
TransFig: Portable Figures for LATEX

Version 2.1.5

Micah Beck

Department of Computer Science

Ayers Hall, University of Tennessee

Knoxville, TN 37996

TransFig is a mechanism for integrating figures into LATEX documents. Sev-

eral “graphics languages” exist which achieve such integration, but none is widely

enough used to be called a standard. TransFig’s goal is to maintain the portabil-

ity of LATEX documents across printers and operating environments. The central

mechanism in TransFig is Fig code, the graphics description format of the Fig

interactive graphics editor. TransFig provides an automatic and uniform way to

Trans late Fig code into various graphics languages and to integrate that code into

a LATEX document.

1 TransFig

The TransFig package consists of the fig2dev program, which translates be-

tween Fig code and other graphics languages, and the transfig command

which can be used to invoke it. The available translations are illustrated in Fig-

ure 1 (which was included using TransFig). Fig2dev can be used directly to

translate from Fig code to the various graphics languages. However each graphics

language requires the user to load a particular set of TeX macros and use particular

commands to include the figure. TransFig allows these differences to be hidden.

When the graphics language is specified to the transfig command, it cre-

ates a macro file and a makefile. The macro file loads any appropriate TeX macros,

and the makefile specifies the appropriate commands to create LATEX files which

load the figures. The user simply \input the macro file and the names of the

files for loading the figures. To switch graphics languages, it is necessary only to

rerun transfig, and then make. Make can also be used to keep the translated

code up to date when figures change.

Jan 3, 2000 Version 2.1.5 page 1

✘✘✘✘✘✘✘✘✘✘✾

❳❳❳❳❳❳❳❳❳❳③

❄

PPPPPPPPPPPq

❄

✟✟✟✟✟✙

❍❍❍❍❍❥

❄

❄

✏✏✏✏✏✏✏✏✏✏✏✮

❍❍❍❍❍❍❍❥

✟✟✟✟✟✟✟✙

✡
✡
✡✢

❏
❏
❏❫

xapgraphgnuplot plot2fig

fig2dev

Fig code

tpic

specials

PIC

tpic

pic2fig

PiCTeX

macros Script

Post (E)EPIC

commands

LaTeX

commands commands

IBM-GL

xfig

Figure 1: Fig Code Translations

Jan 3, 2000 Version 2.1.5 page 2

\documentstyle{article}

\input{transfig} TransFig macro file

\begin{document}
...

\begin{figure}

\begin{center}

\input{figurei} i’th TransFig figure

\end{center}

\end{figure}
...

Figure 2: Layout of a TransFig LATEX Document

1.1 File Name Conventions

Suppose that a document is to include a set of figures which are stored in Fig

code form. These should be in files with the name suffix .fig, for instance

figure1.fig, figure2.fig,...figuren.fig. TransFig will create

files figure1.tex, figure2.tex,...figuren.tex for \input to the

LATEX document, and in some cases will create files with other suffixes. Addition-

ally, TransFig creates a file named transfig.tex which must be \input at

the start of the document.

1.2 Transfig LATEX Documents

In order to use TransFig, a LATEX file must follow the format shown in Figure 2.

The the file transfig.tex must be \input before any TransFig figure is

encountered. At the point where the ith figure figurei is to be inserted, the file

figurei.tex is \input.

Jan 3, 2000 Version 2.1.5 page 3

1.3 Using TransFig

The transfig command has the form

transfig [option]. . . [[control]. . . filename]. . .

Where option is one of the following:

-L language to translate into the specified language (default pictex).

-M makefile to name the output makefile makefile (default Makefile).

-T texfile to name the output LATEX macro file texfile (default transfig.tex).

The language specifiers epic, eepic, eepicemu, ibmgl, latex, pictex,

ps,

psfig, pstex, textyl and tpic, indicate translation into (E)EPIC macros,

LATEX picture environment, PiCTEX macros, PostScript, TEXtylspecials, or tpic

specials. See section 2 for further details about these languages. The special

language specifier box causes the figures to be replaced by empty boxes of the

appropriate size.

A control specifier sets a parameter which governs the translation of all files

to its left in the argument list, until it is overridden. A control specifier must be

one of the following:

-m magnification to scale figures by magnification (default 1.0).

-f font to set the default font family (default cmr).

-s size to set the default font size (default 12 ∗ magnification).

Each file name specifies a Fig file, either with or without the .fig suffix.

TransFig creates a file called Makefile to apply fig2dev with the appropriate

arguments to the named files, and creates an appropriate transfig.tex file.

Thus, to create a Makefilewhich will translate all figures in a directory to LATEX

picture environment, with Computer Modern Bold as the default font family, the

command would be

transfig -L latex -f cmb *.fig

After running transfig, simply run make to create the appropriate LATEX

files. Make should be rerun whenever a Fig file is changed to recreate the cor-

responding LATEX file. To change between graphics languages, simply run make

clean to remove the files created by transfig, and then rerun transfig.

Jan 3, 2000 Version 2.1.5 page 4

The transfig command can also be used to include figures described in

Brian Kernighan’s PIC graphics language or in PostScript. These graphics formats

are distinguished by the file name suffix .pic and .ps respectively. Translation

from PIC is accomplished by invoking pic2fig program (see section 2.3).

1.4 Text in Figures and Portability

In order to be translatable into different graphics languages, Fig code in TransFig

documents should use only those features which are supported by all of them. In

particular, some graphics languages support more sophisticated processing of text

which is part of the figure than others. PiCTEX, for example, allows full use of

LATEX commands in text strings, while PostScript does not.

The standard way to use text in TransFig figures is to use only straight text

with no LATEX commands. However, if a text object is flagged as “special,” then

it is understood to include formatting commands which are interpreted by the

graphics language. A document with special text will not be portable to all output

languages.

The standard font specifiers are a small set of generic font types. However, if a

text object is flagged as “PS Font,” then its font field specifies a specific PostScript

font. When translating such text into PostScript, the named font is used. However,

translations into other graphics languages will use some approximation to the PS

font This approximation may be quite different from the named font.

Jan 3, 2000 Version 2.1.5 page 5

2 Fig Code and Graphics Languages

TransFig’s goal is to provide a framework for including graphics which maintains

the portability of LATEX documents across printers and operating environments.

The central mechanism in TransFig is Fig code, a graphics description format

which is produced by the Fig interactive graphics editor. If this code is widely

used as an intermediate form for figures, the builders of other graphics tools may

be attracted to produce compatible output. The reference guide in appendix A

describes Fig code in more detail.

2.1 Translations From Fig

TransFig currently translates Fig code into these graphics languages: (E)EPIC,

LATEX picture environment, PiCTEX, PostScript, PIC, and TEXtylspecials. The

program which accomplishes these translations is fig2dev, which replaces the

now-obsolete programs fig2tex, fig2ps, fig2latex, and

fig2epic. The transfig command supports the translation of Fig code into

tpic specials (see below) using tpic, which is not part of the TransFig pack-

age. Each language may be appropriate in different operating environments or for

different applications. A short description of each language is given below:

PiCTEX is a set of TEX macros which implement simple graphics

objects directly in TEX. PiCTEX makes no use of pre- or post-

processors; the DVI files it generates are completely standard,

and can be printed or previewed in any environment where TEX

is used. This result is achieved by using TEX integer arithmetic

to do all plotting calculations, and by drawing the figure using

the period character as a “brush”. As a result PiCTEX is quite

slow and requires a large internal TEX memory.

PostScript (PS) is a powerful graphics language which is gaining

acceptance as a standard. In an environment where DVI code

is translated into PS before being printed, it is usually possible

to insert a separately generated PostScript file into a document,

using the TEX \special command. However, the resulting PS

file can only be previewed using a PS previewer, and must be

printed on a PS printer, such as the Apple LaserWriter.

Various options are available for integration of PS with LATEX.

The psfig macro automatically scans the PS file for bounding

Jan 3, 2000 Version 2.1.5 page 6

box information and generates appropriate TeX spacing and in-

clusion commands. One limitation of PS output is the lack of

LATEX formatting for special objects. The pstex language speci-

fier to the transfig command uses special fig2dev output

drivers which separate the figure in text and non-text portions,

rendering the former in PS and the latter in LATEX. The pstex

option uses psfig to generate the PS inclusion commands.

LATEX picture environment is a restricted graphics facility implemented

within LATEX. It is a standard part of every version of LATEX,

is processed quickly, and does not require a large internal TEX

memory. However, not every graphics object which can be de-

scribed with Fig code can be drawn using the LATEX picture en-

vironment. Restrictions include a limited set of slopes at which

lines can be drawn, and no ability to drawn splines.

EPIC is an enhanced version of the LATEX picture environment which

removes many restrictions. It uses no facilities outside of those

needed for the LATEX picture environment.

EEPIC is a further enhancement of EPIC which uses tpic specials

to implement general graphics objects. It is subject to the same

software requirements as tpic.

TEXtyl specials are a set of \special commands which produce

graphics instructions in the DVI file produced by TEX. The re-

sulting DVI file must be postprocessed using the TEXtyl pro-

gram, which transforms it into a standard DVI file which uses

its own line drawing fonts.

tpic specials are a set of \special commands which produce

graphics instructions in the DVI file produced by TEX. However,

the graphics in the resulting DVI file can only be previewed or

printed using software which understands these commands.

IBM-GL IBM-GL (International Business Machines Graphics Lan-

guage) and HP-GL (Hewlett-Packard Graphics Language) are

compatible languages which drive a variety of IBM and HP pen

plotters.

When LATEX processes the file transfig.tex, it will print the message

“TransFig: figures in language” indicating which graphics language is

in use.

Jan 3, 2000 Version 2.1.5 page 7

2.2 The Fig Graphics Editor

The interpretation of Fig code was originally defined by the Fig graphics editor

and the program f2p, which translates Fig code into the PIC graphics language.

The most recent version is V2.1; it is implemented by Version 2.1 of the Fig

graphics editor, which runs under SunView, and by Version 2.1 of XFig.

Previous versions of Fig code which have been widely used are 1.4-TFX, and

V2.0. The V2.1 format is in effect a unification of the features of these incompat-

ible formats, and superseds both of them. TransFig continues to support Fig code

formats V1.3, V1.4, V these formats. as well as the older 1.3 and 1.4 formats.

2.3 Other Fig Compatible Programs

The following programs use Fig code as a graphics description format, and thus

are compatible with TransFig:

• The numerical plotting program gnuplot can optionally produce output

in Fig code format.

• The PIC-to-Fig translator pic2fig translates PIC, the language of Brian

Kernighan’s graphics preprocessor for Troff, into Fig code. This allows

users to create figures without employing a graphics editor.

The Fig code produced by these programs can be viewed and edited using the Fig

graphics editor.

Jan 3, 2000 Version 2.1.5 page 8

3 Related Software

Software availability is subject to change, and this list may not be completely up

to date.

EPIC is an enhancement of the LATEX picture environment which removes many

restrictions. It uses only the facilities which implement the LATEX picture

environment. EPIC was developed by Sunil Podar at the State University

of New York at Stonybrook, and is available via anonymous FTP from

SUN.SOE.CLARKSON.EDU.

EEPIC is a further enhancement of EPIC which uses tpic specials (see below)

to implement general graphics objects. It is subject to the same software

requirements as tpic, although there is an “emulation package” which

will implement most of EEPIC using the same facilities as EPIC. EEPIC was

developed by Conrad Kwok at the University of California at Davis, and is

available via anonymous FTP from SUN.SOE.CLARKSON.EDU

Fig is an interactive graphics editor in the style of MacDraw which runs under

the Suntools/SunView windowing system. It produces intermediate code

which can be translated into a variety of graphics languages, including PIC,

Postscript, and PiCTEX.

Fig was developed by Supoj Sutanthavibul at the University of Texas at

Austin, (supoj@SALLY.UTEXAS.EDU), and is available via anonymous

FTP from SALLY.

Fig 2.1 is a version of Fig which implements various enhancements to the user

interface, and uses Fig code V2.1 Fig 2.1 was developed by various contrib-

utors. It is available via anonymous FTP from FTP.CS.CORNELL.EDU.

Fig2dev translates from Fig code to PiCTEX macros, Postscript, LATEX picture

environment commands, (E)EPIC macros, TEXtyl, and the PIC graphics lan-

guage. It is part of the TransFig package, and supports Fig code V2.1.

Fig2tex, Fig2ps, Fig2latex, Fig2epic, Fig2pic are Fig code translation programs

which were distributed as part of earlier versions of the TransFig package.

They have been replaced by fig2dev (see above).

F2p, F2ps are the original Fig code translation programs. These programs are

out of date and have been subsumed by fig2dev (see above).

Jan 3, 2000 Version 2.1.5 page 9

GnuPlot is a numerical plotting program which can optionally produce output in

Fig code format. GnuPlot was developed by a group of people, including

Thomas Williams and Colin Kelly of Pixar Corp. (pixar@INFO-GNUPLOT@SUN.COM),

and David F. Kotz of Duke University (dfk@DUKE.CS.DUKE.EDU). Gnu-

plot is available via anonymous FTP from DUKE.

LATEX is a standard macro package used for describing documents in TEX. Part

of this package is the LATEX picture environment, a restricted graphics facil-

ity. The capabilities of this facility are described in section 5.5 of LATEX, A

Document Preparation System by Leslie Lamport.

Pic2fig is a version of Brian Kernighan’s PIC graphics preprocessor for Troff.

Pic2fig, which is a modified form of tpic (see below), has been altered to

produce Fig code.

PiCTEX is a set of macros for describing graphics in TEX documents. PiCTEX

is implemented entirely within standard TEX, and requires no pre- or post

processing programs or special fonts. The main problem in using PiCTEX

is its slow operation (all calculations are done using TEX’s integer arith-

metic) and large memory requirements. Many PiCTEX users have turned to

C implementations of TEX in order to obtain memory sizes larger than are

possible using the standard Web/Pascal version.

PiCTEX was developed by Michael Wichura at the University of Chicago

(wichura@GALTON.UCHICAGO.EDU), and is available via anonymous

FTP from A.CS.UIUC.EDU. It is also included as contributed software

with the Unix TEX distribution.

Plot2fig translates figures from the Unix plot file format to Fig code. Plot2fig was

developed by Richard Murphy of Rice University (rich@RICE.EDU), and

is available via anonymous FTP from QED.RICE.EDU.

TEXtyl is a DVI file postprocessor which translates \special commands into

its own set of drawing fonts. The result of this postprocessing is a standard

DVIfile which can be printed using any DVI driver, as long as its drawing

fonts are available. TEXtylis available via anonymousFTP from VENUS.YCC.YALE.EDU.

tpic is a version of Brian Kernighan’s PIC graphics preprocessor for Troff.

tpic has been altered to produce TEX \special commands which are

understood by some DVI print drivers and previewers. For information

Jan 3, 2000 Version 2.1.5 page 10

about distribution of tpic, contact Tim Morgan of the University of Cali-

fornia at Irvine (morgan@ICS.UCI.EDU).

TransFig was developed by Micah Beck with major contributions by Frank Schmuck,

now of IBM, and Conrad Kwok of UC Davis. It is available via anonymous

FTP from FTP.CS.CORNELL.EDU.

Xfig is a version of the Fig graphics editor which can be compiled for either the

Suntools or X Windows Version 11 windowing systems. Xfig is part of the

contributed software distributed with the X Windowing System, and can be

obtained by anonymous FTP from EXPO.LCS.MIT.EDU.

Xpic is a graphical editor similar to Fig which runs under X Windows Version

11. Xpic was developed by Mark Moraes at the University of Toronto

(moraes@csri.toronto.edu) and is available via anonymous FTP

from ai.toronto.edu.

Jan 3, 2000 Version 2.1.5 page 11

A Fig Code V2.1 Reference Guide

PLEASE NOTE: This guide has not been updated to the current 3.0 file protocol.

Please refer to the xfig document FORMAT3.0 for a complete description.

A Fig code version V2.1 file has the following structure:

#FIG 2.1

global parameters

object description

object description
...

A.1 Comment Lines

The very first line is a comment line containing the version of the Fig format.

Programs which interpret Fig code verify compatibility by checking the first line

for this comment. All other lines which contain the character # in the first column

are treated as comments and are ignored.

A.2 Global Parameters

The first non-comment line consists of two global parameters:

fig resolution coordinate system

Fields in a line of a Fig file are separated by blanks or tabs; newlines terminate

object descriptions. The fields of lines in Fig files are described throughout this

guide by tables like the one below. The fields must appear in the order given in

the table.

Type Field Units (values)

int fig resolution pixels/inch

Fig value: 80

int coordinate system 1: origin at lower left corner

2: origin at upper left corner

Fig value: 2

The Type column specifies the type of the field, and is either int(eger), float,

or string. The notation + following the type indicates that the values 0 or -1 are

Jan 3, 2000 Version 2.1.5 page 12

interpreted as default values in this field. The rightmost column of this table either

defines the units in which the field is expressed, or lists the possible values which

the field can take. The notation DEFAULT in this column indicates that no value

other than the default values are allowed. It is intended that future versions of

Fig will define other values for these fields, but that the default values will remain

legal, thus providing backward compatibility.

The basic unit of position in Fig files is the pixel. While figures in a Fig file are

described at this resolution, the figure can be drawn at a higher or lower resolution.

Pixels are square, and so fig_resolution represents position resolution in

both the x and y dimensions.

Some values are expressed as symbols and their numerical values are also

listed. These symbols are defined in the header file object.h.

A.3 Object Descriptions

The rest of the file contains objects descriptions, having one of six types:

1. Ellipse.

2. Polyline, including Polygons and Boxes.

3. Spline, including Closed/Open Control/Interpolated Splines.

4. Text.

5. Circular Arc.

6. Compound object which is composed of one or more objects.

The following group of common fields appear in several object descriptions,

and so the are described here, and later are simply referred to by the indicator

common fields.

Jan 3, 2000 Version 2.1.5 page 13

Type Field Units (values)

int line style SOLID LINE 0

DASH LINE 1

DOTTED LINE 2

int line thickness pixels

int + color DEFAULT

BLACK COLOR 0

BLUE COLOR 1

GREEN COLOR 2

CYAN COLOR 3

RED COLOR 4

MAGENTA COLOR 5

YELLOW COLOR 6

WHITE COLOR 7

int depth no units

int + pen DEFAULT

int + fill style DEFAULT

WHITE FILL 1

BLACK FILL 21

float style val pixels

• For the dashed line style, the style val specifies the length of a dash.

For dotted lines it indicates the gap between consecutive dots.

• Depth determines which filled objects will obscure other objects, with the

objects of greater depth being obscured. If two objects at the same depth

overlap, the object which occurs first in the Fig file is obscured.

• The values between WHITE FILL and BLACK FILL define a gray scale;

many graphics languages cannot fully implement area fill.

• The color field will be extended in the future to an encoding of two three-

byte RGB specifiers: one for line color and one for fill color.

Arrow lines are used to describe optional arrows at the ends of Arc, Polyline,

and Spline objects. If an object has a forward arrow, then an arrow line describing

it follows the object description. If an object has a backward arrow, then an arrow

Jan 3, 2000 Version 2.1.5 page 14

line describing it follows the object description and the forward arrow description,

if there is one.

An arrow line consists of the following fields

Type Field Units (values)

int + arrow type DEFAULT

int + arrow style DEFAULT

float + arrow thickness DEFAULT

float arrow width pixels

float arrow height pixels

The pen field can only take the value DEFAULT. It is intended that future

extensions to Fig code will define other values for this field. Its intended use is

to define the shape of the pen used in drawing objects. It will also includes the

stipple pattern for line filling. The default pen is a circular pen with black filling.

A.3.1 Ellipse Objects

Type Field Units (values)

int object code O ELLIPSE 1

int sub type T ELLIPSE BY RAD 1

T ELLIPSE BY DIA 2

T CIRCLE BY RAD 3

T CIRCLE BY DIA 4

common fields

int direction 1

float angle radians

int center x, center y pixels

int radius x, radius y pixels

int start x, start y pixels

int end x, end y pixels

The Ellipse object describes an ellipse (or circle) centered at the point

(center x, center y) with radii radius x and radius y, and whose x-

axis is rotated by angle from the horizontal. If the object describes a circle, then

radius x and radius y must be equal.

The fields start x, start y, end x and end y are used only by Fig,

and are not used in drawing the object. If the ellipse is specified by radius, then

Jan 3, 2000 Version 2.1.5 page 15

(start x, start y) is (center x, center y), and (end x, end y) is a corner of

a box which bounds the ellipse. If the ellipse is specified by diameter, then

(start x, start y) and (end x, end y) are the two corners of the box which

bound the ellipse.

A.3.2 Polyline Objects

Type Field Units (values)

int object code O POLYLINE 2

int sub type T POLYLINE 1

T BOX 2

T POLYGON 3

T ARC BOX 4

T EPS BOX 5

common fields

int radius no units

int forward arrow, 0: no arrow

backward arrow 1: arrow

The Polyline object description has an additional points line following any arrow

lines. The line consists of a sequence of coordinate pairs followed by the pair

9999 9999 which marks the end of the line.

x1 y1 x2 y2 . . . xn yn 9999 9999

Type Field Units (values)

int xi, yi pixels

The Polyline object describes a piecewise linear curve starting at the point

(x1, y1) and passing through each point (x
i
, yi) for i = 2 . . . n. If sub type is

T BOX or T POLYGON then (x1, y1) and (xn, yn) must be identical. If sub type

is T BOX, then the line segments must all be a vertically oriented rectangle. If

sub type is T ARC BOX, then the corners of the box are drawn with circular

arcs, the size of which are determined by the radius field. Many output modes

draw T ARC BOX object as simple boxes.

The T EPS BOX object is a simple box filled with a figure described by an

imported Encapsulated PostScript (EPS) file. Following any arrow lines (which

are ignored) is an EPS file specification line, consisting of a flag indicating the

vertical orientation of the figure, and the name of the EPS file to import. Following

that is a points line describing the two opposite corners of the figure.

Jan 3, 2000 Version 2.1.5 page 16

Type Field Units (values)

int flipped 0: normal orientation

1: flipped

string filename

A.3.3 Spline Objects

Type Field Units (values)

int object code O SPLINE 3

int sub type T OPEN NORMAL 0

T CLOSED NORMAL 1

T OPEN INTERPOLATED 2

T CLOSED INTERPOLATED 3

common fields

int forward arrow, 0: no arrow

backward arrow 1: arrow

The Spline object description has a points line following any arrow line which

has the same format as described above for the Polyline object description. If the

sub type of the spline is T OPEN INTERPOLATED or

T CLOSED INTERPOLATED, then an additional control points line follows the

points line. The line consists of a sequence of coordinate pairs, two coordinate

pairs for each point in the points line. Note that whereas the points line contains

integers, the control line consists of floating point numbers.

lx1 ly1 rx1 ry1 lx2 ly2 rx2 ry2 . . . lxn lyn rxn ryn

Type Field Units (values)

float lxi, lyi, rxi, ryi pixels

The interpretation of Spline objects is more complex than of other object descrip-

tions, and is discussed in section A.4.

Jan 3, 2000 Version 2.1.5 page 17

A.3.4 Text Objects

Type Field Units (values)

int object type O TEXT 4

int sub type T LEFT JUSTIFIED 0

T CENTER JUSTIFIED 1

T RIGHT JUSTIFIED 2

int + font DEFAULT

ROMAN 1

BOLD 2

ITALICS 3

SANSSERIF 4

TYPEWRITER 5

float + font size points

int + pen DEFAULT

int + color DEFAULT

int depth no units

float angle radians

int + text flags no units

float + height, length pixels

int x, y pixels

string string

The positioning of the string is specified by the sub type. The values T LEFT JUSTIFIED,

T CENTER JUSTIFIED, and T RIGHT JUSTIFIED specify that (x, y) is the

left end, center and right end of the baseline, respectively. The height and

length fields specify the box that the text fits into. These specifications are

accurate only for the fonts used by Fig.

The string field is an ASCII string terminated by the character ’\01’. This

terminating character is not a part of the string. Note that the string may contain

the new-line character ’\n’. Some output modes will interpret ISO encoded

European accents not found in the ASCII character set.

The text flags field is a bit vector which specifies various settable prop-

erties of the text object. Each flag corresponds to a bit position in the field; the

default value of each flag is FALSE.

Jan 3, 2000 Version 2.1.5 page 18

Flag Bit mask Description

(in binary)

RIGID TEXT 0001 Font size doesn’t scale inside compound

SPECIAL TEXT 0010 Text includes formatting commands

PSFONT TEXT 0100 Font field specifies PS font

HIDDEN TEXT 1000 Fig editor should not display text

The RIGID TEXT flag is used to preserve the absolute size of text objects

when inside compound and that compound is scaled (xfig only). The SPECIAL TEXT

flag is used to inhibit the “escaping” of formatting commands when translating

text to LATEXor Troff, in order to allow the user to inject such commands directly

into the figure. The PSFONT TEXT flag changes the interpretation of the font

field. Rather than selecting from the limited set of generic fonts shown in the table

above, the field is interpreted as selecting from the following table of PostScript

fonts. A text object with the PSFONT TEXT flag set may not be fully translatable

into output forms other than PostScript. Finally, the HIDDEN TEXT field is mean-

ingful only to graphics editors, and specifies that the full text should not displayed

on the screen. This is most useful for special text objects which may include very

long formatting command strings.

Jan 3, 2000 Version 2.1.5 page 19

PS Font Value

Times-Roman 1

Times-Italic 2

Times-Bold 3

Times-BoldItalic 4

AvantGarde 5

AvantGarde-BookOblique 6

AvantGarde-Demi 7

AvantGarde-DemiOblique 8

Bookman-Light 9

Bookman-LightItalic 10

Bookman-Demi 11

Bookman-DemiItalic 12

Courier 13

Courier-Oblique 14

Courier-Bold 15

Courier-BoldItalic 16

Helvetica 17

Helvetica-Oblique 18

Helvetica-Bold 19

Helvetica-BoldOblique 20

Helvetica-Narrow 21

Helvetica-Narrow-Oblique 22

Helvetica-Narrow-Bold 23

Helvetica-Narrow-BoldOblique 24

NewCenturySchlbk-Roman 25

NewCenturySchlbk-Italic 26

NewCenturySchlbk-Bold 27

NewCenturySchlbk-BoldItalic 28

Palatino-Roman 29

Palatino-Italic 30

Palatino-Bold 31

Palatino-BoldItalic 32

Symbol 33

ZapfChancery-MediumItalic 34

ZapfDingbats 35

Jan 3, 2000 Version 2.1.5 page 20

A.3.5 Arc Objects

Type Field Units (values)

int object code O ARC 5

int sub type T 3 POINT ARC 1

common fields

int direction 0: clockwise

1: counter

int forward arrow, 0: no arrow

backward arrow 1: arrow

float center x, center y pixels

int x1, y1, x2, y2, x3, y3 pixels

The Arc object describes a circular arc centered at the point

(center x, center y), starting at (x1, y1), passing through (x2, y2), and end-

ing at (x3, y3). It is drawn either clockwise of counter-clockwise as specified

by direction. Note that this description is quite overdetermined, as the center

and direction of the arc can be deduced from the three points of the arc which are

specified.

A.3.6 Compound Objects

Type Field Units (values)

int object type O COMPOUND 6

int upperright corner x pixels

int upperright corner y

int lowerleft corner x

int lowerleft corner y

The Compound object description describes a compound object bounded by

the rectangle determined by the points

(upperright corner x, upperright corner y)
(lowerleft corner x, lowerleft corner y)

It consists of all the objects following it until an object whose object type field

is O END COMPOUND (-6) is encountered. Compound objects may be nested.

Jan 3, 2000 Version 2.1.5 page 21

A.4 Splines

Specifying the interpretation of a Spline object description is more problematic

than other graphics objects. A graphics object description can be viewed as hav-

ing two parts: an abstract description of the locus of points which make up the

object; and a set of appearance parameters which specify how the abstract object

is to be represented. For example, a circular arc has a very precise and well un-

derstood abstract definition, independent of the width of the line used to draw it.

Unfortunately, the abstract specification of splines is more complex. The follow-

ing descriptions come at second hand; the author of this guide is not versed in

spline algorithms, and so may have garbled them. Hopefully, they will give the

knowledgeable reader some idea of the intended meaning of Spline objects.

Fig splines come in two major varieties: B-splines and Interpolated splines.

Each of these is available in open or closed versions. If the sub type field has

the values T OPEN NORMAL or T CLOSED NORMAL then it describes a B-spline.

In these cases, the points line which follows contains the control points

for the spline. The spline does not actually pass through these points, but they

determine where it will pass, which is generally quite close to the control points.

B-splines are quite smooth.

If the sub type field has the values T OPEN INTERPOLATED or

T CLOSED INTERPOLATED then it describes an interpolated spline. In these

cases, the points line which follows contains the interpolation points through

which the spline will pass. In addition, a control points line follows the points line,

which specifies two control points (lxi, lyi) and (rxi, ryi) for each interpolation

point. The i’th section of the interpolated spline is drawn using the Bezier cubic

with the four points (xi, yi),
(rxi, rxi), (lxi+1, lyi+1

), and (xi+1, yi+1). Interpolated splines are not as smooth

as B-splines.

For either type of closed splines, the first and last points on the point line

(x1, y1) and (xn, yn) are identical. For closed interpolated splines, the last pair of

control points on the control points line, (lxn, lyn) and (rxn, ryn) are the same

as (lx1, ly1) and (rx1, ry1) respectively.

Jan 3, 2000 Version 2.1.5 page 22

