/* * copyright (c) 2013 Andrew Kelley * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * libavfilter API usage example. * * @example filter_audio.c * This example will generate a sine wave audio, * pass it through a simple filter chain, and then compute the MD5 checksum of * the output data. * * The filter chain it uses is: * (input) -> abuffer -> volume -> aformat -> abuffersink -> (output) * * abuffer: This provides the endpoint where you can feed the decoded samples. * volume: In this example we hardcode it to 0.90. * aformat: This converts the samples to the samplefreq, channel layout, * and sample format required by the audio device. * abuffersink: This provides the endpoint where you can read the samples after * they have passed through the filter chain. */ #include #include #include #include #include "libavutil/channel_layout.h" #include "libavutil/md5.h" #include "libavutil/mem.h" #include "libavutil/opt.h" #include "libavutil/samplefmt.h" #include "libavfilter/avfilter.h" #include "libavfilter/buffersink.h" #include "libavfilter/buffersrc.h" #define INPUT_SAMPLERATE 48000 #define INPUT_FORMAT AV_SAMPLE_FMT_FLTP #define INPUT_CHANNEL_LAYOUT (AVChannelLayout)AV_CHANNEL_LAYOUT_5POINT0 #define VOLUME_VAL 0.90 static int init_filter_graph(AVFilterGraph **graph, AVFilterContext **src, AVFilterContext **sink) { AVFilterGraph *filter_graph; AVFilterContext *abuffer_ctx; const AVFilter *abuffer; AVFilterContext *volume_ctx; const AVFilter *volume; AVFilterContext *aformat_ctx; const AVFilter *aformat; AVFilterContext *abuffersink_ctx; const AVFilter *abuffersink; AVDictionary *options_dict = NULL; uint8_t options_str[1024]; uint8_t ch_layout[64]; int err; /* Create a new filtergraph, which will contain all the filters. */ filter_graph = avfilter_graph_alloc(); if (!filter_graph) { fprintf(stderr, "Unable to create filter graph.\n"); return AVERROR(ENOMEM); } /* Create the abuffer filter; * it will be used for feeding the data into the graph. */ abuffer = avfilter_get_by_name("abuffer"); if (!abuffer) { fprintf(stderr, "Could not find the abuffer filter.\n"); return AVERROR_FILTER_NOT_FOUND; } abuffer_ctx = avfilter_graph_alloc_filter(filter_graph, abuffer, "src"); if (!abuffer_ctx) { fprintf(stderr, "Could not allocate the abuffer instance.\n"); return AVERROR(ENOMEM); } /* Set the filter options through the AVOptions API. */ av_channel_layout_describe(&INPUT_CHANNEL_LAYOUT, ch_layout, sizeof(ch_layout)); av_opt_set (abuffer_ctx, "channel_layout", ch_layout, AV_OPT_SEARCH_CHILDREN); av_opt_set (abuffer_ctx, "sample_fmt", av_get_sample_fmt_name(INPUT_FORMAT), AV_OPT_SEARCH_CHILDREN); av_opt_set_q (abuffer_ctx, "time_base", (AVRational){ 1, INPUT_SAMPLERATE }, AV_OPT_SEARCH_CHILDREN); av_opt_set_int(abuffer_ctx, "sample_rate", INPUT_SAMPLERATE, AV_OPT_SEARCH_CHILDREN); /* Now initialize the filter; we pass NULL options, since we have already * set all the options above. */ err = avfilter_init_str(abuffer_ctx, NULL); if (err < 0) { fprintf(stderr, "Could not initialize the abuffer filter.\n"); return err; } /* Create volume filter. */ volume = avfilter_get_by_name("volume"); if (!volume) { fprintf(stderr, "Could not find the volume filter.\n"); return AVERROR_FILTER_NOT_FOUND; } volume_ctx = avfilter_graph_alloc_filter(filter_graph, volume, "volume"); if (!volume_ctx) { fprintf(stderr, "Could not allocate the volume instance.\n"); return AVERROR(ENOMEM); } /* A different way of passing the options is as key/value pairs in a * dictionary. */ av_dict_set(&options_dict, "volume", AV_STRINGIFY(VOLUME_VAL), 0); err = avfilter_init_dict(volume_ctx, &options_dict); av_dict_free(&options_dict); if (err < 0) { fprintf(stderr, "Could not initialize the volume filter.\n"); return err; } /* Create the aformat filter; * it ensures that the output is of the format we want. */ aformat = avfilter_get_by_name("aformat"); if (!aformat) { fprintf(stderr, "Could not find the aformat filter.\n"); return AVERROR_FILTER_NOT_FOUND; } aformat_ctx = avfilter_graph_alloc_filter(filter_graph, aformat, "aformat"); if (!aformat_ctx) { fprintf(stderr, "Could not allocate the aformat instance.\n"); return AVERROR(ENOMEM); } /* A third way of passing the options is in a string of the form * key1=value1:key2=value2.... */ snprintf(options_str, sizeof(options_str), "sample_fmts=%s:sample_rates=%d:channel_layouts=stereo", av_get_sample_fmt_name(AV_SAMPLE_FMT_S16), 44100); err = avfilter_init_str(aformat_ctx, options_str); if (err < 0) { av_log(NULL, AV_LOG_ERROR, "Could not initialize the aformat filter.\n"); return err; } /* Finally create the abuffersink filter; * it will be used to get the filtered data out of the graph. */ abuffersink = avfilter_get_by_name("abuffersink"); if (!abuffersink) { fprintf(stderr, "Could not find the abuffersink filter.\n"); return AVERROR_FILTER_NOT_FOUND; } abuffersink_ctx = avfilter_graph_alloc_filter(filter_graph, abuffersink, "sink"); if (!abuffersink_ctx) { fprintf(stderr, "Could not allocate the abuffersink instance.\n"); return AVERROR(ENOMEM); } /* This filter takes no options. */ err = avfilter_init_str(abuffersink_ctx, NULL); if (err < 0) { fprintf(stderr, "Could not initialize the abuffersink instance.\n"); return err; } /* Connect the filters; * in this simple case the filters just form a linear chain. */ err = avfilter_link(abuffer_ctx, 0, volume_ctx, 0); if (err >= 0) err = avfilter_link(volume_ctx, 0, aformat_ctx, 0); if (err >= 0) err = avfilter_link(aformat_ctx, 0, abuffersink_ctx, 0); if (err < 0) { fprintf(stderr, "Error connecting filters\n"); return err; } /* Configure the graph. */ err = avfilter_graph_config(filter_graph, NULL); if (err < 0) { av_log(NULL, AV_LOG_ERROR, "Error configuring the filter graph\n"); return err; } *graph = filter_graph; *src = abuffer_ctx; *sink = abuffersink_ctx; return 0; } /* Do something useful with the filtered data: this simple * example just prints the MD5 checksum of each plane to stdout. */ static int process_output(struct AVMD5 *md5, AVFrame *frame) { int planar = av_sample_fmt_is_planar(frame->format); int channels = frame->ch_layout.nb_channels; int planes = planar ? channels : 1; int bps = av_get_bytes_per_sample(frame->format); int plane_size = bps * frame->nb_samples * (planar ? 1 : channels); int i, j; for (i = 0; i < planes; i++) { uint8_t checksum[16]; av_md5_init(md5); av_md5_sum(checksum, frame->extended_data[i], plane_size); fprintf(stdout, "plane %d: 0x", i); for (j = 0; j < sizeof(checksum); j++) fprintf(stdout, "%02X", checksum[j]); fprintf(stdout, "\n"); } fprintf(stdout, "\n"); return 0; } /* Construct a frame of audio data to be filtered; * this simple example just synthesizes a sine wave. */ static int get_input(AVFrame *frame, int frame_num) { int err, i, j; #define FRAME_SIZE 1024 /* Set up the frame properties and allocate the buffer for the data. */ frame->sample_rate = INPUT_SAMPLERATE; frame->format = INPUT_FORMAT; av_channel_layout_copy(&frame->ch_layout, &INPUT_CHANNEL_LAYOUT); frame->nb_samples = FRAME_SIZE; frame->pts = frame_num * FRAME_SIZE; err = av_frame_get_buffer(frame, 0); if (err < 0) return err; /* Fill the data for each channel. */ for (i = 0; i < 5; i++) { float *data = (float*)frame->extended_data[i]; for (j = 0; j < frame->nb_samples; j++) data[j] = sin(2 * M_PI * (frame_num + j) * (i + 1) / FRAME_SIZE); } return 0; } int main(int argc, char *argv[]) { struct AVMD5 *md5; AVFilterGraph *graph; AVFilterContext *src, *sink; AVFrame *frame; uint8_t errstr[1024]; float duration; int err, nb_frames, i; if (argc < 2) { fprintf(stderr, "Usage: %s \n", argv[0]); return 1; } duration = atof(argv[1]); nb_frames = duration * INPUT_SAMPLERATE / FRAME_SIZE; if (nb_frames <= 0) { fprintf(stderr, "Invalid duration: %s\n", argv[1]); return 1; } /* Allocate the frame we will be using to store the data. */ frame = av_frame_alloc(); if (!frame) { fprintf(stderr, "Error allocating the frame\n"); return 1; } md5 = av_md5_alloc(); if (!md5) { fprintf(stderr, "Error allocating the MD5 context\n"); return 1; } /* Set up the filtergraph. */ err = init_filter_graph(&graph, &src, &sink); if (err < 0) { fprintf(stderr, "Unable to init filter graph:"); goto fail; } /* the main filtering loop */ for (i = 0; i < nb_frames; i++) { /* get an input frame to be filtered */ err = get_input(frame, i); if (err < 0) { fprintf(stderr, "Error generating input frame:"); goto fail; } /* Send the frame to the input of the filtergraph. */ err = av_buffersrc_add_frame(src, frame); if (err < 0) { av_frame_unref(frame); fprintf(stderr, "Error submitting the frame to the filtergraph:"); goto fail; } /* Get all the filtered output that is available. */ while ((err = av_buffersink_get_frame(sink, frame)) >= 0) { /* now do something with our filtered frame */ err = process_output(md5, frame); if (err < 0) { fprintf(stderr, "Error processing the filtered frame:"); goto fail; } av_frame_unref(frame); } if (err == AVERROR(EAGAIN)) { /* Need to feed more frames in. */ continue; } else if (err == AVERROR_EOF) { /* Nothing more to do, finish. */ break; } else if (err < 0) { /* An error occurred. */ fprintf(stderr, "Error filtering the data:"); goto fail; } } avfilter_graph_free(&graph); av_frame_free(&frame); av_freep(&md5); return 0; fail: av_strerror(err, errstr, sizeof(errstr)); fprintf(stderr, "%s\n", errstr); return 1; }