
IO

Bindings for low level C library I/O
routines

4.8.0

18 October 2022

Max Neunhöffer

Max Neunhöffer
Email: max@9hoeffer.de

mailto://max@9hoeffer.de


IO 2

Copyright
© 2005-2014 by Max Neunhöffer

This package may be distributed under the terms and conditions of the GNU Public License Version 3 or
later (at your convenience).



Contents

1 Preface 5

2 Installation of the IO-package 6
2.1 Recompiling the documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Functions directly available from the C library 8
3.1 Differences in arguments - an overview . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 The low-level functions in detail . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3 Further C level functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 High level functions for buffered I/O 21
4.1 Types and the creation of File objects . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2 Reading and writing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.3 Other functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.4 Inter process communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5 Object serialisation (Pickling) 33
5.1 Result objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.2 Pickling and unpickling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.3 Extending the pickling framework . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

6 Really random sources 36
6.1 The functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

7 A client side implementation of the HTTP protocol 37
7.1 Functions for client side HTTP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

8 Background jobs using fork 40
8.1 Background jobs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
8.2 Parallel programming skeletons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
8.3 Worker farms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

9 I/O multiplexing 47
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
9.2 The operations for IOHub objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
9.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3



IO 4

10 Examples of usage 51
10.1 Writing and reading a file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
10.2 Using filtering programs to read and write files . . . . . . . . . . . . . . . . . . . . 52
10.3 Using filters when reading or writing files sequentially . . . . . . . . . . . . . . . . 52
10.4 Accessing a web page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
10.5 (Un-)Pickling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

11 License 55

Index 56



Chapter 1

Preface

The purpose of this package is to allow efficient and flexible input/output operations from GAP.
This is achieved by providing bindings to the low-level I/O functions in the C-library. On top of
this an implementation of buffered I/O in the GAP language is provided. Further, a framework for
serialisation of arbitrary GAP objects is implemented. Finally, an implementation of the client side of
the HTTP protocol is included in the package.

This package allows to use file based I/O, access to links and file systems, pipes, sockets, and the
UDP and TCP/IP protocols.

By default the IO package is not automatically loaded by GAP when it is installed. You must load
the package with LoadPackage("IO"); before its functions become available.

For bug reports, feature requests and suggestions, please use our issue tracker.

5

https://github.com/gap-packages/io/issues


Chapter 2

Installation of the IO-package

To get the newest version of this GAP 4 package download one of the archive files

• io-x.x.tar.gz

• io-x.x.tar.bz2

• io-x.x.zip

and unpack it using

gunzip io-x.x.tar.gz; tar xvf io-x.x.tar

or

bzip2 -d io-x.x.tar.bz2; tar xvf io-x.x.tar

or

unzip -x io-x.x.zip

respectively.
Do this in a directory called “pkg”, preferably (but not necessarily) in the “pkg” subdirectory of

your GAP 4 installation. It creates a subdirectory called “io”.
The package will not work without the following compilation step.
To compile the C part of the package do (in the pkg directory)

cd io

./configure

make

If you installed the package in another “pkg” directory than the standard “pkg” directory in your
GAP 4 installation, then you have to do two things. Firstly during compilation you have to use the
option �with-gaproot=PATH of the configure script where “PATH” is a path to the main GAP root
directory (if not given the default “../..” is assumed).

Secondly you have to specify the path to the directory containing your “pkg” directory to GAP’s
list of directories. This can be done by starting GAP with the “-l” command line option followed by
the name of the directory and a semicolon. Then your directory is prepended to the list of directories
searched. Otherwise the package is not found by GAP. Of course, you can add this option to your
GAP startup script.

6



IO 7

2.1 Recompiling the documentation

Recompiling the documentation is possible by the command “gap makedoc.g” in the io directory.
But this should not be necessary.



Chapter 3

Functions directly available from the C
library

The following functions from the C library are made available as GAP functions:
accept, bind, chdir, chmod, chown, close, closedir, connect, creat, dup, dup2, execv,

execve, execvp, exit, fchmod, fchown, fcntl, fork, fstat, getcwd, getenv, gethostbyname,
gethostname, getpid, getppid, getsockname, getsockopt, gettimeofday, gmtime, kill,
lchown, link, listen, localtime, lseek, lstat, mkdir, mkfifo, mknod, mkstemp, mkdtemp,
open, opendir, pipe, read, readdir, readlink, recv, recvfrom, rename, rewinddir, rmdir,
seekdir, select, send, sendto, setenv, setsockopt, socket, stat, symlink, telldir, unlink,
unsetenv, write.

Use the man command in your shell to get information about these functions.
For each of these functions there is a corresponding GAP global function with the prefix IO_

before its name. Apart from minor differences (see below) they take exactly the same arguments
as their C counterparts. Strings must be specified as GAP strings and integers as GAP immediate
integers. Return values are in general the same as for the C counterparts. However, an error condition
is indicated by the value fail instead of -1, and if the result can only be success or failure, true
indicates success.

All errors are reported via the LastSystemError (Reference: LastSystemError) function.
In the C library a lot of integers are defined as macros in header files. All the necessary values for

the above functions are bound to their name in the global IO record.
Warning: Existence of many of these functions and constants is platform dependent. The compi-

lation process checks existence and this leads to the situation that on the GAP levels the functions and
constants are there or not. If you want to develop platform independent GAP code using this package,
then you have to check for existence of the functions and constants you need.

3.1 Differences in arguments - an overview

The open function has to be called with three arguments. The version with two arguments is not
available on the GAP level.

The read function takes four arguments: fd is an integer file descriptor, st is a GAP string,
offset is an offset within this string (zero based), and count is the maximal number of bytes to read.
The data is read and stored into the string st , starting at position offset +1. The string st is made

8



IO 9

long enough, such that count bytes would fit into it, beginning at position offset +1. The number
of bytes read is returned or fail in case of an error.

The write function is similar, it also takes four arguments: fd is an integer file descriptor, st is
a GAP string, offset is an offset within this string (zero based), and count is the number of bytes
to write, starting from position offset +1 in the string st . The number of bytes written is returned,
or a fail in case of an error.

The opendir function only returns true or fail.
The readdir function takes no argument. It reads the directory that was specified in the last call

to opendir. It just returns a string, which is the name of a file or subdirectory in the corresponding
directory. It returns false after the last file name in the directory or fail in case of an error.

The closedir function takes no argument. It should be called after readdir returned false or
fail to avoid excessive use of file descriptors.

The functions stat, fstat, and lstat only take one argument and return a GAP record that has
the same entries as a struct stat.

The function socket can optionally take a string as third argument. In that case it automatically
calls getprotobyname to look up the protocol name.

The functions bind and connect take only one string argument as address field, because the string
already encodes the length.

There are two convenience functions IO_make_sockaddr_in (3.3.1) and
IO_MakeIPAddressPort (4.3.6) to create such addresses. The first takes two arguments addr

and port , where addr is a string of length 4, containing the 4 bytes of the IP address and port

is a port number as GAP integer. The function IO_MakeIPAddressPort (4.3.6) takes the same
arguments, but the first can be a string containing an IP address in dot notation like “137.226.152.77”
or a hostname to be looked up.

The setsockopt function has no argument optlen . The length of the string optval is taken.
The select function works as the function UNIXSelect in the GAP library.
As of now, the file locking mechanisms of fcntl using struct flock are not yet implemented

on the GAP level.

3.2 The low-level functions in detail

Nearly all of this functions return an integer result in the C library. On the GAP level this is either
returned as a non-negative integer in case of success or as fail in case of an error (where on the C
level −1 would be returned). If the integer can only be 0 for “no error” this is changed to true on the
GAP level.

3.2.1 IO_accept

▷ IO_accept(fd, addr) (function)

Returns: an integer or fail
Accepts an incoming network connection. For details see “man 2 accept”. The argument addr

can be made with IO_make_sockaddr_in (3.3.1) and contains its length such that no third argument
is necessary.



IO 10

3.2.2 IO_bind

▷ IO_bind(fd, my_addr) (function)

Returns: an integer or fail
Binds a local address to a socket. For details see “man 2 bind”. The argument my_addr can

be made with IO_make_sockaddr_in (3.3.1) and contains its length such that no third argument is
necessary.

3.2.3 IO_chdir

▷ IO_chdir(path) (function)

Returns: true or fail
Changes the current working directory. For details see “man 2 chdir”.

3.2.4 IO_chmod

▷ IO_chmod(pathname, mode) (function)

Returns: true or fail
Changes the mode of a file. For details see “man 2 chmod”.

3.2.5 IO_chown

▷ IO_chown(path, owner, group) (function)

Returns: true or fail
Sets owner and/or group of file. For details see “man 2 chown”.

3.2.6 IO_close

▷ IO_close(fd) (function)

Returns: true or fail
Closes a file descriptor. For details see “man 2 close”.

3.2.7 IO_closedir

▷ IO_closedir() (function)

Returns: true or fail
Closes a directory. For details see “man 3 closedir”. Has no arguments, because we only have

one DIR struct in the C part.

3.2.8 IO_connect

▷ IO_connect(fd, serv_addr) (function)

Returns: true or fail
Connects to a remote socket. For details see “man 2 connect”. The argument serv_addr can

be made with IO_make_sockaddr_in (3.3.1) and contains its length such that no third argument is
necessary.



IO 11

3.2.9 IO_creat

▷ IO_creat(pathname, mode) (function)

Returns: an integer or fail
Creates a new file. For details see “man 2 creat”.

3.2.10 IO_dup

▷ IO_dup(oldfd) (function)

Returns: an integer or fail
Duplicates a file descriptor. For details see “man 2 dup”.

3.2.11 IO_dup2

▷ IO_dup2(oldfd, newfd) (function)

Returns: true or fail
Duplicates a file descriptor to a new one. For details see “man 2 dup2”.

3.2.12 IO_execv

▷ IO_execv(path, argv) (function)

Returns: fail or does not return
Replaces the process with another process. For details see “man 3 execv”. The argument argv

is a list of strings. The called program does not have to be the first argument in this list.

3.2.13 IO_execve

▷ IO_execve(path, argv, envp) (function)

Returns: fail or does not return
Replaces the process with another process. For details see “man 3 execve”. The arguments

argv and envp are both lists of strings. The called program does not have to be the first argument
in argv . The list envp can be made with IO_MakeEnvList (4.3.8) from a record acquired from
IO_Environment (4.3.7) and modified later.

3.2.14 IO_execvp

▷ IO_execvp(path, argv) (function)

Returns: fail or does not return
Replaces the process with another process. For details see “man 3 execvp”. The argument argv

is a list of strings. The called program does not have to be the first argument in this list.

3.2.15 IO_exit

▷ IO_exit(status) (function)

Stops process immediately with return code status . For details see “man 2 exit”. The argu-
ment status must be an integer. Does not return.



IO 12

3.2.16 IO_fchmod

▷ IO_fchmod(fd, mode) (function)

Returns: true or fail
Changes mode of an opened file. For details see “man 2 fchmod”.

3.2.17 IO_fchown

▷ IO_fchown(fd, owner, group) (function)

Returns: true or fail
Changes owner and/or group of an opened file. For details see “man 2 fchown”.

3.2.18 IO_fcntl

▷ IO_fcntl(fd, cmd, arg) (function)

Returns: an integer or fail
Does various things to control the behaviour of a file descriptor. For details see “man 2 fcntl”.

3.2.19 IO_fork

▷ IO_fork() (function)

Returns: an integer or fail
Forks off a child process, which is an identical copy. For details see “man 2 fork”. Note that

IO_fork (3.2.19) activates our SIGCHLD handler (see IO_InstallSIGCHLDHandler (3.3.3)). Note
that you must use the IO_WaitPid (3.2.66) function to wait or check for the termination of child
processes, or call IO_IgnorePid (3.2.67) to ignore the child.

3.2.20 IO_fstat

▷ IO_fstat(fd) (function)

Returns: a record or fail
Returns the file meta data for an opened file. For details see “man 2 fstat”. A GAP record is

returned with the same entries than a struct stat.

3.2.21 IO_getcwd

▷ IO_getcwd() (function)

Returns: a string or fail
Returns the current working directory. For details see “man 3 getcwd”.

3.2.22 IO_getenv

▷ IO_getenv(name) (function)

Returns: a string or fail
Return the current value of the environment variable name . If the variable is not in the current

environment, fail is returned. For details see “man 3 getenv”.



IO 13

3.2.23 IO_gethostbyname

▷ IO_gethostbyname(name) (function)

Returns: a record or fail
Return host information by name. For details see “man 3 gethostbyname”. A GAP record is

returned with all the relevant information about the host.

3.2.24 IO_gethostname

▷ IO_gethostname() (function)

Returns: a string or fail
Return host name. For details see “man 3 gethostname”.

3.2.25 IO_getpid

▷ IO_getpid() (function)

Returns: an integer
Returns the process ID of the current process as an integer. For details see “man 2 getpid”.

3.2.26 IO_getppid

▷ IO_getppid() (function)

Returns: an integer
Returns the process ID of the parent of the current process as an integer. For details see “man 2

getppid”.

3.2.27 IO_getsockname

▷ IO_getsockname(fd) (function)

Returns: a string or fail
Get a socket name. For details see “man 2 getsockname”.

3.2.28 IO_getsockopt

▷ IO_getsockopt(fd, level, optname, optval) (function)

Returns: true or false
Get a socket option. For details see “man 2 getsockopt”. Note that the argument optval carries

its length around, such that no 5th argument is necessary.

3.2.29 IO_gettimeofday

▷ IO_gettimeofday() (function)

Returns: A record with components tv_sec and tv_usec

This returns the time elapsed since 1.1.1970, 0:00 GMT. The component tv_sec contains the
number of full seconds and the number tv_usec the additional microseconds.



IO 14

3.2.30 IO_gmtime

▷ IO_gmtime(seconds) (function)

Returns: A record
The argument is the number of seconds that have elapsed since 1.1.1970, 0:00 GMT. The result

is a record with the current Greenwich mean time broken down into date and time as in the C-library
function gmtime.

3.2.31 IO_kill

▷ IO_kill(pid, sig) (function)

Returns: true or fail
Sends the signal sig to the process with process ID pid . For details see “man 2 kill”. The

signal numbers available can be found in the global IO record with names like SIGTERM.

3.2.32 IO_lchown

▷ IO_lchown(path, owner, group) (function)

Returns: true or false
Changes owner and/or group of a file not following links. For details see “man 2 lchown”.

3.2.33 IO_link

▷ IO_link(oldpath, newpath) (function)

Returns: true or false
Create a hard link. For details see “man 2 link”.

3.2.34 IO_listen

▷ IO_listen(fd, backlog) (function)

Returns: true or false
Switch a socket to listening. For details see “man 2 listen”.

3.2.35 IO_localtime

▷ IO_localtime(seconds) (function)

Returns: A record
The argument is the number of seconds that have elapsed since 1.1.1970, 0:00 GMT. The result

is a record with the current local time broken down into date and time as in the C-library function
localtime.

3.2.36 IO_lseek

▷ IO_lseek(fd, offset, whence) (function)

Returns: an integer or fail
Seeks within an open file. For details see “man 2 lseek”.



IO 15

3.2.37 IO_lstat

▷ IO_lstat(name) (function)

Returns: a record or fail
Returns the file meta data for a file not following links. For details see “man 2 lstat”. A GAP

record is returned with the same entries than a struct stat.

3.2.38 IO_mkdir

▷ IO_mkdir(pathname, mode) (function)

Returns: true or false
Creates a directory. For details see “man 2 mkdir”.

3.2.39 IO_mkfifo

▷ IO_mkfifo(pathname, mode) (function)

Returns: true or false
Creates a FIFO special file (a named pipe). For details see “man 3 mkfifo”.

3.2.40 IO_mknod

▷ IO_mknod(pathname, mode, dev) (function)

Returns: true or false
Create a special or ordinary file. For details see “man 2 mknod”.

3.2.41 IO_mkstemp

▷ IO_mkstemp(template) (function)

Returns: an integer or fail
Create a special or ordinary file. For details see “man 3 mkstemp”.

3.2.42 IO_mkdtemp

▷ IO_mkdtemp(template) (function)

Returns: a string or fail
Create a temporary directory. For details see “man 3 mkdtemp”.

3.2.43 IO_open

▷ IO_open(pathname, flags, mode) (function)

Returns: an integer or fail
Open and possibly create a file or device. For details see “man 2 open”. Only the variant with 3

arguments can be used.



IO 16

3.2.44 IO_opendir

▷ IO_opendir(name) (function)

Returns: true or false
Opens a directory. For details see “man 3 opendir”. Note that only true is returned if everything

is OK, since only one DIR struct is stored on the C level and thus only one directory can be open at
any time.

3.2.45 IO_pipe

▷ IO_pipe() (function)

Returns: a record or fail
Create a pair of file descriptors with a pipe between them. For details see “man 2 pipe”. Note that

no arguments are needed. The result is either fail in case of an error or a record with two components
toread and towrite bound to the two filedescriptors for reading and writing respectively.

3.2.46 IO_read

▷ IO_read(fd, st, offset, count) (function)

Returns: an integer or fail
Reads from file descriptor. For details see “man 2 read”. Note that there is one more argument

offset to specify at which position in the string st the read data should be stored. Note that offset
zero means at the beginning of the string, which is position 1 in GAP. The number of bytes read or
fail in case of an error is returned.

3.2.47 IO_readdir

▷ IO_readdir() (function)

Returns: a string or fail or false
Reads from a directory. For details see “man 2 readdir”. Note that no argument is required as

we have only one DIR struct on the C level. If the directory is read completely false is returned, and
otherwise a string. An error is indicated by fail.

3.2.48 IO_readlink

▷ IO_readlink(path, buf, bufsize) (function)

Returns: an integer or fail
Reads the value of a symbolic link. For details see “man 2 readlink”. buf is modified. The

new length of buf is returned or fail in case of an error.

3.2.49 IO_recv

▷ IO_recv(fd, st, offset, len, flags) (function)

Returns: an integer or fail
Receives data from a socket. For details see “man 2 recv”. Note the additional argument offset

which plays the same role as for the IO_read (3.2.46) function.



IO 17

3.2.50 IO_recvfrom

▷ IO_recvfrom(fd, st, offset, len, flags, addr) (function)

Returns: an integer or fail
Receives data from a socket with given address. For details see “man 2 recvfrom”. Note the

additional argument offset which plays the same role as for the IO_read (3.2.46) function. The
argument addr can be made with IO_make_sockaddr_in (3.3.1) and contains its length such that no
7th argument is necessary.

3.2.51 IO_rename

▷ IO_rename(oldpath, newpath) (function)

Returns: true or false
Renames a file or moves it. For details see “man 2 rename”.

3.2.52 IO_rewinddir

▷ IO_rewinddir() (function)

Returns: true or fail
Rewinds a directory. For details see “man 2 rewinddir”. Note that no argument is required as

we have only one DIR struct on the C level. Returns fail only, if no prior IO_opendir (3.2.44)
command has been called.

3.2.53 IO_rmdir

▷ IO_rmdir(name) (function)

Returns: true or fail
Removes an empty directory. For details see “man 2 rmdir”.

3.2.54 IO_seekdir

▷ IO_seekdir(offset) (function)

Returns: true or fail
Sets the position of the next readdir call. For details see “man 3 seekdir”. Note that no second

argument is required as we have only one DIR struct on the C level.

3.2.55 IO_select

▷ IO_select(inlist, outlist, exclist, timeoutsec, timeoutusec) (function)

Returns: an integer or fail
Used for I/O multiplexing. For details see “man 2 select”. inlist , outlist and exclist

are lists of filedescriptors, which are modified. If the corresponding file descriptor is not yet ready,
it is replaced by fail. The timeout values timeoutsec and timeoutusec correspond to the usual
arguments of select, if both are immediate integers, they are set, otherwise select is called with no
timeout value.



IO 18

3.2.56 IO_send

▷ IO_send(fd, st, offset, len, flags) (function)

Returns: an integer or fail
Sends data to a socket. For details see “man 2 send”. Note that the additional argument offset

specifies the position of the data to send within the string st . It is zero based, meaning that zero
indicates the start of the string, which is position 1 in GAP.

3.2.57 IO_sendto

▷ IO_sendto(fd, st, offset, len, flags, addr) (function)

Returns: an integer or fail
Sends data to a socket. For details see “man 2 sendto”. Note that the additional argument

offset specifies the position of the data to send within the string st . It is zero based, meaning that
zero indicates the start of the string, which is position 1 in GAP. The argument addr can be made
with IO_make_sockaddr_in (3.3.1) and contains its length such that no 7th argument is necessary.

3.2.58 IO_setenv

▷ IO_setenv(name, value, overvwrite) (function)

Returns: true or fail
Set the current value of the environment variable name to value if it has either not been set before,

or overwrite is true. For details see “man 3 setenv”.

3.2.59 IO_setsockopt

▷ IO_setsockopt(fd, level, optname, optval) (function)

Returns: true or fail
Sets a socket option. For details see “man 2 setsockopt”. Note that the argument optval

carries its length around, such that no 5th argument is necessary.

3.2.60 IO_socket

▷ IO_socket(domain, type, protocol) (function)

Returns: an integer or fail
Creates a socket, an endpoint for communication. For details see “man 2 socket”. There is

one little special: On systems that have getprotobyname you can pass a string as third argument
protocol which is automatically looked up by getprotobyname.

3.2.61 IO_stat

▷ IO_stat(pathname) (function)

Returns: a record or fail
Returns the file metadata for the file pathname . For details see “man 2 stat”. A GAP record is

returned with the same entries than a struct stat.



IO 19

3.2.62 IO_symlink

▷ IO_symlink(oldpath, newpath) (function)

Returns: true or fail
Creates a symbolic link. For details see “man 2 symlink”.

3.2.63 IO_telldir

▷ IO_telldir() (function)

Returns: an integer or fail
Return current location in directory. For details see “man 3 telldir”. Note that no second

argument is required as we have only one DIR struct on the C level.

3.2.64 IO_unlink

▷ IO_unlink(pathname) (function)

Returns: true or fail
Delete a name and possibly the file it refers to. For details see “man 2 unlink”.

3.2.65 IO_unsetenv

▷ IO_unsetenv(name) (function)

Returns: true or fail
Remove the environment variable name . For details see “man 3 unsetenv”.

3.2.66 IO_WaitPid

▷ IO_WaitPid(pid, wait) (function)

Returns: a record or fail or false
Waits for the termination of a child process. For details see “man 2 waitpid”. The first argument

must be a process id, otherwise the function immediately exits with fail as return value.
The second argument wait must be either true or false. In the first case, the call blocks until

new information about a terminated child process is available. In the second case no such waiting is
performed, the call returns immediately. If the child process has not yet terminated, returns false;
otherwise, returns a GAP record describing the PID, the return value of waitpid, if the process exited
normally and the exit status of the process.

See IO_fork (3.2.19). If you do not care about the return value of the process, call IO_IgnorePid
(3.2.67).

3.2.67 IO_IgnorePid

▷ IO_IgnorePid(pid) (function)

Returns: Nothing
Disowns a child process. This means there is no need to call IO_WaitPid (3.2.66). Calling

IO_WaitPid (3.2.66) on a pid which was previously passed to IO_IgnorePid (3.2.67) may cause an
infinite loop.F



IO 20

3.2.68 IO_write

▷ IO_write(fd, st, offset, count) (function)

Returns: an integer or fail
Writes to a file descriptor. For details see “man 2 write”. Note that the additional argument

offset specifies the position of the data to send within the string st . It is zero based, meaning that
zero indicates the start of the string, which is position 1 in GAP.

3.3 Further C level functions

The following functions do not correspond to functions in the C library, but are there to provide
convenience to use other functions:

3.3.1 IO_make_sockaddr_in

▷ IO_make_sockaddr_in(ip, port) (function)

Returns: a string or fail
Makes a struct sockaddr_in from IP address and port. The IP address must be given as a string

of length four, containing the four bytes of an IPv4 address in natural order. The port must be a port
number. Returns a string containing the struct, which can be given to all functions above having an
address argument.

3.3.2 IO_environ

▷ IO_environ() (function)

Returns: a list of strings
For details see “man environ”. Returns the current environment as a list of strings of the form

“key=value”.

3.3.3 IO_InstallSIGCHLDHandler

▷ IO_InstallSIGCHLDHandler() (function)

Returns: true or false
Installs our SIGCHLD handler. This functions works as an idempotent. That is, calling it twice

does exactly the same as calling it once. It returns true when it is called for the first time since then a
pointer to the old signal handler is stored in a global variable. This function is automatically called by
any function which creates new processes, so never needs to be called unless the handler was explictly
disabled with IO_RestoreSIGCHLDHandler (3.3.4) See IO_fork (3.2.19).

3.3.4 IO_RestoreSIGCHLDHandler

▷ IO_RestoreSIGCHLDHandler() (function)

Restores the original SIGCHLD handler. This function works as an idempotent. That is, calling it
twice does exactly the same as calling it once. It returns true when it is called for the first time after
calling IO_InstallSIGCHLDHandler (3.3.3). See IO_fork (3.2.19).



Chapter 4

High level functions for buffered I/O

The functions in the previous sections are intended to be a possibility for direct access to the low level
I/O functions in the C library. Thus, the calling conventions are strictly as in the original.

The functionality described in this section is implemented completely in the GAP language and is
intended to provide a good interface for programming in GAP. The fundamental object for I/O on the
C library level is the file descriptor, which is just a non-negative integer representing an open file of
the process. The basic idea is to wrap up file descriptors in GAP objects that do the buffering.

Note that considerable care has been taken to ensure that one can do I/O multiplexing with buffered
I/O. That is, one always has the possibility to make sure before a read or write operation, that this read
or write operation will not block. This is crucial when one wants to serve more than one I/O channel
from the same (single-threaded) GAP process. This design principle sometimes made it necessary to
have more than one function for a certain operation. Those functions usually differ in a subtle way
with respect to their blocking behaviour.

One remark applies again to nearly all functions presented here: If an error is indicated by the
returned value fail one can use the library function LastSystemError (Reference: LastSyste-
mError) to find out more about the cause of the error. This fact is not mentioned with every single
function.

4.1 Types and the creation of File objects

The wrapped file objects are in the following category:

4.1.1 IsFile

▷ IsFile(o) (Category)

Returns: true or false
The category of File objects.
To create objects in this category, one uses the following function:

4.1.2 IO_WrapFD

▷ IO_WrapFD(fd, rbufsize, wbufsize) (function)

Returns: a File object
The argument fd must be a file descriptor (i.e. an integer) or -1 (see below).

21



IO 22

rbufsize can either be false for unbuffered reading or an integer buffer size or a string. If it is
an integer, a read buffer of that size is used. If it is a string, then fd must be -1 and a File object that
reads from that string is created.

wbufsize can either be false for unbuffered writing or an integer buffer size or a string. If it is
an integer, a write buffer of that size is used. If it is a string, then fd must be -1 and a File object that
appends to that string is created.

The result of this function is a new File object.
A convenient way to do this for reading or writing of files on disk is the following function:

4.1.3 IO_File (mode)

▷ IO_File(filename[, mode]) (function)

▷ IO_File(filename[, bufsize]) (function)

▷ IO_File(filename, mode, bufsize) (function)

Returns: a File object or fail
The argument filename must be a string specifying the path name of the file to work on. mode

must also be a string with possible values “r”, “w”, or “a”, meaning read access, write access (with cre-
ating and truncating), and append access respectively. If mode is omitted, it defaults to “r”. bufsize ,
if given, must be a positive integer or false, otherwise it defaults to IO.DefaultBufSize. Inter-
nally, the IO_open (3.2.43) function is used and the result file descriptor is wrapped using IO_WrapFD

(4.1.2) with bufsize as the buffer size.
The result is either fail in case of an error or a File object in case of success.
Note that there is a similar function IO_FilteredFile (4.4.9) which also creates a File object

but with additional functionality with respect to a pipeline for filtering. It is described in its section in
Section 4.4. There is some more low-level functionality to acquire open file descriptors. These can be
wrapped into File objects using IO_WrapFD (4.1.2).

4.2 Reading and writing

Once a File object is created, one can use the following functions on it:

4.2.1 IO_ReadUntilEOF

▷ IO_ReadUntilEOF(f) (function)

Returns: a string or fail
This function reads all data from the file f until the end of file. The data is returned as a GAP

string. If the file is already at end of file, an empty string is returned. If an error occurs, then fail is
returned. Note that you still have to call IO_Close (4.2.16) on the File object to properly close the
file later.

4.2.2 IO_ReadBlock

▷ IO_ReadBlock(f, len) (function)

Returns: a string or fail
This function gets two arguments, the first argument f must be a File object and the second

argument len must be a positive integer. The function tries to read len bytes and returns a string of
that length. If and only if the end of file is reached earlier, fewer bytes are returned. If an error occurs,



IO 23

fail is returned. Note that this function blocks until either len bytes are read, or the end of file is
reached, or an error occurs. For the case of pipes or internet connections it is possible that currently
no more data is available, however, by definition the end of file is only reached after the connection
has been closed by the other side!

4.2.3 IO_ReadLine

▷ IO_ReadLine(f) (function)

Returns: a string or fail
This function gets exactly one argument, which must be a File object f . It reads one line of data,

where the definition of line is operating system dependent. The line end character(s) are included in
the result. The function returns a string with the line in case of success and fail in case of an error.
In the latter case, one can query the error with LastSystemError (Reference: LastSystemError).

Note that the reading is done via the buffer of f , such that this function will be quite fast also for
large amounts of data.

If the end of file is hit without a line end, the rest of the file is returned. If the file is already at
end of file before the call, then a string of length 0 is returned. Note that this is not an error but the
standard end of file convention!

4.2.4 IO_ReadLines

▷ IO_ReadLines(f[, max]) (function)

Returns: a list of strings or fail
This function gets one or two arguments, the first of which must always be a File object f . It

reads lines of data (where the definition of line is operating system dependent) either until end of file
(without a second argument) or up to max lines (with a second argument max . A list of strings with
the result is returned, if everything went well and fail oterwise. In the latter case, one can query the
error with LastSystemError (Reference: LastSystemError).

Note that the reading is done via the buffer of f , such that this function will be quite fast also for
large amounts of data.

If the file is already at the end of file, the function returns a list of length 0. Note that this is not an
error but the standard end of file convention!

4.2.5 IO_HasData

▷ IO_HasData(f) (function)

Returns: true or false
This function takes one argument f which must be a File object. It returns true or false

according to whether there is data to read available in the file f . A return value of true guarantees
that the next call to IO_Read (4.2.6) on that file will succeed without blocking and return at least one
byte or an empty string to indicate the end of file.

4.2.6 IO_Read

▷ IO_Read(f, len) (function)

Returns: a string or fail
The function gets two arguments, the first of which must be a File object f . The second argument

must be a positive integer. The function reads data up to len bytes. A string with the result is



IO 24

returned, if everything went well and fail otherwise. In the latter case, one can query the error with
LastSystemError (Reference: LastSystemError).

Note that the reading is done via the buffer of f , such that this function will be quite fast also for
large amounts of data.

If the file is already at the end of the file, the function returns a string of length 0. Note that this is
not an error!

If a previous call to IO_HasData (4.2.5) or to IO_Select (4.3.3) indicated that there is data
available to read, then it is guaranteed that the function IO_Read (4.2.6) does not block and returns at
least one byte if the file is not yet at end of file and an empty string otherwise.

4.2.7 IO_Write

▷ IO_Write(f[, things, ...]) (function)

Returns: an integer or fail
This function can get an arbitrary number of arguments, the first of which must be a File object

f . All the other arguments are just written to f if they are strings. Otherwise, the String function is
called on them and the result is written out to f .

Note that the writing is done buffered. That is, the data is first written to the buffer and only really
written out after the buffer is full or after the user explicitly calls IO_Flush (4.2.10) on f .

The result is either the number of bytes written in case of success or fail in case of an error. In
the latter case the error can be queried with LastSystemError (Reference: LastSystemError).

Note that this function blocks until all data is at least written into the buffer and might block until
data can be sent again if the buffer is full.

4.2.8 IO_WriteLine

▷ IO_WriteLine(f, line) (function)

Returns: an integer or fail
Behaves like IO_Write (4.2.7) but works on a single string line and sends an (operating sys-

tem dependent) end of line string afterwards. Also IO_Flush (4.2.10) is called automatically after
the operation, such that one can be sure, that the data is actually written out after the function has
completed.

4.2.9 IO_WriteLines

▷ IO_WriteLines(f, list) (function)

Returns: an integer or fail
Behaves like IO_Write (4.2.7) but works on a list of strings list and sends an (operating system

dependent) end of line string after each string in the list. Also IO_Flush (4.2.10) is called automat-
ically after the operation, such that one can be sure, that the data is actually written out after the
function has completed.

4.2.10 IO_Flush

▷ IO_Flush(f) (function)

Returns: true or fail
This function gets one argument f , which must be a File object. It writes out all the data that is

in the write buffer. This is not necessary before the call to the function IO_Close (4.2.16), since that



IO 25

function calls IO_Flush (4.2.10) automatically. However, it is necessary to call IO_Flush (4.2.10)
after calls to IO_Write (4.2.7) to be sure that the data is really sent out. The function returns true if
everything goes well and fail if an error occurs.

Remember that the functions IO_WriteLine (4.2.8) and IO_WriteLines (4.2.9) implicitly call
IO_Flush (4.2.10) after they are done.

Note that this function might block until all data is actually written to the file descriptor.

4.2.11 IO_WriteFlush

▷ IO_WriteFlush(f[, things]) (function)

Returns: an integer or fail
This function behaves like IO_Write (4.2.7) followed by a call to IO_Flush (4.2.10). It returns

either the number of bytes written or fail if an error occurs.

4.2.12 IO_ReadyForWrite

▷ IO_ReadyForWrite(f) (function)

Returns: true or false
This function takes one argument f which must be a File object. It returns true or false

according to whether the file f is ready to write. A return value of true guarantees that the next call
to IO_WriteNonBlocking (4.2.13) on that file will succeed without blocking and accept at least one
byte.

4.2.13 IO_WriteNonBlocking

▷ IO_WriteNonBlocking(f, st, pos, len) (function)

Returns: an integer or fail
This function takes four arguments. The first one f must be a File object, the second st a string,

and the arguments pos and len must be integers, such that positions pos + 1 until pos + len are
bound in st . The function tries to write up to len bytes from st from position pos +1 to the file f .
If a previous call to IO_ReadyForWrite (4.2.12) or to IO_Select (4.3.3) indicates that f is writable,
then it is guaranteed that the following call to IO_WriteNonBlocking (4.2.13) will not block and
accept at least one byte of data. Note that it is not guaranteed that all len bytes are written. The
function returns the number of bytes written or fail if an error occurs.

4.2.14 IO_ReadyForFlush

▷ IO_ReadyForFlush(f) (function)

Returns: true or false
This function takes one argument f which must be a File object. It returns true or false

according to whether the file f is ready to flush. A return value of true guarantees that the next call
to IO_FlushNonBlocking (4.2.15) on that file will succeed without blocking and flush out at least
one byte. Note that this does not guarantee, that this call succeeds to flush out the whole content of
the buffer!



IO 26

4.2.15 IO_FlushNonBlocking

▷ IO_FlushNonBlocking(f) (function)

Returns: true, false, or fail
This function takes one argument f which must be a File object. It tries to write all data in

the writing buffer to the file descriptor. If this succeeds, the function returns true and false oth-
erwise. If an error occurs, fail is returned. If a previous call to IO_ReadyForFlush (4.2.14)
or IO_Select (4.3.3) indicated that f is flushable, then it is guaranteed that the following call to
IO_FlushNonBlocking (4.2.15) does not block. However, it is not guaranteed that true is returned
from that call.

4.2.16 IO_Close

▷ IO_Close(f) (function)

Returns: true or fail
This function closes the File object f after writing all data in the write buffer out and closing the

file descriptor. All buffers are freed. In case of an error, the function returns fail and otherwise true.
Note that for pipes to other processes this function collects data about the terminated processes using
IO_WaitPid (3.2.66).

4.3 Other functions

4.3.1 IO_GetFD

▷ IO_GetFD(f) (function)

Returns: an integer
This function returns the real file descriptor that is behind the File object f .

4.3.2 IO_GetWBuf

▷ IO_GetWBuf(f) (function)

Returns: a string or false
This function gets one argument f which must be a File object and returns the writing buffer of

that File object. This is necessary for File objects, that are not associated to a real file descriptor but
just collect everything that was written in their writing buffer. Remember to use this function before
closing the File object.

4.3.3 IO_Select

▷ IO_Select(r, w, f, e, t1, t2) (function)

Returns: an integer or fail
This function is the corresponding function to IO_select (3.2.55) for buffered file access. It

behaves similarly to that function. The differences are the following: There are four lists of files r , w ,
f , and e . They all can contain either integers (standing for file descriptors) or File objects. The list
r is for checking, whether files or file descriptors are ready to read, the list w is for checking whether
they are ready to write, the list f is for checking whether they are ready to flush, and the list e is for
checking whether they have exceptions.



IO 27

For File objects it is always first checked, whether there is either data available in a reading buffer
or space in a writing buffer. If so, they are immediately reported to be ready (this feature makes the
list of File objects to test for flushability necessary). For the remaining files and for all specified file
descriptors, the function IO_select (3.2.55) is called to get an overview about readiness. The timeout
values t1 and t2 are set to zero for immediate returning if one of the requested buffers were ready.

IO_Select (4.3.3) returns the number of files or file descriptors that are ready to serve or fail if
an error occurs.

The following function is a convenience function for directory access:

4.3.4 IO_ListDir

▷ IO_ListDir(pathname) (function)

Returns: a list of strings or fail
This function gets a string containing a path name as single argument and returns a list of strings

that are the names of the files in that directory, or fail, if an error occurred.

4.3.5 ChangeDirectoryCurrent

▷ ChangeDirectoryCurrent(pathname) (function)

Returns: true on success and fail on failure
Changes the current directory. Returns true on success and fail on failure.
The following function is used to create strings describing a pair of an IP address and a port number

in a binary way. These strings can be used in connection with the C library functions connect, bind,
recvfrom, and sendto for the arguments needing such address pairs.

4.3.6 IO_MakeIPAddressPort

▷ IO_MakeIPAddressPort(ipstring, portnr) (function)

Returns: a string
This function gets a string ipstring containing an IP address in dot notation, i.e. four numbers

in the range from 0 to 255 separated by dots “.”, and an integer portnr , which is a port number. The
result is a string of the correct length to be used for the low level C library functions, wherever IP
address port number pairs are needed. The string ipstring can also be a host name, which is then
looked up using IO_gethostbyname (3.2.23) to find the IP address.

4.3.7 IO_Environment

▷ IO_Environment() (function)

Returns: a record or fail
Takes no arguments, uses IO_environ (3.3.2) to get the environment and returns a record in which

the component names are the names of the environment variables and the values are the values. This
can then be changed and the changed record can be given to IO_MakeEnvList (4.3.8) to produce
again a list which can be used for IO_execve (3.2.13) as third argument.

4.3.8 IO_MakeEnvList

▷ IO_MakeEnvList(r) (function)

Returns: a list of strings



IO 28

Takes a record as returned by IO_Environment (4.3.7) and turns it into a list of strings as needed
by IO_execve (3.2.13) as third argument.

4.4 Inter process communication

4.4.1 IO_FindExecutable

▷ IO_FindExecutable(path) (function)

Returns: fail or the path to an executable
If the path name path contains a slash, this function simply checks whether the string path refers

to an executable file. If so, path is returned as is. Otherwise, fail is returned. If the path name
path does not contain a slash, all directories in the environment variable PATH are searched for an
executable with name path . If so, the full path to that executable is returned, otherwise fail.

This function is used whenever one of the following functions gets an argument that should refer
to an executable.

4.4.2 IO_CloseAllFDs

▷ IO_CloseAllFDs(exceptions) (function)

Returns: nothing
Closes all file descriptors except those listed in exceptions , which must be a list of integers.

4.4.3 IO_Popen

▷ IO_Popen(path, argv, mode) (function)

Returns: a File object or fail
The argument path must refer to an executable file in the sense of IO_FindExecutable (4.4.1).
Starts a child process using the executable in path with either stdout or stdin being a pipe. The

argument mode must be either the string “r” or the string “w”.
In the first case, the standard output of the child process will be the writing end of a pipe. A

File object for reading connected to the reading end of the pipe is returned. The standard input and
standard error of the child process will be the same as in the calling GAP process.

In the second case, the standard input of the child process will be the reading end of a pipe. A
File object for writing connected to the writing end of the pipe is returned. The standard output and
standard error of the child process will be the same as in the calling GAP process.

In case of an error, fail is returned.
The process will usually die, when the pipe is closed, but can also do so without that. The File

object remembers the process ID of the started process and the IO_Close (4.2.16) function then calls
IO_WaitPid (3.2.66) for it to acquire information about the terminated process.

Note that IO_Popen (4.4.3) activates our SIGCHLD handler (see IO_InstallSIGCHLDHandler

(3.3.3)).
In either case the File object will have the attribute “ProcessID” set to the process ID of the

child process.



IO 29

4.4.4 IO_Popen2

▷ IO_Popen2(path, argv) (function)

Returns: a record or fail
The argument path must refer to an executable file in the sense of IO_FindExecutable (4.4.1).
A new child process is started using the executable in path . The standard input and standard

output of it are pipes. The writing end of the input pipe and the reading end of the output pipe are
returned as File objects bound to two components “stdin” and “stdout” (resp.) of the returned
record. This means, you have to write to “stdin” and read from “stdout” in the calling GAP
process. The standard error of the child process will be the same as the one of the calling GAP
process.

Returns fail if an error occurred.
The process will usually die, when one of the pipes is closed. The File objects remember the

process ID of the called process and the function call to IO_Close (4.2.16) for the stdout object will
call IO_WaitPid (3.2.66) for it to acquire information about the terminated process.

Note that IO_Popen2 (4.4.4) activates our SIGCHLD handler (see IO_InstallSIGCHLDHandler
(3.3.3)).

Both File objects will have the attribute “ProcessID” set to the process ID of the child process,
which will also be bound to the “pid” component of the returned record.

4.4.5 IO_Popen3

▷ IO_Popen3(path, argv) (function)

Returns: a record or fail
The argument path must refer to an executable file in the sense of IO_FindExecutable (4.4.1).
A new child process is started using the executable in path The standard input, standard output,

and standard error of it are pipes. The writing end of the input pipe, the reading end of the output pipe
and the reading end of the error pipe are returned as File objects bound to two components “stdin”,
“stdout”, and “stderr” (resp.) of the returned record. This means, you have to write to “stdin”
and read from “stdout” and “stderr” in the calling GAP process.

Returns fail if an error occurred.
The process will usually die, when one of the pipes is closed. All three File objects will remember

the process ID of the newly created process and the call to the IO_Close (4.2.16) function for the
stdout object will call IO_WaitPid (3.2.66) for it to acquire information about the terminated child
process.

Note that IO_Popen3 (4.4.5) activates our SIGCHLD handler (see IO_InstallSIGCHLDHandler
(3.3.3)).

All three File objects will have the attribute “ProcessID” set to the process ID of the child
process, which will also be bound to the “pid” component of the returned record.

4.4.6 IO_StartPipeline

▷ IO_StartPipeline(progs, infd, outfd, switcherror) (function)

Returns: a record or fail
The argument progs is a list of pairs, the first entry being a path to an executable (in the sense

of IO_FindExecutable (4.4.1)), the second an argument list, the argument infd is an open file
descriptor for reading, outfd is an open file descriptor for writing, both can be replaced by the string



IO 30

“open” in which case a new pipe will be opened. The argument switcherror is a boolean indicating
whether standard error channels are also switched to the corresponding output channels.

This function starts up all processes and connects them with pipes. The input of the first is switched
to infd and the output of the last to outfd .

Returns a record with the following components: pids is a list of process ids if everything worked.
For each process for which some error occurred the corresponding pid is replaced by fail. The stdin
component is equal to false, or to the file descriptor of the writing end of the newly created pipe
which is connected to the standard input of the first of the new processes if infd was “open”. The
stdout component is equal to false or to the file descriptor of the reading end of the newly created
pipe which is connected to the standard output of the last of the new processes if outfd was “open”.

Note that the SIGCHLD handler of the IO package is installed by this function (see
IO_InstallSIGCHLDHandler (3.3.3)) and that it lies in the responsibility of the caller to use
IO_WaitPid (3.2.66) to ask for the status information of all child processes after their termination, or
call IO_IgnorePid (3.2.67) to ignore the return value of a process.

4.4.7 IO_StringFilterFile

▷ IO_StringFilterFile(progs, filename) (function)

Returns: a string or fail
Reads the file with the name filename , however, a pipeline is created by the processes described

by progs (see IO_StartPipeline (4.4.6)) to filter the content of the file through the pipeline. The
result is put into a GAP string and returned. If something goes wrong, fail is returned.

4.4.8 IO_FileFilterString (append)

▷ IO_FileFilterString(filename, progs, st[, append]) (function)

Returns: a string or fail
Writes the content of the string st to the file with the name filename , however, a pipeline is

created by the processes described by progs (see IO_StartPipeline (4.4.6)) to filter the content of
the string through the pipeline. The result is put into the file. If the boolean value append is given and
equal to true, then the data will be appended to the already existing file. If something goes wrong,
fail is returned.

4.4.9 IO_FilteredFile

▷ IO_FilteredFile(progs, filename[, mode][, bufsize]) (function)

Returns: a File object or fail
This function is similar to IO_File (4.1.3) and behaves nearly identically. The only difference is

that a filtering pipeline is switched between the file and the File object such that all things read or
written respectively are filtered through this pipeline of processes.

The File object remembers the started processes and upon the final call to IO_Close (4.2.16)
automatically uses the IO_WaitPid (3.2.66) function to acquire information from the terminated pro-
cesses in the pipeline after their termination. This means that you do not have to call IO_WaitPid
(3.2.66) any more after the call to IO_Close (4.2.16).

Note that IO_FilteredFile (4.4.9) activates our SIGCHLD handler (see
IO_InstallSIGCHLDHandler (3.3.3)).



IO 31

The File object will have the attribute “ProcessID” set to the list of process IDs of the child
processes.

4.4.10 IO_CompressedFile

▷ IO_CompressedFile(filename[, mode][, bufsize]) (function)

Returns: a File object or fail
This function is a convenience wrapper around IO_FilteredFile (4.4.9) which handles a number

of common compressed file formats transparently, by calling an external program. The arguments to
this function are identical to IO_File (4.1.3). If the extension to filename is one of gz, bz2 or xz,
then the file is transparently compressed/uncompressed using gzip, bzip2 or xz respectively. If the
extension is none of these, then the command behaves identically to IO_File (4.1.3).

Note that as this function calls IO_FilteredFile (4.4.9), it will activate our SIGCHLD handler
(see IO_InstallSIGCHLDHandler (3.3.3)).

When compression / decompression is active, the File object will have the attribute “ProcessID”
set to the list of process IDs of the child processes.

4.4.11 IO_SendStringBackground

▷ IO_SendStringBackground(f, st) (function)

This functions uses IO_Write (4.2.7) to write the whole string st to the File object f . However,
this is done by forking off a child process identical to the calling GAP process that does the sending.
The calling GAP process returns immediately, even before anything has been sent away with the result
true. The forked off sender process terminates itself immediately after it has sent all data away.

The reason for having this function available is the following: If one uses IO_Popen2 (4.4.4) or
IO_Popen3 (4.4.5) to start up a child process with standard input and standard output being a pipe,
then one usually has the problem, that the child process starts reading some data, but then wants to
write data, before it received all data coming. If the calling GAP process would first try to write
all data and only start to read the output of the child process after sending away all data, a deadlock
situation would occur. This is avoided with the forking and backgrounding approach.

Remember to close the writing end of the standard input pipe in the calling GAP process directly
after IO_SendStringBackground (4.4.11) has returned, because otherwise the child process might
not notice that all data has arrived, because the pipe persists! See the file popen2.g in the example

directory for an example.
Note that with most modern operating systems the forking off of an identical child process does in

fact not mean a duplication of the total main memory used by both processes, because the operating
system kernel will use “copy on write”. However, if a garbage collection happens to become necessary
during the sending of the data in the forked off sending process, this might trigger doubled memory
usage.

4.4.12 IO_PipeThrough

▷ IO_PipeThrough(cmd, args, input) (function)

Returns: a string or fail
Starts the process with the executable given by the file name cmd (in the sense of

IO_FindExecutable (4.4.1)) with arguments in the argument list args (a list of strings). The stan-



IO 32

dard input and output of the started process are connected via pipes to the calling process. The content
of the string input is written to the standard input of the called process and its standard output is read
and returned as a string.

All the necessary I/O multiplexing and non-blocking I/O to avoid deadlocks is done in this func-
tion.

This function properly does IO_WaitPid (3.2.66) to wait for the termination of the child process
but does not restore the original GAP SIGCHLD signal handler (see IO_InstallSIGCHLDHandler

(3.3.3)).

4.4.13 IO_PipeThroughWithError

▷ IO_PipeThroughWithError(cmd, args, input) (function)

Returns: a record or fail
Starts the process with the executable given by the file name cmd (in the sense of

IO_FindExecutable (4.4.1)) with arguments in the argument list args (a list of strings). The stan-
dard input, output and error of the started process are connected via pipes to the calling process. The
content of the string input is written to the standard input of the called process and its standard output
and error are read and returned as a record with components out and err, which are strings.

All the necessary I/O multiplexing and non-blocking I/O to avoid deadlocks is done in this func-
tion.

This function properly does IO_WaitPid (3.2.66) to wait for the termination of the child process
but does not restore the original GAP SIGCHLD signal handler (see IO_InstallSIGCHLDHandler

(3.3.3)).
The functions returns either fail if an error occurred, or otherwise a record with components out

and err which are bound to strings containing the full standard output and standard error of the called
process, and status which is the status returned from the exiting process.



Chapter 5

Object serialisation (Pickling)

The idea of “object serialisation” is that one wants to store nearly arbitrary GAP objects to disk or
transfer them over the network. To this end, one wants to convert them to a byte stream that is platform
independent and can later be converted back to a copy of the same object in memory, be it in the same
GAP process or another one maybe even on another machine. The main problem here are the vast
amount of different types occurring in GAP and the possibly highly self-referential structure of GAP
objects.

The IO package contains a framework to implement object serialisation and implementations for
most of the basic data types in GAP. The framework is easily extendible to other types and takes
complete care of self-references and corresponding problems. It builds upon the buffered I/O functions
described in Section 4. We start by describing the user interface.

5.1 Result objects

The following static objects are used to report about success or failure of the (un-)pickling operations:

5.1.1 IO_Error

▷ IO_Error (global variable)

This object is returned if an error occurs.

5.1.2 IO_Nothing

▷ IO_Nothing (global variable)

This object is returned when there is nothing to return, for example if an unpickler (see
IO_Unpickle (5.2.2)) encounters the end of a file.

5.1.3 IO_OK

▷ IO_OK (global variable)

This object is returned if everything went well and there is no other canonical value to return to
indicate this.

33



IO 34

The only thing you can do with these special values is to compare them to each other and to other
objects.

5.2 Pickling and unpickling

5.2.1 IO_Pickle

▷ IO_Pickle(f, ob) (operation)

Returns: IO_OK or IO_Error
The argument f must be an open, writable File object. The object ob can be an arbitrary GAP

object. The operation “pickles” or “serialises” the object ob and writes the result into the File object
f . If everything is OK, the unique value IO_OK is returned and otherwise the unique value IO_Error.
The resulting byte stream can be read again using the operation IO_Unpickle (5.2.2) and is platform-
and architecture independent. Especially the question whether a system has 32 bit or 64 bit wide words
and the question of endianess does not matter.

Note that not all of GAP’s object types are supported but it is relatively easy to extend the system.
This package supports in particular boolean values, integers, permutations, rational numbers, finite
field elements, cyclotomics, strings, polynomials, rational functions, lists, records, compressed vectors
and matrices over finite fields (objects are uncompressed in the byte stream but recompressed during
unpickling), and straight line programs.

Self-referential objects built from records and lists are handled correctly and are restored com-
pletely with the same self-references during unpickling.

5.2.2 IO_Unpickle

▷ IO_Unpickle(f) (operation)

Returns: IO_Error or a GAP object
The argument f must be an open, readable File object. The operation reads from f and “unpick-

les” the next object. If an error occurs, the unique value IO_Error is returned. If the File object is
at end of file, the value IO_Nothing is returned. Note that these two values are not picklable, because
of their special meaning as return values of this operation here.

5.2.3 IO_ClearPickleCache

▷ IO_ClearPickleCache() (function)

Returns: Nothing
This function clears the “pickle cache”. This cache stores all object pickled in the current recursive

call to IO_Pickle (5.2.1) and is necessary to handle self-references. Usually it is not necessary to call
this function explicitly. Only in the rare case (that should not happen) that a pickling or unpickling
operation enters a break loop which is left by the user, the pickle cache has to be cleared explicitly
using this function for later calls to IO_Pickle (5.2.1) and IO_Unpickle (5.2.2) to work!

5.3 Extending the pickling framework

The framework can be extended for other GAP object types as follows:
For pickling, a method for the operation IO_Pickle (5.2.1) has to be installed which does the

work. If the object to be pickled has subobjects, then the first action of the method is to call the



IO 35

function IO_AddToPickled with the object as argument. This will put it into the pickle cache and take
care of self-references. Arbitrary subobjects can then be pickled using recursive calls to the operation
IO_Pickle (5.2.1) handing down the same File object into the recursion. The method must either
return IO_Error in case of an error or IO_OK if everything goes well. Before returning, a method that
has called IO_AddToPickled must call the function IO_FinalizePickled without arguments under
all circumstances. If this call is missing, global data for the pickling procedure becomes corrupt!

Every pickling method must first write a 4 byte magic value such that later during unpickling of
the byte stream the right unpickling method can be called (see below). Then it can write arbitrary
data, however, this data should be platform- and architecture independent, and it must be possible to
unpickle it later without “lookahead”.

Pickling methods should usually not go into a break loop, because after leaving the user has to call
IO_ClearPickleCache (5.2.3) explicitly!

Unpickling is implemented as follows: For every 4 byte magic value there must be a function
bound to that value in the record IO_Unpicklers. If the unpickling operation IO_Unpickle (5.2.2)
encounters that magic value, it calls the corresponding unpickling function. This function just gets
one File object as argument. Since the magic value is already read, it can immediately start with
reading and rebuilding the serialised object in memory. The method has to take care to restore the
object including its type completely.

If an object type has subobjects, the unpickling function has to first create a skeleton of the ob-
ject without its subobjects, then call IO_AddToUnpickled on this skeleton, before unpickling subob-
jects. If things are not done in this order, the handling of self-references down in the recursion will
not work! An unpickling function that has called IO_AddToUnpickled at the beginning has to call
IO_FinalizeUnpickled without arguments before returning under all circumstances! If this call is
missing, global data for the unpickling procedure becomes corrupt!

Of course, unpickling functions can recursively call IO_Unpickle (5.2.2) to unpickle subob-
jects. Apart from this, unpickling functions can use arbitrary reading functions on the File object.
However, they should only read sequentially and never move the current file position pointer other-
wise. An unpickling function should return the newly created object or the value IO_Error if an
error occurred. They should never go into a break loop, because after leaving the user has to call
IO_ClearPickleCache (5.2.3) explicitly!

Perhaps the best way to learn how to extend the framework is to study the code for the basic GAP
objects in the file pkg/io/gap/pickle.gi.



Chapter 6

Really random sources

This section describes so called “real random sources”. It is an extension to the library mechanism
of random source objects that uses the devices /dev/random and /dev/urandom available on Linux

systems (and maybe on other operating systems) providing random numbers that are impossible to
predict. The idea is that such sources of random numbers are useful to produce unpredictable secret
keys for cryptographic applications.

6.1 The functions

6.1.1 RandomSource

▷ RandomSource(r, dev) (method)

Returns: a real random source object or fail
The first argument r must be the GAP filter IsRealRandomSource and the second ei-

ther the string random or the string urandom. A real random source object is created that
draws its random numbers from the kernel devices /dev/random and /dev/urandom respectively.
Whereas /dev/urandom always provides random numbers of not guaranteed “quality”, the device
/dev/random measures its entropy and produces guaranteed unpredictable numbers. However, it
might block until enough “random” events (like mouse movements) have been accumulated.

36



Chapter 7

A client side implementation of the HTTP
protocol

The IO package contains an implementation of the client side of the HTTP protocol. The basic purpose
of this is of course to be able to download data from web servers from the GAP language. However,
the HTTP protocol can perform a much bigger variety of tasks.

7.1 Functions for client side HTTP

7.1.1 OpenHTTPConnection

▷ OpenHTTPConnection(hostname, port) (function)

Returns: a record
The first argument hostname must be a string containing the hostname of the server to connect.

The second argument port must be an integer in the range from 1 to 65535 and describes the port to
connect to on the server.

The function opens a TCP/IP connection to the server and returns a record conn with the follow-
ing components: conn.sock is fail if an error occurs and otherwise a File object linked to the file
descriptor of the socket. In case of an error, the component conn.errormsg contains an error mes-
sage, it is otherwise empty. If everything went well then the component conn.host is the result from
the host name lookup (see IO_gethostbyname (3.2.23)) and the component conn.closed is set to
false.

No data is sent or received on the socket in this function.

7.1.2 HTTPRequest

▷ HTTPRequest(conn, method, uri, header, body, target) (function)

Returns: a record
This function performs a complete HTTP request. The first argument must be a connection record

as returned by a successful call to OpenHTTPConnection (7.1.1). The argument method must be a
valid HTTP request “method” in form of a string. The most common will be GET, POST, or HEAD.
The argument uri is a string containing the URI of the request, which is given in the first line of
the request. This will usually be a relative or absolute path name given to the server. The argument
header must be a GAP record. Each bound field of this record will we transformed into one header

37



IO 38

line with the name of the component being the key and the value the value. All bound values must be
strings. The argument body must either be a string or false. If it is a string, this string is sent away as
the body of the request. If no string or an empty string is given, no body will be sent. The header field
Content-Length is automatically created from the length of the string body . Finally, the argument
target can either be false or a string. In the latter case, the body of the request answer is written to
the file with the name given in target . The body component of the result will be the file name in this
case. If target is false, the full body of the answer is stored into the body component of the result.

The function sends away the request and awaits the answer. If anything goes wrong during the
transfer (for example if the connection is broken prematurely), then the component statuscode of
the resulting record is 0 and the component status is a corresponding error message. In that case,
all other fields may or may not be bound to sensible values, according to when the error occurred. If
everything goes well, then statuscode and status are bound to the corresponding values coming
from the request answer. statuscode is transformed into a GAP integer. The header of the answer
is parsed, transformed into a GAP record, and stored into the component header of the result. The
body component of the result record is set as described above. Finally, the protoversion component
contains the HTTP protocol version number used by the server as a string and the boolean value
closed indicates, whether or not the function has detected, that the connection has been closed by the
server. Note that by default, the connection will stay open, at least for a certain time after the end of
the request.

See the description of the global variable HTTPTimeoutForSelect (7.1.3) for rules how timeouts
are done in this function.

Note that if the method is HEAD, then no body is expected (none will be sent anyway) and the
function returns immediately with empty body. Of course, the Content-Length value in the header
is as if it the request would be done with the GET method.

7.1.3 HTTPTimeoutForSelect

▷ HTTPTimeoutForSelect (global variable)

This global variable holds a list of length two. By default, both entries are fail indicating that
HTTPRequest (7.1.2) should never timeout and wait forever for an answer. Actually, the two values in
this variable are given to the IO_Select (4.3.3) function call during I/O multiplexing. That is, the first
number is in seconds and the second in milliseconds. Together they lead to a timeout for the HTTP
request. If a timeout occurs, an error condition is triggered which returns a record with status code 0
and status being the timeout error message.

You can change the timeout by accessing the two entries of this write protected list variable di-
rectly.

7.1.4 CloseHTTPConnection

▷ CloseHTTPConnection(conn) (function)

Returns: nothing
Closes the connection described by the connection record conn . No error can possibly occur.



IO 39

7.1.5 SingleHTTPRequest

▷ SingleHTTPRequest(hostname, port, method, uri, header, body, target) (function)

Returns: a record
The arguments are as the corresponding ones in the functions OpenHTTPConnection (7.1.1) and

HTTPRequest (7.1.2) respectively. This function opens an HTTP connection, tries a single HTTP
request and immediately closes the connection again. The result is as for the HTTPRequest (7.1.2)
function. If an error occurs during the opening of the connection, the statuscode value of the result
is 0 and the error message is stored in the status component of the result.

The previous function allows for a very simple implementation of a function that checks, whether
your current GAP installation is up to date:

7.1.6 CheckForUpdates

▷ CheckForUpdates() (function)

Returns: nothing
This function has been removed, as it only worked over the insecure HTTP protocol,

but not over HTTPS; and the relevant webservice these days only works over HTTPS. If
you relied on this functionality, please take a look at the PackageManager package, see
https://gap-packages.github.io/PackageManager/.

7.1.7 ReadWeb

▷ ReadWeb(URL) (function)

Returns: nothing
This function downloads the file from the given uniform resource locator URL using the HTTP

protocol and reads the contents into GAP using Read (Reference: Read).
Note that this can execute arbitrary code on your machine with the privileges of the GAP job

running, so you should be very careful what files you download and execute. You have been warned!

https://gap-packages.github.io/PackageManager/


Chapter 8

Background jobs using fork

This chapter describes a way to use multi-processor or multi-core machines from within GAP. In
its current version the GAP system is a single threaded and single process system. However, modern
operating systems allow, via the fork system call, to replicate a complete process on the same machine
relatively efficiently. That is, at first after a fork the two processes actually use the same physical
memory such that not much copying needs to be done. The child process is in exactly the same
state as the parent process, sharing open files, network connections and the complete status of the
workspace. However, whenever a page of memory is written, it is then automatically copied using
new, additional physical memory, such that it behaves like a completely separate process. This method
is called “copy-on-write”.

Thus this is a method to parallelise certain computations. Note however, that from the point of
time when the fork has occurred, all further communication between the two processes has to be
realised via pipes or even files.

The operations and methods described in this chapter help to use GAP in this way and implement
certain “skeletons” of parallel programming to make these readily available in GAP. Note that this
implementation has its severe limitations and should probably eventually be replaced by a proper
multi-threaded version of GAP.

8.1 Background jobs

One creates a background job with the following operation:

8.1.1 BackgroundJobByFork

▷ BackgroundJobByFork(fun, args[, opt]) (operation)

Returns: a background job object or fail
This operation creates a background job using IO_fork (3.2.19) which starts up as an identical

copy of the currently running GAP process. In this child process the function fun is called with the
argument list args . The third argument opt must be a record for options. The operation returns either
an object representing the background job or fail if the startup did not work.

This operation automatically sets up two pipes for communication with the child process. This is
in particular used to report the result of the function call to fun back to the parent. However, if called
without the option TerminateImmediately (see below) the child process stays alive even after the
completion of fun and one can submit further argument lists for subsequent calls to fun . Of course,

40



IO 41

these additional argument lists will have to be sent over a pipe to the child process. A special case is if
the argument args is equal to fail, in this case the child process is started but does not automatically
call fun but rather waits in an idle state until an argument list is submitted via the pipe using the
Submit (8.1.6) operation described below.

There are two components defined which can be bound in the options record opt . One is
TerminateImmediately, if this is bound to true then the child process immediately terminates
after the function fun returns its result. In this case, no pipe for communication from parent to child
is created since it would never be used. Note that in this case one can still get the result of the function
fun using the Pickup (8.1.5) operation described below, even when the child has already terminated,
since the result is first transmitted back to the parent before termination.

The following operations are available to deal with background job objects:

8.1.2 IsIdle (bgjob)

▷ IsIdle(job) (operation)

Returns: true, false or fail
This operation checks whether or not the background job represented by the object job has already

finished the function call to its worker function and is now idle. If so, true is returned. If it is still
running and working on the worker function, false is returned. If the background job has already
terminated altogether, this operation returns fail. Note that if a child process terminates automatically
after the first completion of its worker function and sending the result, then the first call to IsIdle

after completion will return true to indicate successful completion and all subsequent calls will return
fail.

8.1.3 HasTerminated

▷ HasTerminated(job) (operation)

Returns: true or false
This operation checks whether or not the background job represented by the object job has already

terminated. If so, true is returned, if not, false is returned.

8.1.4 WaitUntilIdle

▷ WaitUntilIdle(job) (operation)

Returns: the result of the worker function or fail
This operation waits until the worker function of the background job job has finished and the job

is idle. It then returns the result of the worker function, which has automatically been transmitted to
the parent process. If the child process has died before completion fail is returned.

8.1.5 Pickup (bgjob)

▷ Pickup(job) (operation)

Returns: the result of the worker function or fail
This operation does the same as WaitUntilIdle (8.1.4).



IO 42

8.1.6 Submit (bgjob)

▷ Submit(job, args) (operation)

Returns: true or fail
This submits another argument list args for another call to the worker function in the background

job job . It is an error if either the background job has already terminated or if it is still busy working
on the previous argument list. That is, one must only submit another argument in a situation when
IsIdle (8.1.2) would return true. This is for example the case directly after a successful call to
Pickup (8.1.5) or i WaitUntilIdle (8.1.4) which did not return fail, unless the background job
was created with the TerminateImmediately option set to true.

This operation returns immediately after submission, when the new argument list has been sent to
the child process through a pipe. In particular, it does not await completion of the worker function for
the new argument list.

8.1.7 Kill (bgjob)

▷ Kill(job) (operation)

Returns: nothing
This kills the background job represented by the object job with immediate effect. No more

results can be expected from it. Note that unless one has created the background job with the
TerminateImmediately option set to true one always has to call Kill on a background job eventu-
ally for cleanup purposes. Otherwise, the background job and the connecting pipes remain alive until
the parent GAP process terminates.

8.2 Parallel programming skeletons

In this section we document the operations for the available skeletons. For a general description of
these ideas see other sources.

8.2.1 ParTakeFirstResultByFork

▷ ParTakeFirstResultByFork(jobs, args[, opt]) (operation)

Returns: a list of results or fail
The argument jobs must be a list of GAP functions and the argument args a list of the

same length containing argument lists with which the job functions can be called. This operation
starts up a background job using fork for each of the functions in jobs , calls it with the corre-
sponding argument list in args . As soon as any of the background jobs finishes with a result,
ParTakeFirstResultByFork terminates all other jobs and reports the results found so far. Note
that it can happen that two jobs finish “at the same time” in the sense that both results are received
before all other jobs could be terminated. Therefore the result of ParTakeFirstResultByFork is a
list, in which position i is bound if and only if job number i returned a result. So in the result at least
one entry is bound but it is possible that more than one entry is bound.

You can specify an overall timeout to give up the whole computation if no job finishes by setting
the TimeOut component of the options record opt . In this case you have to set it to a record with
two components tv_sec and tv_usec which are seconds and microseconds respectively, exactly as
returned by the IO_gettimeofday (3.2.29) function. In the case of timeout an empty list is returned.



IO 43

8.2.2 ParDoByFork

▷ ParDoByFork(jobs, args[, opt]) (operation)

Returns: a list of results or fail
The argument jobs must be a list of GAP functions and the argument args a list of the same

length containing argument lists with which the job functions can be called. This operation starts up a
background job using fork for each of the functions in jobs , calls it with the corresponding argument
list in args . As soon as all of the background jobs finish with a result, ParDoByFork reports the results
found. Therefore the result of ParDoByFork is a list, in which position i is bound to the result that job
number i returned.

You can specify an overall timeout to stop the whole computation if not all jobs finish in time by
setting the TimeOut component of the options record opt . In this case you have to set it to a record
with two components tv_sec and tv_usec which are seconds and microseconds respectively, exactly
as returned by the IO_gettimeofday (3.2.29) function. In the case of timeout a list is returned in
which the positions corresponding to those jobs that have already finished are bound to the respective
results and the other positions are unbound.

8.2.3 ParListByFork

▷ ParListByFork(l, worker[, opt]) (operation)

Returns: a list of results or fail
This is a parallel version of the List (Reference: list and non-list difference) function. It ap-

plies the function worker to all elements of the list l and returns a list containing the results in
corresponding positions. You have to specify the component NumberJobs in the options record opt

which indicates how many background processes to start. You can optionally use the TimeOut option
exactly as for ParDoByFork (8.2.2), however, if a timeout occurs, ParListByFork returns fail.

Note that the usefulness of this operation is relatively limited, since every individual result has to
be sent back over a pipe from the child process to the parent process. Therefore this only makes sense
if the computation time for the worker function dominates the communication time.

8.2.4 ParMapReduceByFork

▷ ParMapReduceByFork(l, map, reduce[, opt]) (operation)

Returns: a value or fail
This is a parallel version implementation of the classical MapReduce pattern. It applies the function

map to all elements of the list l and then reduces the result using the reduce function which accepts
two return values of map and returns one of them. Thus, the final result is one return value or fail if
the startup of the jobs fails. You have to specify the component NumberJobs in the options record opt

which indicates how many background processes to start. You can optionally use the TimeOut option
exactly as for ParDoByFork (8.2.2), however, if a timeout occurs, ParMapReduceByFork returns
fail.

Note that this can be very useful because quite often the cumulated computation time for all the
worker function calls dominates the communication time for a single result.

8.2.5 IO_CallWithTimeout

▷ IO_CallWithTimeout(timeout, func, ...) (function)

▷ IO_CallWithTimeoutList(timeout, func, arglist) (function)



IO 44

IO_CallWithTimeout and IO_CallWithTimeoutList allow calling a function with a limit on
length of time it will run. The function is run inside a copy of the current GAP session, so any changes
it makes to global variables are thrown away when the function finishes or times out. The return value
of func is passed back to the current GAP session via IO_Pickle. Note that IO_Pickle may not be
available for all objects.

IO_CallWithTimeout is variadic. Any arguments to it beyond the first two are passed as argu-
ments to func . IO_CallWithTimeoutList in contrast takes exactly three arguments, of which the
third is a list (possibly empty) of arguments to pass to func .

If the call completes within the allotted time and returns a value res, the result of
IO_CallWithTimeout[List] is a list of the form [ true, res ].

If the call completes within the allotted time and returns no value, the result of
IO_CallWithTimeout[List] is the list [ true ].

If the call does not complete within the timeout, the result of IO_CallWithTimeout[List] is the
list [ false ]. If the call causes GAP to crash or exit, the result is the list [ fail ].

The timer is suspended during execution of a break loop and abandoned when you quit from a
break loop.

The limit timeout is specified as a record. At present the following components are recognised
nanoseconds, microseconds, milliseconds, seconds, minutes, hours, days and weeks. Any
of these components which is present should be bound to a positive integer, rational or float and the
times represented are totalled to give the actual timeout. As a shorthand, a single positive integers
may be supplied, and is taken as a number of microseconds. Further components are permitted and
ignored, to allow for future functionality.

The precision of the timeouts is not guaranteed, and there is a system dependent upper limit on
the timeout which is typically about 8 years on 32 bit systems and about 30 billion years on 64 bit
systems. Timeouts longer than this will be reduced to this limit.

Note that the next parallel skeleton is a worker farm which is described in the following section.

8.3 Worker farms

The parallel skeleton of a worker farm is basically nothing but a bunch of background jobs all with
the same worker function and all eagerly waiting for work. The only additional concepts needed are
an input and an output queue. The input queue contains argument lists and the output queue pairs of
argument lists and results.

One creates a worker farm with the following operation:

8.3.1 ParWorkerFarmByFork

▷ ParWorkerFarmByFork(fun, opt) (operation)

Returns: an object representing the worker farm or fail
This operation creates a worker farm with the worker function fun and sets up its input and output

queue. An object representing the farm is returned unless not all jobs could be started up in which
case fail is returned. After startup all background jobs in the farm are idle. The only valid option in
the options record opt is NumberJobs and it must be bound to the number of worker jobs in the farm,
a positive integer.

The following operations are for worker farm objects:



IO 45

8.3.2 DoQueues

▷ DoQueues(wf, block) (operation)

Returns: nothing
This operation called on a worker farm object wf administrates the input and output queues of the

worker farm. In particular it checks whether new results are available from the workers and if so it
appends them to the output queue. If jobs are idle and the input queue is non-empty, argument lists
from the input queue are sent to the idle jobs and removed from the input queue.

This operation must be called regularly to keep up the communication with the clients. It uses
select and so does not block if the boolean argument block is set to false. However, if larger
chunks of data has to be sent or received this operation might need some time to return.

If the boolean argument block is set to true then the DoQueues blocks until at least one job has
returned a result. This can be used to wait for the termination of all tasks without burning CPU cycles
in the parent job. One would repeatedly call DoQueues with block set to true and after each such call
check with IsIdle (8.3.4) whether all tasks are done. Note that one should no longer call DoQueues
with block set to true once this is the case since then it would block forever.

This operation is called automatically by most of the following operations.

8.3.3 Kill (wfarm)

▷ Kill(wf) (operation)

Returns: nothing
This operation terminates all background jobs in the farm wf , which cannot be used subsequently.

One should always call this operation when the worker farm is no longer needed to free resources.

8.3.4 IsIdle (wfarm)

▷ IsIdle(wf) (operation)

Returns: true or false
This operation returns true if all background jobs in the worker farm wf are idle. This means, that

all tasks which have previously been submitted using Submit (8.3.5) have been completed and their
result been appended to the output queue. The operation DoQueues (8.3.2) is automatically called
before the execution of IsIdle.

8.3.5 Submit (wfarm)

▷ Submit(wg, arglist) (operation)

Returns: nothing
This operation submits a task in the form of an argument list for the worker function to the worker

farm. It is appended at the end of the input queue. The operation DoQueues (8.3.2) is automatically
called after the execution of Submit, giving the farm a chance to actually send the work out to the
worker background jobs.

8.3.6 Pickup (wfarm)

▷ Pickup(wg, arglist) (operation)

Returns: nothing



IO 46

This operation collects all results from the output queue of the worker farm. The output queue is
empty after this function returns. The results are reported as a list of pairs, each pair has the input
argument list as first component and the output object as second component.

The operation DoQueues (8.3.2) is automatically called before the execution of Pickup, giving
the farm a chance to actually receive some more results from the worker background jobs.



Chapter 9

I/O multiplexing

9.1 Introduction

Whenever one needs to do input/output on more than one connection (file descriptor) at a time, some
code is needed to organise the I/O multiplexing. Due to the single-threaded nature of the current GAP
language one has to use IO_select (3.2.55) and some buffering and queueing to organise this. This
chapter describes a relative generic implementation of I/O-multiplexing using so-called IOHub (9.2.1)
objects. The basic idea is that an IOHub (9.2.1) object handles lots of I/O connections at the same
time and maintains a buffer for each of them. There is a very simple protocol that marks chunks of
data (called “messages”) and whenever a message has been received completely it is collected in the
input queue of the IOHub (9.2.1), marked with the number of the connection it came from. Rather than
sending a message away in one go, one would always schedule it for sending by appending it to the
output queue. The operation DoIO (9.2.13), when called often enough, will then make sure that the
message is sent away eventually.

9.2 The operations for IOHub objects

In this section, we simply describe the functions and operations to create, use and destroy IOHub

(9.2.1) objects.

9.2.1 IOHub

▷ IOHub() (operation)

Returns: an IOHub object
This creates a new IOHub object at first without any open connections.

9.2.2 NewConnection

▷ NewConnection(h, i, o) (operation)

Returns: a positive integer
This operation adds a new connection to the IOHub (9.2.1) object h . The arguments i and o must

be Unix file descriptors or 0 and i must be open for reading if it is positive and o must be open for
writing if it is positive. It is allowed that both file descriptors are equal, but they may not both be equal

47



IO 48

to 0. The operation returns a positive integer which is the number under which this new connection
will be administrated in the IOHub (9.2.1) object. Note that this number is specific to the object h .

From the moment these file descriptors are registered with the IOHub (9.2.1) object, every subse-
quent call to DoIO (9.2.13) will try to do input and output on them. This means in particular that the
other side of this connection should be in the same initial state of the protocol. Usually this will be
achieved by them being added as a new connection to a corresponding IOHub (9.2.1) object on the
other side at the same time.

See also NewTCPConnection (9.2.10) below.

9.2.3 CloseConnection

▷ CloseConnection(h, nr) (operation)

Returns: nothing
The argument h must be an IOHub (9.2.1) object and nr the number of a connection which was

previously returned by NewConnection (9.2.2). The corresponding connection is closed and removed
from the IOHub (9.2.1).

9.2.4 AttachServingSocket

▷ AttachServingSocket(h, addr, port) (operation)

Returns: a Unix file descriptor or fail
The argument h must be an IOHub (9.2.1) object, addr an IP address or host name as a string and

port a port number (see also IO_MakeIPAddressPort (4.3.6)). This operation creates a new socket,
binds it to the IP address and port and attaches it to the IOHub (9.2.1) object. From this moment on the
operation DoIO (9.2.13) will accept new bidirectional TCP/IP connections on that socket and add them
to h . The operation returns either the file descriptor of the new socket or fail if an error occurred.

9.2.5 ShutdownServingSocket

▷ ShutdownServingSocket(h) (operation)

Returns: nothing
The argument h must be an IOHub (9.2.1) object. Any server socket which was attached to h is

shut down, so no new connections will be accepted.

9.2.6 Shutdown

▷ Shutdown(h) (operation)

Returns: nothing
The argument h must be an IOHub (9.2.1) object. All connections of h will be closed using

CloseConnection (9.2.3) and any serving socket will be shut down using ShutdownServingSocket

(9.2.5). The IOHub (9.2.1) object will not be usable any more after this call.

9.2.7 AcceptNewConnection

▷ AcceptNewConnection(h) (operation)

Returns: a positive integer or fail
The argument h must be an IOHub (9.2.1) object. The object h must have a serving socket at-

tached to it via AttachServingSocket (9.2.4), otherwise fail is returned and nothing happens. One



IO 49

more connection is accepted through the serving socket. It is added as a new bidirectional TCP/IP
connection to the IOHub (9.2.1) object and the new connection number is returned. Note first that
this operation blocks until a new connection comes in. Note furthermore that this operation is usually
called automatically in DoIO (9.2.13) whenever a new connection has come in, which is reported in
the internal IO_select (3.2.55) call. So usually, the client code does not have to call this operation at
all.

9.2.8 SubmitOutput

▷ SubmitOutput(h, nr, st) (operation)

Returns: true or fail
The argument h must be an IOHub (9.2.1) object, nr must be a positive integer which is the

number of an open connection of h which can be used for output. The argument st must be a GAP
string. This operation appends the message st to the end of the output queue for the connection nr .
Note that at this stage no output is actually performed automatically. One has to call DoIO (9.2.13)
subsequently to actually send the message away.

9.2.9 GetInput

▷ GetInput(h, nr) (operation)

Returns: a list of length 2
The argument h must be an IOHub (9.2.1) object, nr must be an integer. If nr is positive, this

operation returns the earliest message which has come in from connection number nr and has not yet
been returned by GetInput before. This message is then removed from the input queue. If there is no
such message, then false is returned. A message is returned as a plain list of length 2 where the first
entry is the connection number it came from and the second entry is a string containing the message
itself. If nr is equal to 0 then the first message in the input queue from any connection is returned or
false if there is no message in the input queue.

9.2.10 NewTCPConnection

▷ NewTCPConnection(h, addr, port) (operation)

Returns: a connection number or fail
The argument h must be an IOHub (9.2.1) object, the arguments addr and port must be an

address/port pair as used in IO_MakeIPAddressPort (4.3.6), so address can either be a host name
or an IP address and port is a port number. This operation opens a new TCP connection to the address
and port specified, adds a new bidirectional connection to the IOHub (9.2.1) h using NewConnection

(9.2.2) and returns the connection number specific to the object h . If anything goes wrong, fail is
returned.

9.2.11 OutputQueue

▷ OutputQueue(h) (operation)

Returns: a list
The argument h must be an IOHub (9.2.1) object. This returns the internal object for the output

queue. Its elements are pairs where the first entry is the connection number where it is going to be sent
and the second entry is the message as a string. Only modify this list if you really know what you are
doing.



IO 50

9.2.12 InputQueue

▷ InputQueue(h) (operation)

Returns: a list
The argument h must be an IOHub (9.2.1) object. This returns the internal object for the input

queue. Its elements are pairs where the first entry is the connection number from where the message
was received and the second entry is the message as a string. Only modify this list if you really know
what you are doing.

9.2.13 DoIO

▷ DoIO(h[, block]) (operation)

Returns: true or false or fail
The argument h must be an IOHub (9.2.1) object, and the optional second argument block must

be true or false. This operation uses IO_select (3.2.55) to decide which of the file descriptors
belonging to the connections of h are ready to read or write. All file descriptors which are ready
are served, possibly updating the input and output queues. A possible serving socket is also served
accepting a new connection if there is one. The operation DoIO loops until no more file descriptors
are ready. It returns true if some I/O was performed and false if not. It returns fail if the IOHub

(9.2.1) is already shut down. The second argument block indicates whether or not DoIO should block
until some I/O has taken place. If this argument is omitted then false (non-blocking operation) is the
default.

Note that broken connections are silently closed.

9.3 Examples

There is an example hash server in the file examples/hashserver.g.



Chapter 10

Examples of usage

For larger examples see the example directory of the package. You find there a small server using the
TCP/IP protocol and a corresponding client and another small server using the UDP protocol and a
corresponding client.

Further, there is an example for the usage of File objects, that read from or write to strings.
Another example there shows starting up a child process and piping a few megabytes through it

using IO_Popen2 (4.4.4).
In the following, we present a few explicit, interactive short examples for the usage of the functions

in this package. Note that you have to load the IO package with the command LoadPackage("IO");

before trying these examples.

10.1 Writing and reading a file

The following sequence of commands opens a file with name guck and writes some things to it:
Example

gap> f := IO_File("guck","w");

<file fd=3 wbufsize=65536 wdata=0>

gap> IO_Write(f,"Hello world\n");

12

gap> IO_WriteLine(f,"Hello world2!");

14

gap> IO_Write(f,12345);

5

gap> IO_Flush(f);

true

gap> IO_Close(f);

true

There is nothing special about this, the numbers are numbers of bytes written. Note that only after the
IO_Flush (4.2.10) command the data is actually written to disk. Before that, it resides in the write
buffer of the file. Note further, that the IO_Flush (4.2.10) call here would not have been necessary,
since the IO_Close (4.2.16) call flushes the buffer anyway.

The file can again be read with the following sequence of commands:
Example

gap> f := IO_File("guck","r");

<file fd=3 rbufsize=65536 rpos=1 rdata=0>

51



IO 52

gap> IO_Read(f,10);

"Hello worl"

gap> IO_ReadLine(f);

"d\n"

gap> IO_ReadLine(f);

"Hello world2!\n"

gap> IO_ReadLine(f);

"12345"

gap> IO_ReadLine(f);

""

gap> IO_Close(f);

true

Note here that reading line-wise can only be done efficiently by using buffered I/O. You can mix
calls to IO_Read (4.2.6) and to IO_ReadLine (4.2.3). The end of file is indicated by an empty string
returned by one of the read functions.

10.2 Using filtering programs to read and write files

If you want to write a big amount of data to file you might want to compress it on the fly without using
much disk space. This can be achieved with the following command:

Example
gap> s := "";; for i in [1..10000] do Append(s,String(i)); od;;

gap> Length(s);

38894

gap> IO_FileFilterString("guck.gz",[["gzip",["-9c"]]],s);

true

gap> sgz := StringFile("guck.gz");;

gap> Length(sgz);

18541

gap> ss := IO_StringFilterFile([["gzip",["-dc"]]],"guck.gz");;

gap> s=ss;

true

This sequence of commands needs that the program gzip is installed on your system.

10.3 Using filters when reading or writing files sequentially

If you want to process bigger amounts of data you might not want to store all of it in a single GAP
string. In that case you might want to access a file on disk sequentially through a filter:

Example
gap> f := IO_FilteredFile([["gzip",["-9c"]]],"guck.gz","w");

<file fd=5 wbufsize=65536 wdata=0>

gap> IO_Write(f,"Hello world!\n");

13

gap> IO_Write(f,Elements(SymmetricGroup(5)),"\n");

1359

gap> IO_Close(f);

true

gap> f := IO_FilteredFile([["gzip",["-dc"]]],"guck.gz","r");



IO 53

<file fd=4 rbufsize=65536 rpos=1 rdata=0>

gap> IO_ReadLine(f);

"Hello world!\n"

gap> s := IO_ReadLine(f);; Length(s);

1359

gap> IO_Read(f,10);

""

gap> IO_Close(f);

true

10.4 Accessing a web page

The IO package has an HTTP client implementation. Using this you can access web pages and other
web downloads from within GAP. Here is an example:

Example
gap> r := SingleHTTPRequest("www.math.rwth-aachen.de",80,"GET",

> "/~Max.Neunhoeffer/index.html",rec(),false,false);;

gap> RecNames(r);

[ "protoversion", "statuscode", "status", "header", "body", "closed" ]

gap> r.status;

"OK"

gap> r.statuscode;

200

gap> r.header;

rec( date := "Thu, 07 Dec 2006 22:08:22 GMT",

server := "Apache/2.0.55 (Ubuntu)",

last-modified := "Thu, 16 Nov 2006 00:21:44 GMT",

etag := "\"2179cf-11a5-3c77f600\"", accept-ranges := "bytes",

content-length := "4517", content-type := "text/html; charset=ISO-8859-1" )

gap> Length(r.body);

4517

Of course, the time stamps and exact sizes of the answer may differ when you do this.

10.5 (Un-)Pickling

Assume you have some GAP objects you want to archive to disk grouped together. Then you might
do the following:

Example
gap> r := rec( a := 1, b := "Max", c := [1,2,3] );

rec( a := 1, b := "Max", c := [ 1, 2, 3 ] )

gap> r.c[4] := r;

rec( a := 1, b := "Max", c := [ 1, 2, 3, ~ ] )

gap> f := IO_File("guck","w");

<file fd=3 wbufsize=65536 wdata=0>

gap> IO_Pickle(f,r);

IO_OK

gap> IO_Pickle(f,[(1,2,3,4),(3,4)]);

IO_OK



IO 54

gap> IO_Close(f);

true

Then, to read it in again, just do:
Example

gap> f := IO_File("guck");

<file fd=3 rbufsize=65536 rpos=1 rdata=0>

gap> IO_Unpickle(f);

rec( a := 1, b := "Max", c := [ 1, 2, 3, ~ ] )

gap> IO_Unpickle(f);

[ (1,2,3,4), (3,4) ]

gap> IO_Unpickle(f);

IO_Nothing

gap> IO_Close(f);

true

Note that this works for a certain amount of builtin objects. If you want to archive your own objects
or more sophisticated objects you have to use extend the functionality as explained in Section 5.3.
However, it works for lists and records and they may be arbitrarily self-referential.



Chapter 11

License

This program is free software: you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation, either version 3 of the License,
or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program. If
not, see https://www.gnu.org/licenses/.

55



Index

IO, 5

AcceptNewConnection, 48
AttachServingSocket, 48

BackgroundJobByFork, 40

ChangeDirectoryCurrent, 27
CheckForUpdates, 39
CloseConnection, 48
CloseHTTPConnection, 38

DoIO, 50
DoQueues, 45

GetInput, 49

HasTerminated, 41
HTTPRequest, 37
HTTPTimeoutForSelect, 38

InputQueue, 50
IOHub, 47
IO_accept, 9
IO_bind, 10
IO_CallWithTimeout, 43
IO_CallWithTimeoutList, 43
IO_chdir, 10
IO_chmod, 10
IO_chown, 10
IO_ClearPickleCache, 34
IO_Close, 26
IO_close, 10
IO_CloseAllFDs, 28
IO_closedir, 10
IO_CompressedFile, 31
IO_connect, 10
IO_creat, 11
IO_dup, 11
IO_dup2, 11
IO_environ, 20

IO_Environment, 27
IO_Error, 33
IO_execv, 11
IO_execve, 11
IO_execvp, 11
IO_exit, 11
IO_fchmod, 12
IO_fchown, 12
IO_fcntl, 12
IO_File

bufsize, 22
mode, 22
mode and bufsize, 22

IO_FileFilterString

append, 30
IO_FilteredFile, 30
IO_FindExecutable, 28
IO_Flush, 24
IO_FlushNonBlocking, 26
IO_fork, 12
IO_fstat, 12
IO_getcwd, 12
IO_getenv, 12
IO_GetFD, 26
IO_gethostbyname, 13
IO_gethostname, 13
IO_getpid, 13
IO_getppid, 13
IO_getsockname, 13
IO_getsockopt, 13
IO_gettimeofday, 13
IO_GetWBuf, 26
IO_gmtime, 14
IO_HasData, 23
IO_IgnorePid, 19
IO_InstallSIGCHLDHandler, 20
IO_kill, 14
IO_lchown, 14

56



IO 57

IO_link, 14
IO_ListDir, 27
IO_listen, 14
IO_localtime, 14
IO_lseek, 14
IO_lstat, 15
IO_MakeEnvList, 27
IO_MakeIPAddressPort, 27
IO_make_sockaddr_in, 20
IO_mkdir, 15
IO_mkdtemp, 15
IO_mkfifo, 15
IO_mknod, 15
IO_mkstemp, 15
IO_Nothing, 33
IO_OK, 33
IO_open, 15
IO_opendir, 16
IO_Pickle, 34
IO_pipe, 16
IO_PipeThrough, 31
IO_PipeThroughWithError, 32
IO_Popen, 28
IO_Popen2, 29
IO_Popen3, 29
IO_Read, 23
IO_read, 16
IO_ReadBlock, 22
IO_readdir, 16
IO_ReadLine, 23
IO_ReadLines, 23
IO_readlink, 16
IO_ReadUntilEOF, 22
IO_ReadyForFlush, 25
IO_ReadyForWrite, 25
IO_recv, 16
IO_recvfrom, 17
IO_rename, 17
IO_RestoreSIGCHLDHandler, 20
IO_rewinddir, 17
IO_rmdir, 17
IO_seekdir, 17
IO_Select, 26
IO_select, 17
IO_send, 18
IO_SendStringBackground, 31

IO_sendto, 18
IO_setenv, 18
IO_setsockopt, 18
IO_socket, 18
IO_StartPipeline, 29
IO_stat, 18
IO_StringFilterFile, 30
IO_symlink, 19
IO_telldir, 19
IO_unlink, 19
IO_Unpickle, 34
IO_unsetenv, 19
IO_WaitPid, 19
IO_WrapFD, 21
IO_Write, 24
IO_write, 20
IO_WriteFlush, 25
IO_WriteLine, 24
IO_WriteLines, 24
IO_WriteNonBlocking, 25
IsFile, 21
IsIdle

bgjob, 41
wfarm, 45

Kill

bgjob, 42
wfarm, 45

NewConnection, 47
NewTCPConnection, 49

OpenHTTPConnection, 37
OutputQueue, 49

ParDoByFork, 43
ParListByFork, 43
ParMapReduceByFork, 43
ParTakeFirstResultByFork, 42
ParWorkerFarmByFork, 44
Pickup

bgjob, 41
wfarm, 45

RandomSource, 36
ReadWeb, 39

Shutdown, 48



IO 58

ShutdownServingSocket, 48
SingleHTTPRequest, 39
Submit

bgjob, 42
wfarm, 45

SubmitOutput, 49

Timeouts, 43

WaitUntilIdle, 41


	Preface
	Installation of the IO-package
	Recompiling the documentation

	Functions directly available from the C library
	Differences in arguments - an overview
	The low-level functions in detail
	Further C level functions

	High level functions for buffered I/O
	Types and the creation of File objects
	Reading and writing
	Other functions
	Inter process communication

	Object serialisation (Pickling)
	Result objects
	Pickling and unpickling
	Extending the pickling framework

	Really random sources
	The functions

	A client side implementation of the HTTP protocol
	Functions for client side HTTP

	Background jobs using fork
	Background jobs
	Parallel programming skeletons
	Worker farms

	I/O multiplexing
	Introduction
	The operations for IOHub objects
	 Examples 

	Examples of usage
	Writing and reading a file
	Using filtering programs to read and write files
	Using filters when reading or writing files sequentially
	Accessing a web page
	(Un-)Pickling

	License
	Index

