

[ (Z(2)^0)*f1, (Z(2)^0)*f2 ]

Now we construct an element x as follows.
Example

gap> a :=l[1]; b:=l[2]; # a and b are images of group generators in KG

(Z(2)^0)*f1

(Z(2)^0)*f2

gap> e := One( KG ); # for convenience, we denote the identity by e

(Z(2)^0)*<identity> of ...

gap> x := ( e + a ) * ( e + b );

(Z(2)^0)*<identity> of ...+(Z(2)^0)*f1+(Z(2)^0)*f2+(Z(2)^0)*f1*f2

We may investigate some of the basic properties of our element.
Example

gap> Support( x );

[ <identity> of ..., f1, f2, f1*f2 ]

gap> CoefficientsBySupport( x );

[ Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0 ]

gap> Length( x );

4

gap> TraceOfMagmaRingElement( x );

Z(2)^0

We can also calculate the augmentation of x, which is defined as the sum of its coefficients.
Example

gap> Augmentation( x );

0*Z(2)

gap> IsUnit( KG, x );

false

Since the augmentation of x is zero, x is not invertible, but 1+x is. This is again very easy to check.
Example

gap> y := e + x;
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(Z(2)^0)*f1+(Z(2)^0)*f2+(Z(2)^0)*f1*f2

gap> IsUnit( KG, y );

true

LAGUNA can calculate the inverse of 1+x very quickly.
Example

gap> y^-1;

(Z(2)^0)*f1+(Z(2)^0)*f2+(Z(2)^0)*f3+(Z(2)^0)*f4+(Z(2)^0)*f1*f2+(Z(2)^

0)*f1*f3+(Z(2)^0)*f1*f4+(Z(2)^0)*f2*f4+(Z(2)^0)*f1*f2*f4+(Z(2)^0)*f2*f3*f4+(

Z(2)^0)*f1*f2*f3*f4

gap> y * y^-1;

(Z(2)^0)*<identity> of ...

We may also want to check whether y is symmetric, that is, whether it is invariant under the classical
involution; or whether it is unitary, that is, whether the classical involution inverts y. We find that y is
neither.

Example

gap> Involution( y );

(Z(2)^0)*f1+(Z(2)^0)*f1*f2+(Z(2)^0)*f2*f3*f4

gap> y = Involution( y );

false

gap> IsSymmetric( y );

false

gap> y * Involution( y );

(Z(2)^0)*<identity> of ...+(Z(2)^0)*f2+(Z(2)^0)*f2*f3*f4

gap> IsUnitary( y );

false

Now we calculate some important ideals of KG. First we obtain the augmentation ideal which is the
set of elements with augmentation zero. In our case the augmentation ideal of KG coincides with the
radical of KG, and this is taken into account in LAGUNA.

Example

gap> AugmentationIdeal( KG );

<two-sided ideal in <algebra-with-one over GF(2), with 4 generators>,

(dimension 15)>

gap> RadicalOfAlgebra( KG ) = AugmentationIdeal( KG );

true

It is well-known that the augmentation ideal of KG is a nilpotent ideal. Using Jennings’ theory on
dimension subgroups, we can obtain its nilpotency index without immediate calculation of its powers.
This is implemented in LAGUNA.

Example

gap> AugmentationIdealNilpotencyIndex( KG );

9
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On the other hand, we can also calculate the powers of the augmentation ideal.
Example

gap> s := AugmentationIdealPowerSeries( KG );;

gap> s[2];

<algebra of dimension 13 over GF(2)>

gap> List(s,Dimension);

[ 15, 13, 11, 9, 7, 5, 3, 1, 0 ]

gap> Length(s);

9

We see that the length of this list is exactly the nilpotency index of the augmentation ideal of KG.
Now let’s work with the unit group of KG. First we calculate the normalized unit group, which is

the set of elements with augmentation one. The generators of the unit group are obtained as explained
in Chapter 3. This can be computed very quickly, but further computation with this group is very
inefficient.

Example

gap> V := NormalizedUnitGroup( KG );

<group of size 32768 with 15 generators>

In order to make our computation in the normalised unit group efficient, we calculate a power-
commutator presentation for this group.

Example

gap> W := PcNormalizedUnitGroup( KG );

<pc group of size 32768 with 15 generators>

GAP has many efficient and practical algorithms for groups given by a power-commutator presenta-
tion. In order to use these algorithms to carry out computation in the normalised unit group, we need to
set up isomorphisms between the outputs of NormalizedUnitGroup and PcNormalizedUnitGroup.

The first isomorphism maps NormalizedUnitGroup(KG) onto the polycyclically presented
PcNormalizedUnitGroup(PC). Let’s find the images of the elements of the group G in W.

Example

gap> t := NaturalBijectionToPcNormalizedUnitGroup( KG );

MappingByFunction( <group of size 32768 with 15 generators>, <pc group of size\

32768 with 15 generators>, function( x ) ... end )

gap> Image(t) = W;

true

gap> List( AsList( G ), x -> ( x^Embedding( G, KG ) )^t );

[ <identity> of ..., f1, f2, f4, f8, f1*f2, f1*f4, f1*f8, f2*f4, f2*f8,

f4*f8, f1*f2*f4, f1*f2*f8, f1*f4*f8, f2*f4*f8, f1*f2*f4*f8 ]
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The second isomorphism is the inverse of the first.
Example

gap> f := NaturalBijectionToNormalizedUnitGroup( KG );;

gap> Image(f) = V;

true

For example, we may calculate the conjugacy classes of the group W, and then map their representatives
back into the group algebra.

Example

gap> cc := ConjugacyClasses( W );;

gap> Length( cc );

848

gap> Representative( cc[ Length( cc ) ] );

f1*f2*f3*f6*f10*f13

gap> last^f;

(Z(2)^0)*<identity> of ...+(Z(2)^0)*f1*f2+(Z(2)^0)*f1*f3+(Z(2)^0)*f1*f4+(Z(2)^

0)*f2*f3+(Z(2)^0)*f1*f2*f3+(Z(2)^0)*f1*f3*f4

Having a power-commutator presentation of the normalised unit group, we may use the full power of
the GAP functionality for such groups. For example, the lower central series can be calculated very
quickly.

Example

gap> LowerCentralSeries( W );

[ <pc group of size 32768 with 15 generators>,

Group([ f4*f8, f5*f7*f11*f13*f15, f6*f7*f9*f11*f13*f14*f15, f8, f9*f13,

f10*f11, f12*f13, f13*f15, f14*f15 ]),

Group([ f8, f9*f15, f10*f11, f12*f15, f13*f15, f14*f15 ]),

Group([ f12*f15, f13*f15, f14*f15 ]), Group([ <identity> of ... ]) ]
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Let’s now compute, for instance, a minimal system of generators of the centre of the normalised
unit group. First we carry out the computation in the group which is determined by the power-
commutator presentation, then we map the result into our group algebra.

Example

gap> C := Centre( W );;

gap> m := MinimalGeneratingSet( C );

[ f8*f13*f14*f15, f13*f14*f15, f8*f12*f14*f15, f15, f4*f6*f8*f13 ]

gap> List( m, g -> g^f );

[ (Z(2)^0)*<identity> of ...+(Z(2)^0)*f3+(Z(2)^0)*f1*f2+(Z(2)^0)*f3*f4+(Z(2)^

0)*f1*f2*f3+(Z(2)^0)*f1*f2*f4+(Z(2)^0)*f1*f2*f3*f4,

(Z(2)^0)*f3+(Z(2)^0)*f4+(Z(2)^0)*f1*f2+(Z(2)^0)*f3*f4+(Z(2)^0)*f1*f2*f3+(

Z(2)^0)*f1*f2*f4+(Z(2)^0)*f1*f2*f3*f4, (Z(2)^0)*<identity> of ...+(Z(2)^

0)*f1+(Z(2)^0)*f3+(Z(2)^0)*f1*f2+(Z(2)^0)*f1*f3+(Z(2)^0)*f1*f4+(Z(2)^

0)*f3*f4+(Z(2)^0)*f1*f2*f3+(Z(2)^0)*f1*f2*f4+(Z(2)^0)*f1*f3*f4+(Z(2)^

0)*f1*f2*f3*f4, (Z(2)^0)*f1+(Z(2)^0)*f2+(Z(2)^0)*f3+(Z(2)^0)*f4+(Z(2)^

0)*f1*f2+(Z(2)^0)*f1*f3+(Z(2)^0)*f1*f4+(Z(2)^0)*f2*f3+(Z(2)^0)*f2*f4+(

Z(2)^0)*f3*f4+(Z(2)^0)*f1*f2*f3+(Z(2)^0)*f1*f2*f4+(Z(2)^0)*f1*f3*f4+(Z(2)^

0)*f2*f3*f4+(Z(2)^0)*f1*f2*f3*f4, (Z(2)^0)*f1+(Z(2)^0)*f2+(Z(2)^0)*f3+(

Z(2)^0)*f4+(Z(2)^0)*f1*f3+(Z(2)^0)*f1*f4+(Z(2)^0)*f3*f4+(Z(2)^

0)*f1*f3*f4+(Z(2)^0)*f2*f3*f4 ]

We finish our example by calculating some properties of the Lie algebra associated with KG. This
example needs no further explanation.

Example

gap> L := LieAlgebra( KG );

#I LAGUNA package: Constructing Lie algebra ...

<Lie algebra of dimension 16 over GF(2)>

gap> D := LieDerivedSubalgebra( L );

#I LAGUNA package: Computing the Lie derived subalgebra ...

<Lie algebra of dimension 9 over GF(2)>

gap> LC := LieCentre( L );

<Lie algebra of dimension 7 over GF(2)>

gap> LieLowerNilpotencyIndex( KG );

5

gap> LieUpperNilpotencyIndex( KG );

5

gap> IsLieAbelian( L );

false

gap> IsLieSolvable( L );

#I LAGUNA package: Checking Lie solvability ...

true

gap> IsLieMetabelian( L );

false

gap> IsLieCentreByMetabelian( L );

true



Chapter 3

The basic theory behind LAGUNA

In this chapter we describe the theory that is behind the algorithms used by LAGUNA.

3.1 Notation and definitions

Let G be a group and F a field. Then the group algebra FG consists of the set of formal linear
combinations of the form

∑
g∈G

αgg, αg ∈ F

where all but finitely many of the αg are zero. The group algebra FG is an F-algebra with the obvious
operations. Clearly, dimFG = |G|.

The augmentation homomorphism χ : FG → F is defined by

χ

(
∑
g∈G

αgg

)
= ∑

g∈G
αg.

It is easy to see that χ is indeed a homomorphism onto F . The kernel of χ is called the augmentation
ideal of FG. The augmentation ideal is denoted A(FG), or simply A when there is no danger of con-
fusion. It follows from the isomorphism theorems that dimA(FG) = dimFG−1 = |G|−1. Another
way to write the augmentation ideal is

A(FG) =

{
∑
g∈G

αgg | ∑
g∈G

αg = 0

}
.

An invertible element of FG is said to be a unit. Clearly the elements of G and the non-zero
elements of F are units. The set of units in FG is a group with respect to the multiplication of FG.
The unit group of FG is denoted U(FG) or simply U when there is no risk of confusion. A unit u is
said to be normalised if χ(u) = 1. The set of normalised units forms a subgroup of the unit group,
and is referred to as the normalised unit group. The normalised unit group of FG is denoted V (FG),
or simply V . It is easy to prove that U(FG) = F∗×V (FG) where F∗ denotes the multiplicative group
of F .

12
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3.2 p-modular group algebras

A group algebra FG is said to be p-modular if F is the field of characteristic p, and G is a finite p-
group. A lot of information about the structure of p-modular group algebras can be found in [HB82,
Chapter VIII]. In a p-modular group algebra we have that an element u is a unit if and only if χ(u) ̸= 0.
Hence the normalised unit group V consists of all elements of FG with augmentation 1. In other words
V is a coset of the augmentation ideal, namely V = 1+A. This also implies that |V |= |A|= |F ||G|−1,
and so V is a finite p-group.

One of the aims of the LAGUNA package is to compute a power-commutator presentation
for the normalised unit group in the case when G is a finite p-group and F is a field of p el-
ements. Such a presentation is given by generators y1, . . . ,y|G|−1 and two types of relations:
yp

i = (yi+1)
αi,i+1 · · ·(y|G|−1)

αi,|G|−1 for 1 ≤ i ≤ |G| − 1, and [y j,yi] = (y j+1)
α j,i, j+1 · · ·(y|G|−1)

α j,i,|G|−1 for
1 ≤ i < j ≤ |G|− 1, where the exponents αi,k and αi, j,k are elements of the set {0, . . . , p− 1}. Hav-
ing such a presentation, it is possible to carry out efficient computations in the finite p-group V ; see
[Sim94, Chapter 9].

3.3 Polycyclic generating set for V

Let G be a finite p-group and F the field of p elements. Our aim is to construct a power-commutator
presentation for V =V (FG). We noted earlier that V = 1+A, where A is the augmentation ideal. We
use this piece of information and construct a polycyclic generating set for V using a suitable basis for
A. Before constructing this generating set, we note that A is a nilpotent ideal in FG. In other words
there is some c such that Ac ̸= 0 but Ac+1 = 0. Hence we can consider the following series of ideals in
A:

A▷A2 ▷ · · ·▷Ac ▷Ac+1 = 0.

It is clear that a quotient Ai/Ai+1of this chain has trivial multiplication, that is, such a quotient is a
nil-ring. The chain Ai gives rise to a series of normal subgroups in V :

V = 1+A▷1+A2 ▷ · · ·▷1+Ac ▷1+Ac+1 = 1.

It is easy to see that the chain 1+Ai is central, that is, (1+Ai)/(1+Ai+1)≤ Z((1+A)/(1+Ai+1)).
Now we show how to compute a basis for Ai that gives a polycyclic generating set for 1+Ai. Let

G = G1 ▷G2 ▷ · · ·▷Gk ▷Gk+1 = 1

be the Jennings series of G. That is, Gi+1 = [Gi,G]G jp where j is the smallest non-negative integer
such that j ≥ i/p. For all i ≤ k select elements xi,1, . . . ,xi,li of Gi such that {xi,1Gi+1, . . . ,xi,liGi+1} is
a minimal generating set for the elementary abelian group Gi/Gi+1. For the Jennings series it may
happen that Gi = Gi+1 for some i. In this case we choose an empty generating set for the quotient
Gi/Gi+1 and li = 0. Then the set x1,1, . . . ,x1,l1 , . . . ,xk,1, . . . ,xk,lk is said to be a dimension basis for G.
The weight of a dimension basis element xi, j is i.

A non-empty product

u = (x1,1 −1)α1,1 · · ·(x1,l1 −1)α1,l1 · · ·(xk,1 −1)αk,1 · · ·(xk,lk −1)αk,lk

where 0 ≤ αi, j ≤ p− 1 is said to be standard. Clearly, a standard product is an element of the aug-
mentation ideal A. The weight of the standard product u is

k

∑
i=1

i(αi,1 + · · ·+αi,li).
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The total number of standard products is |G|−1 .
LEMMA ([HB82, Theorem VIII.2.6]). For i ≤ c, the set Si of standard products of weight at least i

forms a basis for Ai. Moreover, the set 1+Si = {1+s | s ∈ Si} is a polycyclic generating set for 1+Ai.
In particular 1+S1 is a polycyclic generating set for V .

A basis for A consisting of the standard products is referred to as a weighted basis. Note that a
weighted basis is a basis for the augmentation ideal, and not for the whole group algebra.

Let x1, . . . ,x|G|−1 denote the standard products where we choose the indices so that the weight of
xi is not larger than the weight of xi+1 for all i, and set yi = 1+ xi. Then every element v of V can be
uniquely written in the form

v = yα1
1 · · ·(y|G|−1)

α|G|−1 , α1, . . . ,α|G|−1 ∈ {0, . . . , p−1}.

This expression is called the canonical form of v. We note that by adding a generator of F∗ to the set
y1, . . . ,y|G|−1| we can obtain a polycyclic generating set for the unit group U .

3.4 Computing the canonical form

We show how to compute the canonical form of a normalised unit with respect to the polycyclic
generating set y1, . . . ,y|G|−1. We use the following elementary lemma.

LEMMA. Let i ≤ c and suppose that w ∈ Ai. Assume that xsi ,xsi+1 . . . ,xri are the standard products
with weight i and for si ≤ j ≤ ri set y j = 1+ x j. Then for all αsi , . . . ,αri ∈ {0, . . . , p−1} we have that

w ≡ αsixsi + · · ·+αrixri mod Ai+1

if an only if
1+w ≡ (ysi)

αsi · · ·(yri)
αri mod 1+Ai+1.

Suppose that w is an element of the augmentation ideal A and 1+w is a normalised unit. Let
x1, . . . ,xr1 be the standard products of weight 1, and let y1, . . . ,yr1 be the corresponding elements in the
polycyclic generating set. Then using the previous lemma, we find α1, . . . ,αr1 such that

w ≡ α1x1 + · · ·+αr1xr1 mod A2,

and so
1+w ≡ (y1)

α1 · · ·(yr1)
αr1 mod 1+A2.

Now we have that 1 + w = (y1)
α1 · · ·(yr1)

αr1 (1 + w2) for some w2 ∈ A2. Then suppose that
xs2 ,xs2+1, . . . ,xr2 are the standard products of weight 2. We find αs2 , . . . ,αr2 such that

w2 ≡ αs2xs2 + · · ·+αr2xr2 mod A3.

Then the lemma above implies that

1+w2 ≡ (ys2)
αs2 · · ·(yr2)

αr2 mod 1+A3.

Thus 1 + w2 = (ys2)
αs2 · · ·(yr2)

αr2 (1 + w3) for some w3 ∈ A3, and so 1 + w =
(y1)

α1 · · ·(yr1)
αr1 (ys2)

αs2 · · ·(yr2)
αr2 (1 + w3). We repeat this process, and after c steps we obtain

the canonical form for the element 1+w.
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3.5 Computing a power commutator presentation for V

Using the procedure in the previous section, it is easy to compute a power commutator presentation
for the normalized unit group V of a p-modular group algebra over the field of p elements. First we
compute the polycyclic generating sequence y1, . . . ,y|G|−1 as in Section 3.3. Then for each yi and for
each y j, yi such that i < j we compute the canonical form for yp

i and [y j,yi] as described in Section
3.4.

Once a power-commutator presentation for V is constructed, it is easy to obtain a polycyclic pre-
sentation for the unit group U by adding an extra central generator y corresponding to a generator of
the cyclic group F∗ and enforcing that yp−1 = 1.

3.6 Verifying Lie properties of FG

If FG is a group algebra then one can consider the Lie bracket operation defined by [a,b] = ab−ba.
Then it is well-known that FG with respect to the scalar multiplication, the addition, and the bracket
operation becomes a Lie algebra over F . This Lie algebra is also denoted FG. Some Lie properties
of such Lie algebras can be computed very efficiently. In particular, it can be verified whether the Lie
algebra FG is nilpotent, soluble, metabelian, centre-by-metabelian. Fast algorithms that achieve these
goals are described in [LR86], [PPS73], and [Ros00].



Chapter 4

LAGUNA functions

4.1 General functions for group algebras

4.1.1 IsGroupAlgebra

▷ IsGroupAlgebra(KG) (property)

A group ring over a field is called a group algebra. For a group ring KG , IsGroupAlgebra returns
true, if the underlying ring of KG is a field; false is returned otherwise. This property will be set
automatically for every group ring created by the function GroupRing.

Example

gap> IsGroupAlgebra( GroupRing( GF( 2 ), DihedralGroup( 16 ) ) );

true

gap> IsGroupAlgebra( GroupRing( Integers, DihedralGroup( 16 ) ) );

false

4.1.2 IsFModularGroupAlgebra

▷ IsFModularGroupAlgebra(KG) (property)

A group algebra KG over a field K is called modular, if the characteristic of the field K divides the
order of some element in G. For a group algebra KG of a finite group G, IsModularGroupAlgebra
returns true, if KG is modular according to this definition; false is returned otherwise. This property
will be set automatically for every group algebra, created by the function GroupRing.

Example

gap> IsFModularGroupAlgebra( GroupRing( GF( 2 ), SymmetricGroup( 6 ) ) );

true

gap> IsFModularGroupAlgebra( GroupRing( GF( 2 ), CyclicGroup( 3 ) ) );

false

16
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4.1.3 IsPModularGroupAlgebra

▷ IsPModularGroupAlgebra(KG) (property)

A group algebra KG is said to be p-modular, if K is a field of characteristic p and G is a finite p-
group for the same prime p. For a group algebra KG of a finite group G, IsPModularGroupAlgebra
returns true, if KG is p-modular according to this definition; false is returned otherwise. This
property will be set automatically for every group algebra, created by the function GroupRing.

Example

gap> IsPModularGroupAlgebra( GroupRing( GF( 2 ), DihedralGroup( 16 ) ) );

true

gap> IsPModularGroupAlgebra( GroupRing( GF( 2 ), SymmetricGroup( 6 ) ) );

false

4.1.4 UnderlyingGroup (of a group ring)

▷ UnderlyingGroup(KG) (attribute)

Returns: the underlying group of a group ring
This attribute stores the underlying group of a group ring KG . In fact, it refers to the attribute

UnderlyingMagma which returns the same result, and was introduced for group rings for convenience,
and for teaching purposes.

Example

gap> KG := GroupRing( GF ( 2 ), DihedralGroup( 16 ) );

<algebra-with-one over GF(2), with 4 generators>

gap> G := UnderlyingGroup( KG );

<pc group of size 16 with 4 generators>

4.1.5 UnderlyingRing

▷ UnderlyingRing(KG) (attribute)

Returns: the underlying ring of a group ring
This attribute stores the underlying ring of a group ring KG . In fact, it refers to the attribute

LeftActingDomain which returns the same result, and was introduced for group rings for conve-
nience, and for teaching purposes.

Example

gap> KG := GroupRing( GF( 2 ), DihedralGroup( 16 ) );

<algebra-with-one over GF(2), with 4 generators>

gap> UnderlyingRing( KG );

GF(2)
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4.1.6 UnderlyingField

▷ UnderlyingField(KG) (attribute)

Returns: the underlying field of a group algebra
This attribute stores the underlying field of a group algebra KG . In fact, it refers to the attribute

LeftActingDomain which returns the same result, and was introduced for group algebras for conve-
nience, and for teaching purposes.

Example

gap> KG := GroupRing( GF( 2 ), DihedralGroup( 16 ) );

<algebra-with-one over GF(2), with 4 generators>

gap> UnderlyingField( KG );

GF(2)

4.2 Operations with group algebra elements

4.2.1 Support

▷ Support(x) (attribute)

Returns: support of x as a list of elements of the underlying group
Returns the support of a group ring element x . The support of a non-zero element x = α1 ·g1+α2 ·

g2 + · · ·+αk ·gk of a group ring is the list of elements gi ∈ G for which the coefficient αi is non-zero.
The support of the zero element of a group ring is defined to be the empty list. This method is also
applicable to elements of magma rings.

Example

# First we create an element x to use in in the series of examples.

# We map the minimal generating system of the group G to its group algebra

# and denote their images as a and b

gap> G:=DihedralGroup(16);; KG:=GroupRing(GF(2),G);;

gap> l := List( MinimalGeneratingSet( G ), g -> g^Embedding( G, KG ) );

[ (Z(2)^0)*f1, (Z(2)^0)*f2 ]

gap> a := l[1]; b := l[2]; e := One( KG ); # we denote the identity by e

(Z(2)^0)*f1

(Z(2)^0)*f2

(Z(2)^0)*<identity> of ...

gap> x := ( e + a ) * ( e + b );

(Z(2)^0)*<identity> of ...+(Z(2)^0)*f1+(Z(2)^0)*f2+(Z(2)^0)*f1*f2

gap> Support( x );

[ <identity> of ..., f1, f2, f1*f2 ]

4.2.2 CoefficientsBySupport

▷ CoefficientsBySupport(x) (attribute)

Returns: coefficients of support elements as list of elements of the underlying ring
Returns a list that contains the coefficients corresponding to the elements of Support( x ) in the

same order as the elements appear in Support( x ). This method is also applicable to elements of
magma rings.
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Example

gap> x;

(Z(2)^0)*<identity> of ...+(Z(2)^0)*f1+(Z(2)^0)*f2+(Z(2)^0)*f1*f2

gap> CoefficientsBySupport( x );

[ Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0 ]

4.2.3 TraceOfMagmaRingElement

▷ TraceOfMagmaRingElement(x) (attribute)

Returns: an element of the underlying ring
Returns the trace of a group ring element x . By definition, the trace of an element x = α1 ·1+α2 ·

g2 + · · ·+αk · gk is equal to α1, that is, the coefficient of the identity element in G. The trace of the
zero element is zero. This method is also applicable to elements of magma rings.

Example

gap> x;

(Z(2)^0)*<identity> of ...+(Z(2)^0)*f1+(Z(2)^0)*f2+(Z(2)^0)*f1*f2

gap> TraceOfMagmaRingElement( x );

Z(2)^0

4.2.4 Length

▷ Length(x) (attribute)

The length of an element of a group ring x is defined as the number of elements in its support.
This method is also applicable to elements of magma rings.

Example

gap> x;

(Z(2)^0)*<identity> of ...+(Z(2)^0)*f1+(Z(2)^0)*f2+(Z(2)^0)*f1*f2

gap> Length( x );

4

4.2.5 Augmentation

▷ Augmentation(x) (attribute)

Returns: the sum of coefficients of a group ring element
The augmentation of a group ring element x = α1 · g1 +α2 · g2 + · · ·+αk · gk is the sum of its

coefficients α1 +α2 + · · ·+αk. The method is also applicable to elements of magma rings.
Example

gap> x;

(Z(2)^0)*<identity> of ...+(Z(2)^0)*f1+(Z(2)^0)*f2+(Z(2)^0)*f1*f2

gap> Augmentation( x );
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0*Z(2)

4.2.6 PartialAugmentations

▷ PartialAugmentations(KG, x) (operation)

Returns: a list of partial augmentations and a list of conjugacy class representatives
The partial augmentation of an element x = α1 · g1 +α2 · g2 + · · ·+αk · gk of the group ring KG,

corresponding to the conjugacy class of an element g from the underlying group G is the sum of
coefficients αi taken over all gi such that gi is conjugated to g. The function returns a list of two lists,
the first one is a list of partial augmentations, and the second is a list of representatives of appropriate
conjugacy classes of elements of the group G.

Example

gap> y := x + a*b^2;

(Z(2)^0)*<identity> of ...+(Z(2)^0)*f1+(Z(2)^0)*f2+(Z(2)^0)*f1*f2+(Z(2)^

0)*f1*f3

gap> PartialAugmentations( KG, y );

[ [ Z(2)^0, 0*Z(2), Z(2)^0, Z(2)^0 ], [ <identity> of ..., f1, f2, f1*f2 ] ]

4.2.7 Involution

▷ Involution(x[[, f], s]) (operation)

Returns: an element of a group ring
Let KG be a group ring, f be a homomorphism from the group G to the unit group of the ring

K. Furthermore, let s be a mapping G → G, such that s2 is the identity mapping on G and for every
element g ∈ G f (g ∗ s(g)) equals f (s(g) ∗ g) and equals the identity element of the ring K. Then the
involution of KG induced by f and s is defined by α1 ·g1 +α2 ·g2 + · · ·+αk ·gk 7→ α1 · f (g1) · s(g1)+
α2 · f (g2) · s(g2)+ · · ·+αk · f (gk) · s(gk).

The method returns the image of x under the involution of KG induced by f and s. If the mapping
f is omitted, f is assumed to map everything to the identity element of the ring K. If both mappings
are omitted, it returns the result of so-called classical involution, induced by the mapping x 7→ x−1.

Example

gap> x;

(Z(2)^0)*<identity> of ...+(Z(2)^0)*f1+(Z(2)^0)*f2+(Z(2)^0)*f1*f2

gap> Involution( x );

(Z(2)^0)*<identity> of ...+(Z(2)^0)*f1+(Z(2)^0)*f1*f2+(Z(2)^0)*f2*f3*f4

gap> l := List( MinimalGeneratingSet( G ), g -> g^Embedding( G, KG ) );

[ (Z(2)^0)*f1, (Z(2)^0)*f2 ]

gap> List( l, Involution ); # check how involution acts on elements of G

[ (Z(2)^0)*f1, (Z(2)^0)*f2*f3*f4 ]

gap> List( l, g -> g^-1 );

[ (Z(2)^0)*f1, (Z(2)^0)*f2*f3*f4 ]
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4.2.8 IsSymmetric

▷ IsSymmetric(x) (attribute)

An element of a group ring is called symmetric if it is fixed under the classical involution. This
property is checked here.

Example

gap> IsSymmetric( x );

false

gap> IsSymmetric( x * Involution( x ) );

true

4.2.9 IsUnitary

▷ IsUnitary(x) (attribute)

A unit of a group ring is called unitary if the classical involution inverts it. This property is checked
here.

Example

gap> IsUnitary(x);

false

gap> l:=List(MinimalGeneratingSet(G),g -> g^Embedding(G,KG));

[ (Z(2)^0)*f1, (Z(2)^0)*f2 ]

gap> List(l,IsUnitary); # check that elements of G are unitary

[ true, true ]

4.2.10 IsUnit

▷ IsUnit([KG, ]x) (method)

This method improves a standard GAP functionality for modular group algebras.
In the two-argument version the method returns true if x is an invertible element of the modular

group algebra KG and false otherwise. This can be done very quickly by checking whether the
augmentation of the element x is non-zero.

If the first argument is omitted, then LAGUNA constructs the group H generated by the support
of x , and, if this group is a finite p-group, then checks whether the coefficients of x belong to a field
F of characteristic p. If this is the case, then IsUnit( FH, x ) is called; otherwise, standard GAP
method is used.

Example

gap> x;

(Z(2)^0)*<identity> of ...+(Z(2)^0)*f1+(Z(2)^0)*f2+(Z(2)^0)*f1*f2

gap> IsUnit( KG, x ); # clearly, is not a unit due to augmentation zero

false

gap> y := One( KG ) + x; # this should give a unit
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(Z(2)^0)*f1+(Z(2)^0)*f2+(Z(2)^0)*f1*f2

gap> IsUnit( KG, y );

true

4.2.11 InverseOp

▷ InverseOp(x) (method)

Returns: the inverse element of an element of a group ring
This method improves a standard GAP functionality for modular group algebras. It calculates the

inverse of a group algebra element. The user can also invoke this function by typing x^-1 .
Example

gap> y;

(Z(2)^0)*f1+(Z(2)^0)*f2+(Z(2)^0)*f1*f2

gap> y^-1;

(Z(2)^0)*f1+(Z(2)^0)*f2+(Z(2)^0)*f3+(Z(2)^0)*f4+(Z(2)^0)*f1*f2+(Z(2)^

0)*f1*f3+(Z(2)^0)*f1*f4+(Z(2)^0)*f2*f4+(Z(2)^0)*f1*f2*f4+(Z(2)^0)*f2*f3*f4+(

Z(2)^0)*f1*f2*f3*f4

gap> y * y^-1;

(Z(2)^0)*<identity> of ...

4.2.12 BicyclicUnitOfType1

▷ BicyclicUnitOfType1([KG, ]a, g) (operation)

▷ BicyclicUnitOfType2([KG, ]a, g) (operation)

Returns: an element of a group ring
let a be an element of order n of a group G. We put α = 1+a+a2+ ...+an−1. Then (a−1)∗g∗α

and α ∗ g ∗ (a− 1) are nilpotent of index two for any element g of the group G not containing in the
normalizer NG(⟨a⟩), and the units ua,g = 1+(a− 1) ∗ g ∗α and va,g = 1+α ∗ g ∗ (a− 1) are called
bicyclic units of the 1st and 2nd type respectively. Note that ua,g and va,g may coincide for some a and
g, but in general this does not hold. In the three-argument version these methods construct bicyclic
units of both types when a and g are elements of the underlying group G of a group ring KG . The
two-argument version accepts images of elements a and g from the underlying group in the group
ring KG obtained using the mapping Embedding( G, KG ). Note that it is not actually checked that
g is not contained in NG(⟨a⟩), because this is verified in BicyclicUnitGroup (4.4.13).

Example

gap> G := SmallGroup(32,6);

<pc group of size 32 with 5 generators>

gap> KG := GroupRing( GF(2), G );

<algebra-with-one over GF(2), with 5 generators>

gap> g := MinimalGeneratingSet( G );

[ f1, f2 ]

gap> g[1] in Normalizer( G, Subgroup( G, [g[2]] ) );

false

gap> g[2] in Normalizer( G, Subgroup( G, [g[1]] ) );

false
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gap> g := List( g, x -> x^Embedding( G, KG ) );

[ (Z(2)^0)*f1, (Z(2)^0)*f2 ]

gap> BicyclicUnitOfType1(g[1],g[2]) = BicyclicUnitOfType2(g[1],g[2]);

false

4.2.13 BassCyclicUnit

▷ BassCyclicUnit([ZG, ]g, k) (operation)

Returns: an element of a group ring
Let g be an element of order n of the group G, and 1 < k < n be such that k and n are coprime,

then k^Phi(n) is congruent to 1 modulo n. The unit

b(g,k) =

(
k−1

∑
j=0

g j

)ϕ(n)

+
1− kϕ(n)

n
ĝ,

where ĝ = g+g2 + ...+gn, is called a Bass cyclic unit of the integral group ring ZG .
The three-argument version constructs the Bass cyclic unit b(g,k) for the element g from the

underlying group G of the group ring ZG . The two-argument version accepts the image of g in the
group ring ZG obtained using the mapping Embedding( G, KG ).

Remark that when G is a finite nilpotent group, the group generated by the Bass cyclic units
contain a subgroup of finite index in the centre of the unit group of ZG [JPS96].

Example

gap> S := SymmetricGroup( 5 );;

gap> ZS := GroupRing( Integers, S );;

gap> f := Embedding( S, ZS );;

gap> BassCyclicUnit( ZS, (1,3,2,5,4) , 3 );

(1)*()+(-2)*(1,2,4,3,5)+(-2)*(1,3,2,5,4)+(3)*(1,4,5,2,3)+(1)*(1,5,3,4,2)

gap> BassCyclicUnit( (1,3,2,5,4)^f, 3 );

(1)*()+(-2)*(1,2,4,3,5)+(-2)*(1,3,2,5,4)+(3)*(1,4,5,2,3)+(1)*(1,5,3,4,2)

4.3 Important attributes of group algebras

4.3.1 AugmentationHomomorphism

▷ AugmentationHomomorphism(KG) (attribute)

Returns: a homomorphism from a group ring to the underlying ring
The mapping which maps an element of a group ring KG to its augmentation is a homomorphism

from KG onto the ring K; see Augmentation (4.2.5). This attribute stores this homomorphism for the
group ring KG .

Please note that for calculation of the augmentation of an element of a group ring the
user is strongly recommended to use Augmentation (4.2.5) which works much faster than
AugmentationHomomorphism.

Example

gap> F := GF( 2 ); G := SymmetricGroup( 3 ); FG := GroupRing( F, G );
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GF(2)

Sym( [ 1 .. 3 ] )

<algebra-with-one over GF(2), with 2 generators>

gap> e := Embedding( G,FG );

<mapping: SymmetricGroup( [ 1 .. 3 ] ) -> AlgebraWithOne( GF(2), ... ) >

gap> x := (1,2)^e; y := (1,3)^e;

(Z(2)^0)*(1,2)

(Z(2)^0)*(1,3)

gap> a := AugmentationHomomorphism( FG );

[ (Z(2)^0)*(1,2,3), (Z(2)^0)*(1,2) ] -> [ Z(2)^0, Z(2)^0 ]

gap> x^a; y^a; ( x + y )^a; # this is slower

Z(2)^0

Z(2)^0

0*Z(2)

gap> Augmentation(x); Augmentation(y); Augmentation( x + y ); # this is faster

Z(2)^0

Z(2)^0

0*Z(2)

4.3.2 AugmentationIdeal

▷ AugmentationIdeal(KG) (attribute)

Returns: an ideal of a group ring
If KG is a group ring, then its augmentation ideal A is generated by all elements of the form g−1,

where g ∈ G \ { 1 }. The augmentation ideal consists of all elements of FG with augmentation 0;
see Augmentation (4.2.5). This method changes a standard GAP functionality for modular group
algebras and returns the augmentation ideal of a modular group algebra KG .

Example

gap> KG := GroupRing( GF( 2 ), DihedralGroup( 16 ) );

<algebra-with-one over GF(2), with 4 generators>

gap> AugmentationIdeal( KG );

<two-sided ideal in <algebra-with-one over GF(2), with 4 generators>,

(dimension 15)>

4.3.3 RadicalOfAlgebra

▷ RadicalOfAlgebra(KG) (attribute)

Returns: an ideal of a group algebra
This method improves a standard GAP functionality for modular group algebras of finite p-groups.

Since in this case the radical of the group algebra coincides with its augmentation ideal, this method
simply checks if the algebra KG is a p-modular group algebra, and, if yes, it returns the augmentation
ideal; otherwise, the standard GAP method will be used.

Example

gap> KG := GroupRing( GF( 2 ), DihedralGroup( 16 ) );

<algebra-with-one over GF(2), with 4 generators>

gap> RadicalOfAlgebra( KG );
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<two-sided ideal in <algebra-with-one over GF(2), with 4 generators>,

(dimension 15)>

gap> RadicalOfAlgebra( KG ) = AugmentationIdeal( KG );

true

4.3.4 WeightedBasis

▷ WeightedBasis(KG) (attribute)

Returns: a record of two components: weighted basis elements and their weights
The argument KG must be a p-modular group algebra.
For a group algebra KG, let A denote the augmentation ideal, and assume that c is the smallest

number such that Ac = 0. Then a weighted basis of KG is some basis b1, . . . ,bn for the augmentation
ideal A, for which there are indices i1 = 1, . . . , ic−1 such that bik , . . . ,bn is a basis for Ak. The weight of
an element bi of a weighted basis is the unique integer w such that bi belongs to w-th power of A but
does not belong to its (w+1)-th power.

Note that this function actually constructs a basis for the augmentation ideal of KG and not for KG
itself. Since the augmentation ideal has co-dimension 1 in KG, a basis for KG can be easily obtained by
adjoining the identity element of the group.

The method returns a record whose basis entry is the basis and the weights entry is a list of the
corresponding weights the of basis elements. See Section 3.3 for more details.

Example

gap> KG := GroupRing( GF( 2 ), ElementaryAbelianGroup( 4 ) );

<algebra-with-one over GF(2), with 2 generators>

gap> WeightedBasis( KG );

rec(

weightedBasis := [ (Z(2)^0)*<identity> of ...+(Z(2)^0)*f1,

(Z(2)^0)*<identity> of ...+(Z(2)^0)*f2,

(Z(2)^0)*<identity> of ...+(Z(2)^0)*f1+(Z(2)^0)*f2+(Z(2)^0)*f1*f2 ],

weights := [ 1, 1, 2 ] )

4.3.5 AugmentationIdealPowerSeries

▷ AugmentationIdealPowerSeries(KG) (attribute)

Returns: a list of ideals of a group algebra
The argument KG is a p-modular group algebra. The method returns a list whose elements are the

terms of the augmentation ideal filtration of KG , that is AugmentationIdealPowerSeries(A)[i] is
the i-th power of the augmentation ideal of KG .

Example

gap> KG := GroupRing( GF( 2 ), DihedralGroup( 16 ) );

<algebra-with-one over GF(2), with 4 generators>

gap> s := AugmentationIdealPowerSeries( KG );;

gap> s[2];

<algebra of dimension 13 over GF(2)>

gap> List(s,Dimension);

[ 15, 13, 11, 9, 7, 5, 3, 1, 0 ]



LAGUNA 26

gap> Length(s);

9

4.3.6 AugmentationIdealNilpotencyIndex

▷ AugmentationIdealNilpotencyIndex(KG) (attribute)

For the p-modular group algebra KG the method returns the smallest number n such that An = 0,
where A is the augmentation ideal of KG . This can be done using Jenning’s theory without the explicit
calculations of the powers of the augmentation ideal.

Example

gap> KG := GroupRing( GF( 2 ), DihedralGroup( 16 ) );

<algebra-with-one over GF(2), with 4 generators>

gap> AugmentationIdealNilpotencyIndex( KG );

9

4.3.7 AugmentationIdealOfDerivedSubgroupNilpotencyIndex

▷ AugmentationIdealOfDerivedSubgroupNilpotencyIndex(KG) (attribute)

For the p-modular group algebra KG this attribute stores the nilpotency index of the augmentation
ideal of KG′ where G′ denotes the derived subgroup of G.

Example

gap> KG := GroupRing( GF( 2 ), DihedralGroup( 16 ) );

<algebra-with-one over GF(2), with 4 generators>

gap> AugmentationIdealOfDerivedSubgroupNilpotencyIndex( KG );

4

gap> D := DerivedSubgroup( UnderlyingGroup( KG ) );

Group([ f3, f4 ])

gap> KD := GroupRing( GF( 2 ), D );

<algebra-with-one over GF(2), with 2 generators>

gap> AugmentationIdealNilpotencyIndex( KD );

4

4.3.8 LeftIdealBySubgroup

▷ LeftIdealBySubgroup(KG, H) (operation)

▷ RightIdealBySubgroup(KG, H) (operation)

▷ TwoSidedIdalBySubgroup(KG, H) (operation)

Returns: an ideal of a group ring
Let KG be a group ring of a group G over the ring K, and H be a subgroup of G. Then the set Jl(H)

of all elements of KG of the form
∑

h∈H
xh(h−1)
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is the left ideal in KG generated by all elements h− 1 with h in H. The right ideal Jr(H) is defined
analogously. These operations are used to consrtuct such ideals, taking into account the fact, that the
ideal Jl(H) is two-sided if and only if H is normal in G. An attempt of constructing two-sided ideal
for a non-normal subgroup H will lead to an error message.

Example

gap> KG := GroupRing( GF(2), DihedralGroup(16) );

<algebra-with-one over GF(2), with 4 generators>

gap> G := DihedralGroup(16);

<pc group of size 16 with 4 generators>

gap> KG := GroupRing( GF(2), G );

<algebra-with-one over GF(2), with 4 generators>

gap> D := DerivedSubgroup( G );

Group([ f3, f4 ])

gap> LeftIdealBySubgroup( KG, D );

<two-sided ideal in <algebra-with-one over GF(2), with 4 generators>,

(dimension 12)>

gap> H := Subgroup( G, [ GeneratorsOfGroup(G)[1] ]);

Group([ f1 ])

gap> IsNormal( G, H );

false

gap> LeftIdealBySubgroup( KG, H );

<left ideal in <algebra-with-one over GF(2), with 4 generators>, (dimension 8

)>

4.4 Computations with the unit group

4.4.1 NormalizedUnitGroup

▷ NormalizedUnitGroup(KG) (attribute)

Returns: a group generated by group algebra elements
Determines the normalized unit group of a p-modular group algebra KG over the field of p el-

ements. Returns the normalized unit group as the group generated by certain elements of KG ; see
Section 3.3 for more details.

For efficient computations the user is recommended to use PcNormalizedUnitGroup (4.4.2).
Example

gap> KG := GroupRing( GF( 2 ), DihedralGroup( 16 ) );

<algebra-with-one over GF(2), with 4 generators>

gap> V := NormalizedUnitGroup( KG );

<group of size 32768 with 15 generators>

gap> u := GeneratorsOfGroup( V )[4];

(Z(2)^0)*f3

4.4.2 PcNormalizedUnitGroup

▷ PcNormalizedUnitGroup(KG) (attribute)

Returns: a group given by power-commutator presentation
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The argument KG is a p-modular group algebra over the field of p elements.
PcNormalizedUnitGroup returns the normalized unit group of KG given by a power-commutator
presentation. The generators in this polycyclic presentation correspond to the weighted basis elements
of KG . For more details, see Section 3.3.

Example

gap> W := PcNormalizedUnitGroup( KG );

<pc group of size 32768 with 15 generators>

gap> w := GeneratorsOfGroup( W )[4];

f4

4.4.3 NaturalBijectionToPcNormalizedUnitGroup

▷ NaturalBijectionToPcNormalizedUnitGroup(KG) (attribute)

Returns: a homomorphism of groups
The normalised unit group of a p-modular group algebra KG over the field of p elements can be

computed using two methods, namely NormalizedUnitGroup (4.4.1) and PcNormalizedUnitGroup
(4.4.2). These two methods return two different objects, and they can be used for different
types of computations. The elements of NormalizedUnitGroup(KG) are represented in their
natural group algebra representation, and hence they can easily be identified in the group alge-
bra. However, the more quickly constructed NormalizedUnitGroup(KG) is often not suitable
for further fast calculations. Hence one will have to use PcNormalizedUnitGroup(KG) if one
wants to find some group theoretic properties of the normalized unit group. This method re-
turns the bijection from NormalizedUnitGroup(KG) onto PcNormalizedUnitGroup(KG). This
bijection can be used to map the result of a computation in PcNormalizedUnitGroup(KG) into
NormalizedUnitGroup(KG).

Example

gap> f := NaturalBijectionToPcNormalizedUnitGroup( KG );

MappingByFunction( <group of size 32768 with 15 generators>, <pc group of size\

32768 with 15 generators>, function( x ) ... end )

gap> u := GeneratorsOfGroup( V )[4];;

gap> u^f;

f4

gap> GeneratorsOfGroup( V )[4]^f = GeneratorsOfGroup( W )[4];

true

4.4.4 NaturalBijectionToNormalizedUnitGroup

▷ NaturalBijectionToNormalizedUnitGroup(KG) (attribute)

Returns: a homomorphism of groups
For a p-modular group algebra KG over the field of p elements this function returns the inverse of

the mapping NaturalBijectionToPcNormalizedUnitGroup (4.4.3)
Example

gap> t := NaturalBijectionToNormalizedUnitGroup(KG);;
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gap> w := GeneratorsOfGroup(W)[4];;

gap> w^t;

(Z(2)^0)*f3

gap> GeneratorsOfGroup( W )[4]^t = GeneratorsOfGroup( V )[4];

true

4.4.5 Embedding (from group to unit group)

▷ Embedding(H, V) (operation)

Returns: a homomorphism from an underlying group to a normalized unit group in pc-
presentation

Let H be a subgroup of a group G and V be the normalized unit group of the group al-
gebra KG given by the power-commutator presentation (see PcNormalizedUnitGroup (4.4.2).
Then Embedding( H, V ) returns the homomorphism from H to V , which is the composition of
Embedding( H, KG ) and NaturalBijectionToPcNormalizedUnitGroup( KG ).

Example

gap> G := DihedralGroup( 16 );

<pc group of size 16 with 4 generators>

gap> KG := GroupRing( GF( 2 ), G );

<algebra-with-one over GF(2), with 4 generators>

gap> V:=PcNormalizedUnitGroup( KG );

<pc group of size 32768 with 15 generators>

gap> ucs := UpperCentralSeries( V );;

gap> f := Embedding( G, V );

[ f1, f2, f3, f4 ] -> [ f1, f2, f4, f8 ]

gap> G1 := Image( f, G );

Group([ f1, f2, f4, f8 ])

gap> H := Intersection( ucs[2], G1 ); # compute intersection in V(KG)

Group([ f4, f8, f4*f8 ])

gap> T:=PreImage( f, H ); # find its preimage in G

Group([ f3, f4, f3*f4 ])

gap> IdGroup( T );

[ 4, 1 ]

4.4.6 Units

▷ Units(KG) (attribute)

Returns: the unit group of a group ring
This improves a standard GAP functionality for modular group algebras of finite p-groups over

the field of p elements. It returns the unit group of KG as a direct product of Units(K) and
NormalizedUnitGroup(KG), where the latter is generated by certain elements of KG ; see Chapter
3 for more details.

Example

gap> U := Units( KG );

#I LAGUNA package: Computing the unit group ...
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<group of size 32768 with 15 generators>

gap> GeneratorsOfGroup( U )[5]; # now elements of U are already in KG

(Z(2)^0)*f1+(Z(2)^0)*f3+(Z(2)^0)*f1*f3

gap> FH := GroupRing( GF(3), SmallGroup(27,3) );

<algebra-with-one over GF(3), with 3 generators>

gap> T := Units( FH );

#I LAGUNA package: Computing the unit group ...

<group of size 5083731656658 with 27 generators>

gap> x := GeneratorsOfGroup( T )[1];

DirectProductElement( [ Z(3), (Z(3)^0)*<identity> of ... ] )

gap> x in FH;

false

gap> x[1] * x[2] in FH; # how to get the corresponding element of FH

true

4.4.7 PcUnits

▷ PcUnits(KG) (attribute)

Returns: a group given by power-commutator presentation
Returns the unit group of KG as a direct product of Units(K) and PcNormalizedUnitGroup(KG),

where the latter is a group given by a polycyclic presentation. See Section 3.4 for more details.
Example

gap> W := PcUnits( KG );

<pc group of size 32768 with 15 generators>

gap> GeneratorsOfGroup( W )[5];

f5

gap> FH := GroupRing( GF(3), SmallGroup(27,3) );

<algebra-with-one over GF(3), with 3 generators>

gap> T := PcUnits(FH);

<group of size 5083731656658 with 27 generators>

gap> x := GeneratorsOfGroup( T )[2];

DirectProductElement( [ Z(3)^0, f1 ] )

4.4.8 IsGroupOfUnitsOfMagmaRing

▷ IsGroupOfUnitsOfMagmaRing(U) (filter)

This property is set if U is a group generated by some units of a magma ring, including Units(KG)

and NormalizedUnitgroup(KG).
Example

gap> IsGroupOfUnitsOfMagmaRing( NormalizedUnitGroup( KG ) );

true

gap> IsGroupOfUnitsOfMagmaRing( Units( KG ) );

true
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4.4.9 IsUnitGroupOfGroupRing

▷ IsUnitGroupOfGroupRing(U) (filter)

This filter is set if U is the unit group of a p-modular group algebra, obtained either by Units(KG)

or by PcUnits(KG). bound.
Example

gap> IsUnitGroupOfGroupRing( Units( KG ) );

true

gap> IsUnitGroupOfGroupRing( PcUnits( KG ) );

true

4.4.10 IsNormalizedUnitGroupOfGroupRing

▷ IsNormalizedUnitGroupOfGroupRing(U) (filter)

This filter is set if U is the normalized unit group of a p-modular group algebra, obtained either by
NormalizedUnitGroup(KG) or by PcNormalizedUnitGroup(KG).

Example

gap> IsNormalizedUnitGroupOfGroupRing( NormalizedUnitGroup( KG ) );

true

gap> IsNormalizedUnitGroupOfGroupRing( PcNormalizedUnitGroup( KG ) );

true

4.4.11 UnderlyingGroupRing

▷ UnderlyingGroupRing(U) (attribute)

Returns: a group ring
If U is the (normalized) unit group of a p-modular group algebra KG obtained us-

ing one of the functions Units(KG), PcUnits(KG), NormalizedUnitGroup(KG) or
PcNormalizedUnitGroup(KG), then the attribute UnderlyingGroupRing stores KG.

Example

gap> UnderlyingGroupRing( Units( KG ) );

<algebra-with-one of dimension 16 over GF(2)>

gap> UnderlyingGroupRing( PcUnits( KG ) );

<algebra-with-one of dimension 16 over GF(2)>

gap> UnderlyingGroupRing( NormalizedUnitGroup( KG ) );

<algebra-with-one of dimension 16 over GF(2)>

gap> UnderlyingGroupRing( PcNormalizedUnitGroup( KG ) );

<algebra-with-one of dimension 16 over GF(2)>
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4.4.12 UnitarySubgroup

▷ UnitarySubgroup(U) (attribute)

Returns: the subgroup of the unit group
Let U be the normalized unit group of a group ring in either natural (see NormalizedUnitGroup

(4.4.1)) or power-commutator (see PcNormalizedUnitGroup (4.4.2)) presentation. The attribute
stores the unitary subgroup of U , generated by all unitary units of U (see IsUnitary (4.2.9)). The
method is straightforward, so it is not recommended to run it for large groups.

Example

gap> KG := GroupRing( GF( 2 ), DihedralGroup( 8 ) );

<algebra-with-one over GF(2), with 3 generators>

gap> U := NormalizedUnitGroup( KG );

<group of size 128 with 7 generators>

gap> HU := UnitarySubgroup( U );

<group with 5 generators>

gap> IdGroup( HU );

[ 64, 261 ]

gap> V := PcNormalizedUnitGroup( KG );

<pc group of size 128 with 7 generators>

gap> HV := UnitarySubgroup( V );

Group([ f1, f2, f5, f6, f7 ])

gap> IdGroup( HV );

[ 64, 261 ]

gap> Image(NaturalBijectionToPcNormalizedUnitGroup( KG ), HU ) = HV;

true

4.4.13 BicyclicUnitGroup

▷ BicyclicUnitGroup(U) (attribute)

Returns: the subgroup of the unit group, generated by bicyclic units
Let U be the normalized unit group of a group ring in either natural (see NormalizedUnitGroup

(4.4.1)) or power-commutator (see PcNormalizedUnitGroup (4.4.2)) presentation. The attribute
stores the subgroup of U , generated by all bicyclic units ug,h and vg,h (see BicyclicUnitOfType1

(4.2.12) and BicyclicUnitOfType2 (4.2.12)), where g and h run over the elements of the underlying
group, and h do not belongs to the normalizer of ⟨g⟩ in G.

Example

gap> KG := GroupRing( GF( 2 ), DihedralGroup( 8 ) );

<algebra-with-one over GF(2), with 3 generators>

gap> U := NormalizedUnitGroup( KG );

<group of size 128 with 7 generators>

gap> BU := BicyclicUnitGroup( U );

<group with 2 generators>

gap> IdGroup( BU );

[ 4, 2 ]

gap> V := PcNormalizedUnitGroup( KG );

<pc group of size 128 with 7 generators>

gap> BV := BicyclicUnitGroup( V );
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Group([ f5*f6, f5*f7 ])

gap> IdGroup( BV );

[ 4, 2 ]

gap> Image( NaturalBijectionToPcNormalizedUnitGroup( KG ), BU ) = BV;

true

4.4.14 GroupBases

▷ GroupBases(KG) (attribute)

Returns: a list of lists of group rings elements
The subgroup B of the normalized unit group of the group algebra KG is called a group basis, if

the elements of B are linearly independent over the field K and KB = KG. If KG is a p-modular group
algebra, then GroupBases returns a list of representatives of the conjugacy classes of the group bases
of the group algebra KG in its normalised unit group.

Example

gap> D8 := DihedralGroup( 8 );

<pc group of size 8 with 3 generators>

gap> K := GF(2);

GF(2)

gap> KD8 := GroupRing( GF( 2 ), D8 );

<algebra-with-one over GF(2), with 3 generators>

gap> gb := GroupBases( KD8 );;

gap> Length( gb );

32

gap> Length( gb[1] );

8

gap> gb[1][1];

(Z(2)^0)*<identity> of ...

gap> ForAll(gb, b -> IdGroup(Group(b))=[8,3]);

true

4.5 The Lie algebra of a group algebra

4.5.1 LieAlgebraByDomain

▷ LieAlgebraByDomain(A) (method)

This method takes a group algebra as its argument, and constructs its associated Lie algebra
in which the product is the bracket operation: [a,b] = ab − ba. It is recommended that the user
never calls this method. The Lie algebra for an associative algebra should normally be created us-
ing LieAlgebra( A ). When LieAlgebra is first invoked, it constructs the Lie algebra for A using
LieAlgebraByDomain. After that it stores this Lie algebra and simply returns it if LieAlgebra is
called again.

Example

gap> G := SymmetricGroup(3);; FG := GroupRing( GF( 2 ), G );
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<algebra-with-one over GF(2), with 2 generators>

gap> L := LieAlgebra( FG );

#I LAGUNA package: Constructing Lie algebra ...

<Lie algebra over GF(2)>

4.5.2 IsLieAlgebraByAssociativeAlgebra

▷ IsLieAlgebraByAssociativeAlgebra(L) (Category)

This category signifies that the Lie algebra L was constructed as the Lie algebra associated with
an associative algebra (this piece of information cannot be obtained later).

Example

gap> KG := GroupRing( GF(3), DihedralGroup(16) );

<algebra-with-one over GF(3), with 4 generators>

gap> L := LieAlgebra ( KG );

#I LAGUNA package: Constructing Lie algebra ...

<Lie algebra over GF(3)>

gap> IsLieAlgebraByAssociativeAlgebra( L );

true

4.5.3 UnderlyingAssociativeAlgebra

▷ UnderlyingAssociativeAlgebra(L) (attribute)

Returns: the underlying associative algebra of a Lie algebra
If a Lie algebra L is constructed from an associative algebra, then it remembers this underlying

associative algebra as one of its attributes.
Example

gap> KG := GroupRing( GF(2), DihedralGroup(16) );

<algebra-with-one over GF(2), with 4 generators>

gap> L := LieAlgebra ( KG );

#I LAGUNA package: Constructing Lie algebra ...

<Lie algebra over GF(2)>

gap> UnderlyingAssociativeAlgebra( L );

<algebra-with-one over GF(2), with 4 generators>

gap> last = KG;

true

4.5.4 NaturalBijectionToLieAlgebra

▷ NaturalBijectionToLieAlgebra(A) (attribute)

Returns: a mapping
The natural linear bijection between the (isomorphic, but not equal) underlying vector spaces of

an associative algebra A and its associated Lie algebra is stored as an attribute of A . Note that this is a
vector space isomorphism between two algebras, but not an algebra isomorphism.
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Example

gap> F := GF( 2 ); G := SymmetricGroup( 3 ); FG := GroupRing( F, G );

GF(2)

Sym( [ 1 .. 3 ] )

<algebra-with-one over GF(2), with 2 generators>

gap> t := NaturalBijectionToLieAlgebra( FG );;

#I LAGUNA package: Constructing Lie algebra ...

gap> a := Random( FG );

(Z(2)^0)*()+(Z(2)^0)*(2,3)+(Z(2)^0)*(1,2)+(Z(2)^0)*(1,2,3)

gap> a * a; # product in the associative algebra

(Z(2)^0)*()+(Z(2)^0)*(2,3)+(Z(2)^0)*(1,2)+(Z(2)^0)*(1,2,3)

gap> b := a^t;

LieObject( (Z(2)^0)*()+(Z(2)^0)*(2,3)+(Z(2)^0)*(1,2)+(Z(2)^0)*(1,2,3) )

gap> b * b; # product in the Lie algebra (commutator) - must be zero!

LieObject( <zero> of ... )

4.5.5 NaturalBijectionToAssociativeAlgebra

▷ NaturalBijectionToAssociativeAlgebra(L) (attribute)

This is the inverse of the previous linear bijection, stored as an attribute of the Lie algebra L .
Example

gap> G := SymmetricGroup(3); FG := GroupRing( GF( 2 ), G );

Sym( [ 1 .. 3 ] )

<algebra-with-one over GF(2), with 2 generators>

gap> L := LieAlgebra( FG );

#I LAGUNA package: Constructing Lie algebra ...

<Lie algebra over GF(2)>

gap> s := NaturalBijectionToAssociativeAlgebra( L );;

gap> InverseGeneralMapping( s ) = NaturalBijectionToLieAlgebra( FG );

true

4.5.6 IsLieAlgebraOfGroupRing

▷ IsLieAlgebraOfGroupRing(L) (property)

If a Lie algebra L is constructed from an associative algebra which happens to be in fact a group
ring, it has many nice properties that can be used for fast algorithms, so this information is stored as a
property.

Example

gap> F := GF( 2 ); G := SymmetricGroup( 3 ); FG := GroupRing( F, G );

GF(2)

Sym( [ 1 .. 3 ] )

<algebra-with-one over GF(2), with 2 generators>

gap> L := LieAlgebra( FG );
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#I LAGUNA package: Constructing Lie algebra ...

<Lie algebra over GF(2)>

gap> IsLieAlgebraOfGroupRing( L );

true

4.5.7 UnderlyingGroup (of Lie algebra of a group ring)

▷ UnderlyingGroup(L) (attribute)

Returns: the underlying group
The underlying group of a Lie algebra L that is constructed from a group ring is defined as the

underlying group of this group ring; see UnderlyingGroup (4.1.4).
Example

gap> F := GF( 2 ); G := SymmetricGroup( 3 ); FG := GroupRing( F, G );

GF(2)

Sym( [ 1 .. 3 ] )

<algebra-with-one over GF(2), with 2 generators>

gap> L := LieAlgebra( FG );

#I LAGUNA package: Constructing Lie algebra ...

<Lie algebra over GF(2)>

gap> UnderlyingGroup( L );

Sym( [ 1 .. 3 ] )

gap> LeftActingDomain( L );

GF(2)

4.5.8 Embedding (from group to Lie algebra)

▷ Embedding(U, L) (operation)

Returns: a mapping, which is a composition of two mappings
Let FG be a group ring, let U be a submagma of G, and let L be the Lie algebra associated with

FG. Then Embedding(U, L ) returns the obvious mapping from U to L (as the composition of the
mappings Embedding( U, FG ) and NaturalBijectionToLieAlgebra( FG )).

Example

gap> F := GF( 2 ); G := SymmetricGroup( 3 ); FG := GroupRing( F, G );

GF(2)

Sym( [ 1 .. 3 ] )

<algebra-with-one over GF(2), with 2 generators>

gap> L := LieAlgebra( FG );

#I LAGUNA package: Constructing Lie algebra ...

<Lie algebra over GF(2)>

gap> f := Embedding( G, L );;

gap> (1,2)^f + (1,3)^f;

LieObject( (Z(2)^0)*(1,2)+(Z(2)^0)*(1,3) )
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4.5.9 LieCentre

▷ LieCentre(L) (method)

Returns: a Lie algebra
The centre of the Lie algebra associated with a group ring corresponds to the centre of the under-

lying group ring, and it can be calculated very fast by considering the conjugacy classes of the group.
This method returns the centre of L using this idea.

Example

gap> G := SmallGroup( 256, 400 ); FG := GroupRing( GF( 2 ), G );

<pc group of size 256 with 8 generators>

<algebra-with-one over GF(2), with 8 generators>

gap> L := LieAlgebra( FG );

#I LAGUNA package: Constructing Lie algebra ...

<Lie algebra over GF(2)>

gap> C := LieCentre( L );

<Lie algebra of dimension 28 over GF(2)>

gap> D := LieDerivedSubalgebra( L );

#I LAGUNA package: Computing the Lie derived subalgebra ...

<Lie algebra of dimension 228 over GF(2)>

gap> c := Dimension( C ); d := Dimension( D ); l := Dimension( L );

28

228

256

gap> c + d = l; # This is always the case for Lie algebras of group algebras!

true

4.5.10 LieDerivedSubalgebra

▷ LieDerivedSubalgebra(L) (method)

Returns: a Lie algebra
If L is the Lie algebra associated with a group ring, then this method returns the Lie derived

subalgebra of L . This can be done very fast using the conjugacy classes of the underlying group.
Example

gap> G := SmallGroup( 256, 400 ); FG := GroupRing( GF( 2 ), G );

<pc group of size 256 with 8 generators>

<algebra-with-one over GF(2), with 8 generators>

gap> L := LieAlgebra( FG );

#I LAGUNA package: Constructing Lie algebra ...

<Lie algebra over GF(2)>

gap> C := LieCentre( L );

<Lie algebra of dimension 28 over GF(2)>

gap> D := LieDerivedSubalgebra( L );

#I LAGUNA package: Computing the Lie derived subalgebra ...

<Lie algebra of dimension 228 over GF(2)>

gap> l := Dimension( L ); c := Dimension( C ); d := Dimension( D );

256

28

228
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gap> c + d = l; # This is always the case for Lie algebras of group algebras!

true

4.5.11 IsLieAbelian

▷ IsLieAbelian(L) (method)

The Lie algebra L of an associative algebra A is Lie abelian, if and only if A is abelian, so this
method refers to IsAbelian( A ).

Example

gap> G := SymmetricGroup( 3 ); FG := GroupRing( GF( 2 ), G);

Sym( [ 1 .. 3 ] )

<algebra-with-one over GF(2), with 2 generators>

gap> L := LieAlgebra( FG );

#I LAGUNA package: Constructing Lie algebra ...

<Lie algebra over GF(2)>

gap> IsAbelian( G );

false

gap> IsAbelian( L ); # This command should not be used for Lie algebras!

true

gap> IsLieAbelian( L ); # Instead, IsLieAbelian is the correct command.

false

4.5.12 IsLieSolvable

▷ IsLieSolvable(L) (method)

In [PPS73] Passi, Passman, and Sehgal have classified all groups G such that the Lie algebra
associated with the group ring is solvable. This method uses their classification, making it considerably
faster than the more elementary method which just calculates Lie commutators.

Example

gap> G := SmallGroup( 256, 400 ); FG := GroupRing( GF( 2 ), G );

<pc group of size 256 with 8 generators>

<algebra-with-one over GF(2), with 8 generators>

gap> L := LieAlgebra( FG );

#I LAGUNA package: Constructing Lie algebra ...

<Lie algebra over GF(2)>

gap> IsLieSolvable( L ); # This is very fast.

#I LAGUNA package: Checking Lie solvability ...

true

gap> List( LieDerivedSeries( L ), Dimension ); # This is very slow.

#I LAGUNA package: Computing the Lie derived subalgebra ...

[ 256, 228, 189, 71, 0 ]
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4.5.13 IsLieNilpotent

▷ IsLieNilpotent(L) (method)

In [PPS73] Passi, Passman, and Sehgal have classified all groups G such that the Lie algebra
associated with the group ring is Lie nilpotent. This method uses their classification, making it con-
siderably faster than the more elementary method which just calculates Lie commutators.

Example

gap> G := SmallGroup( 256, 400 ); FG := GroupRing( GF( 2 ), G );

<pc group of size 256 with 8 generators>

<algebra-with-one over GF(2), with 8 generators>

gap> L := LieAlgebra( FG );

#I LAGUNA package: Constructing Lie algebra ...

<Lie algebra over GF(2)>

gap> IsLieNilpotent( L ); # This is very fast.

#I LAGUNA package: Checking Lie nilpotency ...

true

gap> List( LieLowerCentralSeries( L ), Dimension ); # This is very slow.

#I LAGUNA package: Computing the Lie derived subalgebra ...

[ 256, 228, 222, 210, 191, 167, 138, 107, 76, 54, 29, 15, 6, 0 ]

4.5.14 IsLieMetabelian

▷ IsLieMetabelian(L) (property)

In [LR86] Levin and Rosenberger have classified all groups G such that the Lie algebra associated
with the group ring is Lie metabelian. This method uses their classification, making it considerably
faster than the more elementary method which just calculates Lie commutators.

Example

gap> G := SmallGroup( 256, 400 ); FG := GroupRing( GF( 2 ), G );

<pc group of size 256 with 8 generators>

<algebra-with-one over GF(2), with 8 generators>

gap> L := LieAlgebra( FG );

#I LAGUNA package: Constructing Lie algebra ...

<Lie algebra over GF(2)>

gap> IsLieMetabelian( L );

false

4.5.15 IsLieCentreByMetabelian

▷ IsLieCentreByMetabelian(L) (property)

In [Ros02] the third author of this package classified all groups G such that the Lie algebra asso-
ciated with the group ring is Lie centre-by-metabelian. This method uses the classification, making it
considerably faster than the more elementary method which just calculates Lie commutators.
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Example

gap> G := SymmetricGroup( 3 ); FG := GroupRing( GF( 2 ), G );

Sym( [ 1 .. 3 ] )

<algebra-with-one over GF(2), with 2 generators>

gap> L := LieAlgebra( FG );

#I LAGUNA package: Constructing Lie algebra ...

<Lie algebra over GF(2)>

gap> IsLieMetabelian( L );

false

gap> IsLieCentreByMetabelian( L );

true

4.5.16 CanonicalBasis

▷ CanonicalBasis(L) (method)

Returns: basis of a Lie algebra
The canonical basis of a group algebra FG is formed by the elements of G. Here L is the Lie

algebra associated with FG, and the method returns the images of the elements of G in L .
Example

gap> G := SymmetricGroup( 3 ); FG := GroupRing( GF( 2 ), G );

Sym( [ 1 .. 3 ] )

<algebra-with-one over GF(2), with 2 generators>

gap> L := LieAlgebra( FG );

#I LAGUNA package: Constructing Lie algebra ...

<Lie algebra over GF(2)>

gap> B := CanonicalBasis( L );

CanonicalBasis( <Lie algebra of dimension 6 over GF(2)> )

gap> Elements( B );

[ LieObject( (Z(2)^0)*() ), LieObject( (Z(2)^0)*(2,3) ),

LieObject( (Z(2)^0)*(1,2) ), LieObject( (Z(2)^0)*(1,2,3) ),

LieObject( (Z(2)^0)*(1,3,2) ), LieObject( (Z(2)^0)*(1,3) ) ]

4.5.17 IsBasisOfLieAlgebraOfGroupRing

▷ IsBasisOfLieAlgebraOfGroupRing(B) (property)

A basis B has this property if the preimages of the basis vectors in the group algebra form a group.
It can be verified if a basis has this property. This is important for the speed of the calculation of the
structure constants table; see StructureConstantsTable (4.5.18).

Example

gap> G := SymmetricGroup( 3 ); FG := GroupRing( GF( 2 ), G );

Sym( [ 1 .. 3 ] )

<algebra-with-one over GF(2), with 2 generators>

gap> L := LieAlgebra( FG );

#I LAGUNA package: Constructing Lie algebra ...
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<Lie algebra over GF(2)>

gap> B := CanonicalBasis( L );

CanonicalBasis( <Lie algebra of dimension 6 over GF(2)> )

gap> IsBasisOfLieAlgebraOfGroupRing( B );

true

4.5.18 StructureConstantsTable

▷ StructureConstantsTable(B) (method)

A very fast implementation for calculating the structure constants table for the Lie algebra L

associated with a group ring with respect to its canonical basis B using its special structure; see
CanonicalBasis (4.5.16).

Example

gap> G := CyclicGroup( 2 );; FG := GroupRing( GF( 2 ), G );;

gap> L := LieAlgebra( FG );

#I LAGUNA package: Constructing Lie algebra ...

<Lie algebra over GF(2)>

gap> B := CanonicalBasis( L );

CanonicalBasis( <Lie algebra of dimension 2 over GF(2)> )

gap> StructureConstantsTable( B );

#I LAGUNA package: Computing the structure constants table ...

[ [ [ [ ], [ ] ], [ [ ], [ ] ] ], [ [ [ ], [ ] ], [ [ ], [ ] ] ], -1,

0*Z(2) ]

4.5.19 LieUpperNilpotencyIndex

▷ LieUpperNilpotencyIndex(KG) (attribute)

In a modular group algebra KG the upper Lie power series is defined as follows: KG(1) = KG,
KG(n+1) is the associative ideal, generated by [KG(n),KG]. The upper Lie nilpotency index tL(G) of
the group algebra KG is defined to be the smallest number n such that KG(n) = 0. It can be calculated
very fast using Lie dimension subgroups [Sha91], that is, using only information about the underlying
group; see LieDimensionSubgroups (4.6.4). This is why it is stored as an attribute of the group
algebra KG rather than that of its associated Lie algebra.

Example

gap> KG := GroupRing( GF( 2 ), DihedralGroup( 16 ) );

<algebra-with-one over GF(2), with 4 generators>

gap> LieUpperNilpotencyIndex( KG );

5
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4.5.20 LieLowerNilpotencyIndex

▷ LieLowerNilpotencyIndex(KG) (attribute)

In a modular group algebra KG the lower Lie power series is defined as follows: KG[n] is the
associative ideal, generated by all (left-normed) Lie-products [x1,x2, . . . ,xn], xi ∈ KG. The lower Lie
nilpotency index tL(G) of the group algebra KG is defined to be the minimal smallest n such that
KG[n] = 0. In [Du92] the Jennings’ conjecture was proved, which means that the nilpotency class of
the normalized unit group of the modular group algebra KG is equal to tL(G)−1.

This allows to express lower Lie nilpotency index via the nilpotency class of the normalized unit
group, and with its polycyclic presentation, provided by LAGUNA, this will be faster than elementary
calculations with Lie commutators. As the previous attribute, this index is also stored as an attribute
of the group algebra KG .

Example

gap> KG := GroupRing( GF( 2 ), DihedralGroup( 16 ) );

<algebra-with-one over GF(2), with 4 generators>

gap> LieLowerNilpotencyIndex( KG );

5

4.5.21 LieDerivedLength

▷ LieDerivedLength(L) (attribute)

Let L be a Lie algebra. The Lie derived series of L is defined as follows: δ [0](L) = L and δ [n](L) =
[δ [n−1](L),δ [n−1](L)]. L is called Lie solvable if there exists an integer m such that δ [m](L) = 0. In this
case the integer m is called the Lie derived length of L, and it is returned by this function.

Example

gap> KG := GroupRing( GF ( 2 ), DihedralGroup( 16 ) );;

gap> L := LieAlgebra( KG );

#I LAGUNA package: Constructing Lie algebra ...

<Lie algebra over GF(2)>

gap> LieDerivedLength( L );

#I LAGUNA package: Computing the Lie derived subalgebra ...

3

4.6 Other commands

4.6.1 SubgroupsOfIndexTwo

▷ SubgroupsOfIndexTwo(G) (attribute)

Returns a list of subgroups of G with index two. Such subgroups are important for the investigation
of the Lie structure of the group algebra KG in the case of characteristic 2.
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Example

gap> SubgroupsOfIndexTwo( DihedralGroup( 16 ) );

[ Group([ f3, f4, f1 ]), Group([ f3, f4, f2 ]), Group([ f3, f4, f1*f2 ]) ]

4.6.2 DihedralDepth

▷ DihedralDepth(U) (method)

For a finite 2-group U , the function returns its dihedral depth, which is defined to be the maximal
number d such that U contains a subgroup isomorphic to the dihedral group of order 2d+1.

Example

gap> KD8 := GroupRing( GF(2), DihedralGroup( 8 ) );

<algebra-with-one over GF(2), with 3 generators>

gap> UD8 := PcNormalizedUnitGroup( KD8 );

<pc group of size 128 with 7 generators>

gap> DihedralDepth( UD8 );

2

4.6.3 DimensionBasis

▷ DimensionBasis(G) (method)

Returns: record with two components: ‘dimensionBasis’ (list of group elements) and ‘weights’
(list of weights)

For a finite p-group G , returns its Jennings basis as it was described in Section 3.3.
Example

gap> G := DihedralGroup( 16 );

<pc group of size 16 with 4 generators>

gap> DimensionBasis( G );

rec( dimensionBasis := [ f1, f2, f3, f4 ], weights := [ 1, 1, 2, 4 ] )

4.6.4 LieDimensionSubgroups

▷ LieDimensionSubgroups(G) (attribute)

Returns: list of subgroups
For a finite p-group G , returns the series of its Lie dimension subgroups. The m-th Lie dimension

subgroup D(m) is the intersection of the group G and 1+KG(m), where KG(m) is the m-th term of the
upper Lie power series of KG; see LieUpperNilpotencyIndex (4.5.19)

Example

gap> G := DihedralGroup( 16 );

<pc group of size 16 with 4 generators>

gap> LieDimensionSubgroups( G );

[ <pc group of size 16 with 4 generators>, Group([ f3, f4 ]), Group([ f4 ]),
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Group([ <identity> of ... ]) ]

4.6.5 LieUpperCodimensionSeries (for group ring)

▷ LieUpperCodimensionSeries(KG) (attribute)

▷ LieUpperCodimensionSeries(G) (attribute)

Returns: list of subgroups
A notion of upper Lie codimension subgroups was introduced in [CS06]. For a finite p-group G ,

Ci is the set of all elements g in G , such that the Lie commutator [g,g1, ...,gi] of the length i+ 1 is
equal to zero for all g1, ...,gi from G , and C0 = 1. By Du’s theorem (see [Du92]), Ci coincides with the
intersection of G and the i-th term of the upper central series 1 = Z0 < Z1 < Z2 < ... < Zn = V (KG)
of the normalized unit group V (KG). This fact is used in LAGUNA to speed up computation of this
series. Since V (KG) is involved in computation, for the first time the argiment should be the group
ring KG , but later you can also apply it to the group G itself.

Example

gap> G := DihedralGroup(16);

<pc group of size 16 with 4 generators>

gap> KG := GroupRing( GF(2), G );

<algebra-with-one over GF(2), with 4 generators>

gap> LieUpperCodimensionSeries( KG );

[ Group([ f1, f2, f3, f4 ]), Group([ f3, f4, f3*f4 ]), Group([ f4 ]),

Group([ f4 ]), Group([ ]) ]

gap> LieUpperCodimensionSeries( G );

[ Group([ f1, f2, f3, f4 ]), Group([ f3, f4, f3*f4 ]), Group([ f4 ]),

Group([ f4 ]), Group([ ]) ]

4.6.6 LAGInfo

▷ LAGInfo (info class)

LAGInfo is a special Info class for LAGUNA algorithms. It has 5 levels: 0, 1 (default), 2, 3 and 4.
To change info level to k, use command SetInfoLevel(LAGInfo, k).

Example

gap> SetInfoLevel( LAGInfo, 2 );

gap> KD8 := GroupRing( GF( 2 ), DihedralGroup( 8 ) );

<algebra-with-one over GF(2), with 3 generators>

gap> UD8 := PcNormalizedUnitGroup( KD8 );

#I LAGInfo: Computing the pc normalized unit group ...

#I LAGInfo: Calculating weighted basis ...

#I LAGInfo: Calculating dimension basis ...

#I LAGInfo: dimension basis finished !

#I LAGInfo: Weighted basis finished !

#I LAGInfo: Computing the augmentation ideal filtration...

#I LAGInfo: Filtration finished !

#I LAGInfo: finished, converting to PcGroup
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<pc group of size 128 with 7 generators>
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