
eSNACC 1.7: A High
Performance ASN.1 to

C/C++ Compiler
Application Programming

Interface

Version 1.7

21 April 2004

141 National Business Parkway, Suite 210
Annapolis Junction, MD 20701

1

<http://www.DigitalNet.com/>
(Originally developed by Michael Sample 1993; msample@cs.ubc.ca

Department of Computer Science, University of British Columbia
6356 Agricultural Rd., Vancouver, British Columbia Canada, V6T 1Z2

AND augmented by: Robert Joop, rj@rainbow.in-berlin.de)
PROLOGUE
This version of SNACC (called eSNACC) is provided by DigitalNet. DigitalNet
has made and continues to make many improvements to the original SNACC
release by Michael Sample. This manual describes the present version of
eSNACC; both the compiler and C/C++ run-time library use.

The Enhanced SNACC ASN.1 library is totally unencumbered as stated in the
Enhanced SNACC Software Public License
(http://www.digitalnet.com/knowledge/library/snacc/snacc_license.txt) . All
source code for the Enhanced SNACC software is being provided at no cost and
with no financial limitations regarding its use and distribution. Organizations
can use the Enhanced SNACC software without paying any royalties or licensing
fees.

ORIGINAL SNACC 1.2rj PROLOGUE
This work was made possible by grants from the Canadian Institute for
Telecommunications Research (CITR) and Natural Sciences and Engineering
Research Council of Canada (NSERC).

Copyright (C) 1990, 1991, 1992, 1993 Michael Sample and the University of
British Columbia Copyright c _ 1994, 1995 Robert Joop and GMD FOKUS

This program, eSNACC, is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2 of the License, or (at your option) any
later version.

The runtime libraries are copyright to the University of British Columbia and
Michael Sample. They are free software; you can redistribute them and/ or
modify them as long as the original, unmodified copyright information with/in
them. The GNU Library Public License has been removed as of version 1.1.

What we're trying to say is: you can't sell the compiler but you can sell products
that use the code generated by the compiler and the runtime libraries.

This program and the associated libraries are distributed in the hope that they
will be useful, but WITHOUT ANY WARRANTY; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License and the
GNU Library General Public License along with this program; if not, write to the
Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

 Permission is granted to make and distribute verbatim copies of this manual
provided the copyright notice and this permission notice are preserved on all
copies.

2

http://www.digitalnet.com/knowledge/library/snacc/snacc_license.txt
mailto:rj@rainbow.in-berlin.de
http://www.DigitalNet.com/

Permission is granted to copy and distribute modified versions of this manual
under the conditions for verbatim copying, provided that the entire resulting
derived work is distributed under the terms of a permission notice identical to
this one.

3

Contents
1 Introduction...5

1.1 DigitalNet/Getronics/J.G.Van Dyke & Associates Update
Notes (2004)..6
1.2 MS Windows Building eSNACC.....................................7
1.3 Unix/Linux Configuring and Installing eSNACC............7
1.4 Running eSNACC...8

1.4.1 Known Bugs 13
1.5 Reporting Bugs and Your Own Improvements............14

2 C Code Generation..14
2.1 Introduction...14
2.2 ASN.1 to C Naming Conventions.................................15
2.3 ASN.1 to C Data Structure Translation.......................16
2.4 Encode Routines..18
2.5 Decode Routines..19
2.6 Print Routines..20
2.7 Free Routines...21
2.8 ASN. 1 to C Value Translation.....................................22
2.9 Compiler Directives...22
2.10 Compiling the Generated C Code................................27

3 C ASN.1 Library..28
3.1 Overview..28
3.2 Tags..28
3.3 Lengths..29
3.4 BOOLEAN..30
3.5 INTEGER..31
3.6 NULL..32
3.7 REAL..32
3.8 BIT STRING..33
3.9 OCTET STRING..34
3.10 OBJECT IDENTIFIER...35
3.11 SET OF and SEQUENCE OF..36
3.12 ANY and ANY DEFINED BY...38
3.13 Buffer Management...42

3.13.1 Buffer Reading Routine Semantics 43
3.13.2 Buffer Writing Routine Semantics 44
3.13.3 Buffer Configuration 44
3.13.4 SBuf Buffers 45

3.14 Error Management...46
4 C++ Code Generation...48

4.1 Introduction...48
4.2 ASN.1 to C++ Naming Conventions............................49
4.3 ASN.1 to C++ Class Translation.................................49

4.3.1 SET and SEQUENCE 52
4.3.2 CHOICE 53
4.3.3 SET OF and SEQUENCE OF 55

4

4.3.4 ENUMERATED, Named Numbers and Named
Bits 57

4.4 ASN.1 to C++ Value Translation.................................57
4.5 Compiler Directives...58
4.6 Compiling the Generated C++ Code...........................58

5 C++ ASN. 1 Library..60
5.1 Overview..60
5.2 Tags..60
5.3 Lengths..60
5.4 The AsnType Base Class..61
5.5 BOOLEAN..62
5.6 INTEGER..64
5.7 ENUMERATED..66
5.8 NULL..66
5.9 REAL..67
5.10 BIT STRING..69
5.11 OCTET STRING..71
5.12 Built-in Strings PrintableString, BMPString,
TeletexString, NumericString, VideotexString, T61String,
IA5String, GraphicString, VisibleString, ISO646String,
GeneralString, UniversalString, UTF8String, UTCTime,
GeneralizedTime..73
5.13 OBJECT IDENTIFIER...84
5.14 SET OF and SEQUENCE OF..87
5.15 ANY and ANY DEFINED BY...87
5.16 Buffer Management...90
5.17 Error Management - SnaccException..........................92

5

1 Introduction
eSACC compiles ASN.1 [1] (Abstract Syntax Notation One)
modules into C, C++ source code. The generated C or C++ code
contains equivalent data structures and routines to convert values
between the internal (C or C++) representation and the
corresponding BER [2] (Basic Encoding Rules) and DER
(Distinguished Encoding Rules) format. The name “snacc” is an
acronym for “Sample Neufeld ASN.1 to C/C++ Compiler”.
This compiler basically works on 1990 the ASN.1 syntax. Features
have been added to accommodate some recent syntaxes, these are
described below. The compiler and C++ run-time library have
been rigorously tested on several ASN.1 module suites.
Specifically, the SMIME Freeware Library uses the X.509 and IETF
CMS specification(s) ASN.1 syntax, compiled by eSNACC. Also,
the SNMP V1 test suite for ASN.1 syntax handling of input/decode
data (over 10,000 tests for successful decoding and 10,000 tests
for graceful error handling; eSNACC handles the entire test suite;
see the .tgz. files under ./SNACC/c++-examples/ snmpv1_tests and
the source file under ./SNACC/c++-examples/src/snmp.cpp).

6

The above figure, “SNACC Compiler Use in SFL”, demonstrates the
eSNACC compiler use. First, the .cpp and .h source files are built
from an ASN.1 specificaion (file) using the eSNACC compiler, then
the main application is built using these support files and the
eSNACC run-time library. The application program can
encode/decode ASN.1 data and reference individual elements using
the eSNACC run-time library classes described in this manual.

1.1 DigitalNet/Getronics/J.G.Van Dyke & Associates Update
Notes (2004)

These notes refer to the updates performed by
DigitalNet/Getronics/J.G.Van Dyke & Associates (all the same
company personnel). Improvements have been made to the
compiler, run-time libraries, buffer handling, etc. to keep up with
recent ASN.1 syntax issues. We continue to develop new features
(please check the web site for the most recent release,
www.digitalnet.com).
The IDL compiler and TCL support have been left intact, but
untested in our release(s). Please inform us of any changes you
may make to get these features working; we will update the
baseline accordingly. We have no plans to support these features
directly.
This version has changed the name from eSNACC to eSNACC to
reflect the magnitude of the various updates, summarized below:

- Created MS Windows Visual Studio (6 and .net) projects and
workspaces to build on MS Windows as a .dll file. The
produced C++ sources allow the user to specify local,
IMPORT or EXPORT of symbols from an application .dll
executable (see command line options).

- DER (Distinguished Encoding Rules) implemented; BER is no
longer used when encoding; decoding will decode both BER
and DER data.

- PER (Packed Encoding Rules) implemented; limited support
of PER visible constraints.

- Useful ASN.1 types were added as run-time library classes
for direct support; this allows for data restrictions.

- Some features from newer ASN.1 specifications have been
added; the basic syntax supported is still 1990.

- Makefile(s) were updated; Linux and Solaris are supported
directly.

- All IMPORT definitions do not need to be defined in ASN.1
modules to be compiled; this feature allows the user to

7

specify an include directory containing .asn1 files that will be
searched to satisfy any IMPORT definitions of compiled files
(very convenient). This allows users to build individual .asn1
modules, not all necessary modules at the same time.

C++ Run-time library updates follow:
- AsnInt now handles big integers, greater than 4 bytes (signed

and unsigned)
- AsnBits enchanced to construct BitStrings from binary

strings directly.
- Added AsnSetOf and AsnSeqOf templates.
- All string classes are directly supported, not through the

useful types ASN.1 definitions. These classes check that data
encoded/decoded is valid for the appropriate string type.

- Updated Exception handling (see snaccexcept.h)
- AsnAny table/processing updates; much more flexible. Any(s)

can now be treated just like any other AsnType for
encode/decode operations, no need for custom code for
simple encode/decode operations.

- Added C++ namespace features for unique symbol
references.

- Consolidated include files of individual eSNACC C++ run-
time classes into a single .h file for ease of use.

- XML printing was added to the run-time library and to the
compiler generated classes for convenient display of binary
ASN.1 results.

- All references to AsnList are now std::list
- Extensibility is now supported for the Set/Sequence/Choice

syntaxes
- Relative-Oid type is supported
- No longer supports un-named types (2002 syntax compliant)

“C” Run-time library updates follow:

- String encode/decode operations now check that the string
information is valid. (ASN.1 String definitions are now native
to the eSNACC compiler for “C” as well).

- AsnAny processing for “C” has been improved, no custom
code is necessary for simple encode/decode operations.

8

- Relative-Oid type is supported

1.2 MS Windows Building eSNACC
In MS Visual Studio, load the “./SNACC/snacc_builds.dsw” (or
“snacc_builds.sln” for .net) and execute the “buildall” project. This
will build the compiler, run-time libraries for “C” and C++, and
build the test application.

1.3 Unix/Linux Configuring and Installing eSNACC
The build process has changed considerably from the previous
release. Now all you have to do to build on a clean distribution is:

configure
make
 or
make debug

From the top of the source tree (./SNACC). If you want to clean
the source tree of all objects and libraries:

make clean
If you are going to reuse the same source tree on another platform
make sure you
remove all platform specific files by doing:

make distclean
make (GNU make is recommended)

Some versions of yacc may choke due to the large size of the parse-
asn1.y file, however, we have had no problems with bison . Our
yacc grammar for ASN.1 has 61 shift/reduce errors and 2
reduce/reduce errors. Most of these errors were introduced when
certain macros were added to the compiler. Some of the
shift/reduce errors will require you to follow the offending macro in
the ASN.1 module with a semi-colon. The reduce/reduce errors
were introduced by macros that have “Type or Value Lists”
because the NULL Type and NULL values use the same symbol,
“NULL”. This is not a problem since no real processing is done
with the macros in question at the present.
Lex will work for the lex-asn1.l file but flex will typically produce a
smaller executable. Most versions of lex have a small maximum
token size that will cause problems for long tokens in the ASN.1
source files, such as quoted strings. To avoid this problem,

9

increase the YYLMAX value in the generated lex-asn1.c file to at
least 2048. Flex does not seem to have this problem.
The configuration process has been simplified (at least for the
installer of eSNACC) by the use of GNU autoconf.
The only file that may have to be edited is .../policy. h. It contains a
few compilation switches you may want to toggle.
The eSNACC compiler and library C code has been written to
support ANSI or non-ANSI C. The configuration script tries to find
out whether your C compiler understands ANSI C.
The configuration script generates two files:
.../makehead gets included by all makefiles. It contains a lot of
definitions used by make.
.../config.h contains all the machine, operating system, compiler
and environment dependent settings. It is included by .../snacc.h.
If you wish to install only the C (including type tables) or only the
C++ versions of the library, type make c or make c++,
respectively, instead of make. If the make succeeds, the eSNACC
binary should be present as .../compiler/snacc , the C runtime
libraries, libasn1csbuf.a , libasn1cebuf.a , libasn1cmbuf.a and
libasn1ctbl.a , should be in .../c-lib/ and the C++ runtime library,
libasn1c++.a (and, if you compiled with the Tcl option enabled,
another run-time library, libasn1tcl.a), should be in .../c++-lib/.
The type table tools, ptbl , pval and mkchdr, will be in their
respective directories under .../ tbl-tools/ .
To avoid warnings across platforms, you must run lex/flex and
bison/yacc on their respective platforms.
To install eSNACC, you can call “make install”. This installs the
eSNACC compiler binary, the libraries, the .h and .asn1 files, the
type table tools, as well as the manual pages into the usual
directories (/usr/local on Unix based platforms,
%windir%/system32 for MS Windows).

1.4 Running eSNACC
eSNACC is typically invoked from the shell command line.

With no arguments, the “usage” report is printed:

Usage: C:\devel.d\develCurent.d\SMPDist\bin\esnaccd.exe [-h] [-P] [-t] [-v]
[-e]

 [-d] [-p] [-f] [-a] [-b]
 [-c | -C [cpp] | -T <table output file> | -idl]
 [-mm] [-mf <max file name length>]

10

 [-l <neg number>]
 [-VDAexport=DEFINE_NAME] to designate export of SNACC

generated clas
ses
 [-E BER|DER select encoding rules to generate (C only)]
 [-D NECESSARY for VDA Rules (ANY processing)
 <ASN.1 file list>

 -h prints this msg
 -c generate C encoders and decoders (default)
 -C generate C++ encoders and decoders
 -novolat for broken C++ compilers: return *this after calling abort()
 -T <filename> write a type table file for the ASN.1 modules to file

filename
 -O <filename> writes the type table file in the original (<1.3b2) format
 -idl generate CORBA IDL
 (i.e. PrintableString). See the useful.asn1 file (in the
 snacc/asn1specs/ directory).
 -P print the parsed ASN.1 modules to stdout from their parse trees
 (helpful debugging)
 -t generate type definitions
 -v generate value definitions (limited)
 -e generate encode routines
 -d generate decode routines
 -p generate print routines
 -f generate hierarchical free routines (C only)
 note: if none of -t -v -e -d -p -f are given, all are generated.
 These do not affect type tables.
 -mm mangle output file name into module name (by default, the output

file
 inherits the input file's name, with only the suffix replaced)
 -mf <num> num is maximum file name length for the generated source

files
 -l <neg num> where to start error longjmp values decending from

(obscure).
 -I <Directory Path> ASN.1 directory path for supporting ASN.1

modules.
 -b generates PER encode/decode routines

11

Use `-' as the ASN.1 source file name to parse stdin. (ONLY FOR Unix
platforms)

This ASN.1 compiler produces C or C++ BER encoders and decoders or
type tables.

Version 1.5
Release Date: 2003-02-20
Please see imc-snacc@imc.org for new versions and where to send bug

reports and
comments.

Copyright (C) 1993 Michael Sample and UBC
Copyright (C) 1994, 1995 by Robert Joop and GMD FOKUS

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See

the
GNU General Public License for more details.

eSNACC generates C or C++ source code for BER encode and
decode routines as well as print and free routines for each type in
the given ASN.1 modules. Alternatively, eSNACC can produce type
tables that can be used for table based/interpreted encoding and
decoding. The type table based methods tend to be slower than
their C or C++ counterparts but they tend to use less memory
(table size vs. C/C++ object code).
eSNACC may also be used to generate CORBA IDL. This part of
eSNACC is very new and I would rate it as pre-alpha. (This feature
has not been kept up-to-date.)
The -meta , -mA , -mC and -tcl options are only present when the
Tcl and Tk libraries were found at configuration time. (This feature
has not been kept up-to-date.)

12

Most of the 1990 ASN.1 features are parsed although some do not
affect the generated code. Fairly rigorous error checking is
performed on the ASN.1 source; any errors detected will be
reported (printed to stderr.)
Each file in the ASN.1 file list should contain a complete ASN.1
module. ASN.1 modules that use the IMPORTS feature must
reference the other ASN.1 modules on the command line (specify
all necessary modules in the ASN.1 file list OR indicate the include
directory to extract the information from, “-I”). The generated
source files will include each module's header file in the command
line order. This makes it important to order the modules from least
dependent to most dependent on the command line to avoid type
ordering problems. Currently, snacc assumes that each ASN.1 file
given on the command line depends on all of the others on the
command line. Only the header files from modules referenced in
the import list for that module are included.
If the target language is C, eSNACC will generate a .h and .c file
for each specified ASN.1 module. If the target language is C++,
eSNACC will generate a .h and .cpp file for each module. If the
target language is CORBA IDL, eSNACC will generate an .idl file
for each module. The generated file names will be derived from the
module's filenames, or from the module names if the -mm command
line switch has been given.
The command line options are:
-I<Directory Path> to specify an include directory for .asn1
modules referencing all IMPORT variables. This feature allows the
user to build individual .asn1 modules, not have all necessary
definitions built at the same time.
–h short for “help”, prints a synopsis of eSNACC and exits.
–c causes eSNACC to generate C source code. This is the default
behavior of eSNACC if neither of the -c or -C options are given.
Only one of the -c, -C, -idl or -T options should be specified.
–C causes eSNACC to generate C++ source code.
–idl causes eSNACC to generate CORBA IDL source code.
–T file causes eSNACC to generate type tables and write them to
the given file file.
–meta types causes eSNACC to generate C++ classes with type
meta information. Requires C++ functionality and therefore
implies -C (C++ code generation). The types denote the PDUs and
have the following syntax: a comma-separated list of pairs of:

13

module name, a dot, and a type name from that module. (Example:
snacc -tcl M1. T-a, M-2. Tb mod1.asn1 m2.asn1)
 –mA and –mC causes the metacode to use identifiers as defined in
the ASN.1 source files or as used in the generated C++ code,
respectively. (It defaults to -mC.)
–tcl types causes eSNACC to generate functions for a Tcl
interface. Needs the type meta information and thus implies -meta
(see above). The -meta option can and should be omitted, the
types are as for the -meta option (the types arguments are
additive, in case you specify both options).
–P causes eSNACC to print the parsed ASN.1 modules to stdout

after the types have been linked, sorted, and processed. This
option is useful for debugging eSNACC and observing the
modifications eSNACC performs on the types to make code
generation simpler.
The options, -t, -v, -e, -d, -p, and -f affect what types and
routines go into the generated source code. These options do not
affect type table generation. If none of them are given on the
command line, eSNACC assumes that all of them are in effect. For
example, if you do not need the Free or Print routines, you should
give the -t -v -e -d options to eSNACC. This lets you trim the
size of the generated code by removing unnecessary routines; the
code generated from large ASN.1 specifications can produce very
large binaries.
–t causes eSNACC to generate type definitions in the target
language for each ASN.1 type.
–v causes eSNACC to generate value definitions in the target
language for each ASN.1 value. Currently value definitions are
limited to INTEGERs, BOOLEANs and OBJECT IDENTIFIERs.
 –e causes eSNACC to generate encode routines in the target
language for each ASN.1 type.
–d causes eSNACC to generate decode routines in the target
language for each ASN.1 type.
–p causes eSNACC to generate print routines in the target
language for each ASN.1 type.
–f causes eSNACC to generate free routines in the target language
for each ASN.1 type. This option only works when the target
language is C. The free routines hierarchically free C values. A
more efficient approach is to use the provided nibble-memory
system. The nibble memory permits freeing an entire decoded
value without traversing the decoded value. This is the default

14

memory allocator used by eSNACC generated decoders. See file
.../c-lib/inc/asn-config.h to change the default memory
system. For more information on the memory management see
Section 5.14.
–u file causes eSNACC to read the useful types definitions from the
ASN.1 module in file file for linking purposes. For some ASN.1
specifications, such as SNMP, the useful types are not needed. The
types in the given useful types file are globally available to all
modules; a useful type definition is overridden by a local or
explicitly imported type with the same name. The original useful
type module that defined the individual string elements is no
longer necessary since all string types were incorporated into the
compiler and “C”/C++ run-time libraries.
–mm This switch is supplied for backwards compatibility. eSNACC
versions 1.0 and 1.1 produced files with names generated from the
ASN.1 module name contained in the input file. Snacc 1.2rj by
default retains the input file name and replaces the suffix only. The
new behavior makes makefile writing easier, as with modern
makes, pattern matching can be used.
–mf number causes the names of the generated source files to
have a maximum length of number characters, including their
suffix. The number argument must be at least 3. This option is
useful for supporting operating systems that only support short file
names. A better solution is to shorten the module name of each
ASN.1 module.
–l number this is fairly obscure but may be useful. Each error that
the decoders can report is given an id number. The number
number is where the error ids start decreasing from as they are
assigned to errors. The default is -100 if this option is not given.
Avoid using a number in the range -100 to 0 since they may conflict
with the library routines' error ids. If you are re-compiling the
useful types for the library use -50. Another use of this option is to
integrate newly generated code with older code; if done correctly,
the error ids will not conflict.
Since ASN. 1 has different scoping rules than C and C++, some
name munging is done for types, named-numbers etc. to eliminate
conflicts. Some capitalization schemes were chosen to fit common
C programming style. For all names, dashes in the ASN.1 source
are converted to underscores. See Sections 4.2 and 6.2 for more
naming information.
If the -mm switch has been given, the module name is used as a
base name for the generated source file names. It will be put into
lowercase and dashes will be replaced with underscores. Module

15

names that result in file names longer than specified with the -mf
option will be truncated. If the -mf option was not given, file names
will be truncated if they are too long for the target file system. You
may want to shorten long module names to meaningful
abbreviations. This will avoid file name conflicts for module names
that are truncated to the same substring. Any module name and file
name conflicts will be reported.
If your ASN.1 modules have syntactic or semantic errors, each
error will be printed to stderr along with the file name and line
number of where it occurred. These errors are usable by GNU
emacs compiling tools. See the next chapter for more information
on the types of errors eSNACC can detect.
More errors can be detected and reported in a single compile if
type and value definitions are separated by semi-colons. Separating
type and value definitions with semi-colons is not required, and if
used, need not be used to separate all type and value definitions.
Semi-colons are necessary after some macros that introduce
ambiguity. In general, if you get a parse error you can't figure out,
try separating the surrounding type/value definitions with
semicolons.

1.4.1 Known Bugs
 eSNACC has problems with the following case:

Foo::=SEQUENCE
{
 id IdType,
 val ANY DEFINED BY id
}
IdType::=CHOICE
{
 a INTEGER,
 b OBJECT IDENTIFIER
}

 The error checking pass will print an error to the effect that
the id type must be INTEGER or OBJECT IDENTIFER. To fix
this you must modify the error checking pass as well as the
code generation pass. To be cheap about it, disable/fix the
error checking and hand modify the generated code.

16

 The hashing code used for handling ANY DEFINED BY id to
type mappings will encounter problems if the hash table goes
more than four levels deep (I think this is unlikely). To fix this
just add linear chaining at fourth level.

 The .../configure script should check whether the
machine's floating point format is IEEE or whether the IEEE
library exists.

 The C++ library severely lacks a convenient buffer
management class that automatically expands like the C
libraries' ExpBuf. What use is an efficient buffer management
when you have got to build a loop around eSNACC's
encoding routine that reallocates larger buffers until the
result fits?

 Where this document describes personal experiences, it is
usually unclear to which author `I' refers. (One way to find
out is to look at eSNACC 1.1' s docu- mentation.)

1.5 Reporting Bugs and Your Own Improvements
eSNACC is actively supported by DigitalNet, please send any
suggestions, bug-fixes, improvements, etc. to
Robert.Colestock@DigitalNet.com (or check the web site under
knowledge bank, www.digitalnet.com, for recent eSNACC
issues/contact information).

1.6 Version Updates
New in 1.7

 Enchancements to C++ runtime:
 Support of constraints checking for BER/PER
 Added Asn-Relative-Oid's
 Updated Asn-Oid to be inherited from Asn-Relative-Oid
 Added Extensibility to the set/sequence/choice syntax

(BER encoding/decoding only, PER is not yet supported)
 asn::list has been changed to std::list (many changes)
 non-optional set/sequence/choice elements are no longer

generated as pointers
 PER encode/decode capability for both aligned and

unaligned variants (see PER beta notes below)
 Enchancements to C runtime:

17

http://www.digitalnet.com/
mailto:Robert.Colestock@DigitalNet.com

 Added useful types
 Added Asn-Relative-Oid's
 Enhancements to compiler
 eSNACC no longer supports un-named types (2002 syntax

update)
 added -b compiler option to turn on/off PER

encoding/decoding function generation in
set/sequence/choice (Note -- calling PEnc/PDec will still
work, but will not produce correct encoding unless -b is
used!!)

New in EKMS PER Beta (Packed Encoding Rules)
 Aligned and unaligned PER variants (C++ only)
 Limited constraint checking and PER encoding for PER

visible constraints
 Supported

 char Stringtypes
 Integer
 Octet String
 Bit String
 Sequence-of / Set-of (limited)

 Currently Unsupported
 wide char stringtypes
 extensibility in constraints

New in 1.6Beta
 Updated "C" library to automatically handle ANY

load/unloads as buffers.
 Added interpretation of ASN.1 integer constants as values

in tag references for "C" and C++.
 Added "--snacc namespace: " pre-processor feature for

unique C++ ASn.1
 module namespace references.
 Updated SNACC document (in the ./SNACC/doc directory)

to present DigitalNet

18

 updates/enhancements.
 Updated c++-examples and c-examples to demontrate

recent features.

New in 1.5
 Updated "C" library to automatically handle ANY

load/unloads as buffers.
 Added interpretation of ASN.1 integer constants as values

in tag references for "C" and C++.
 Added "--snacc namespace: " pre-processor feature for

unique C++ ASn.1 module namespace references.
 Updated SNACC document (in the ./SNACC/doc directory)

to present DigitalNet updates/enhancements.
 Updated c++-examples and c-examples to demontrate

recent features.

New in 1.4
 rewrote makefiles to make build process easier and faster.
 Enchancements to C++ runtime:
 AsnInt changed to be so that it no longer inherits AsnOcts
 AsnBits enchanced to construct BitStrings from binary

strings.
 Added AsnSetOf and AsnSeqOf templates.
 Added Exception handling (see snaccexcept.h)
 Moved BDecPdu to AsnType. So every type as access to it

now. This was done to help reduce the number of symbols
& methods the compiler generates.

 Added useful types
 Enchancements to C runtime:
 Added useful types
 Enhancements to compiler
 Removed -u switch because useful types are now in the

runtime library.
 Added useful types as basic types.

19

2 C Code Generation
2.1 Introduction
eSNACC was designed primarily to provide high-performance
encoders and decoders. Key areas to optimize are buffer and
memory management. Buffers are used to hold encoded values and
the memory management is used when building the internal
representation of a value when decoding.
C macros are used where possible to eliminate function call
overhead for small, commonly used routines. Using macros with
constant expressions as parameters allows smarter C compilers to
do some of the calculations at compile time. In general, short-cuts
that can be taken without sacrificing the robustness of code are
used.
The generated code can be quite large; large reductions of the size
of the binaries can be achieved by using the optimizing options of
your C compiler.
We will use an example ASN.1 module, EX1, to help explain
eSNACC's code generation. The EX1 module uses some of the
common built-in types and contains some simple values. The field
names have been left out to show eSNACC naming conventions.
The C generation code is in .../compiler/back-ends/c-gen/ if
you want to alter it.
EX1 DEFINITIONS ::=

BEGIN

anOidVal OBJECT IDENTIFIER ::= { joint-iso-ccitt 40 foobar(29) }

theSameOidVal OBJECT IDENTIFIER ::= { 2 40 29 }

anIntVal INTEGER ::= 1

aBoolVal BOOLEAN ::= TRUE

T1 ::= SEQUENCE

{

 INTEGER OPTIONAL,

OCTET STRING OPTIONAL,

ENUMERATED { a(0), b(1), c(2) },

 SEQUENCE OF INTEGER,

SEQUENCE { id OBJECT IDENTIFIER, value OCTET STRING },

CHOICE { INTEGER, OBJECT IDENTIFIER }
} END

20

Use the following command to compile the EX1 ASN.1 module:
%1 snacc -u .../asn1specs/asn-useful.asn1 .../asn1specs/ex1.asn1

This produces the files ex1.h and ex1.c.
For each ASN.1 type an equivalent C data type, a DER encoding
routine, a BER/DER decoding routine, a printing routine and a
freeing routine will be generated. C values will also be generated
from simple ASN.1 values. Each aspect of the C code generation
will be discussed in the next sections.

2.2 ASN.1 to C Naming Conventions
For any given module, eSNACC may produce C type definitions,
functions and #defines. We assume that all C typedef, struct, enum
and union tag, enum value, variable, #define and function names
share a single name space.
The C type name for a type is the same as its ASN.1 type name
(with any hyphens converted to underscores) unless there is a
conflict. Since, unlike ASN.1, the C types for each ASN.1 module
share the same name space, eSNACC makes sure the C typenames
are unique among all the modules and that they do not conflict
with C keywords. The conflicts are resolved by appending digits to
the conflicting name. To avoid confusing numbered type names
etc., you should edit the ASN.1 source and name them properly.
Named numbers, ENUMERATED values and named bits are put in
entirely in upper case to match the common C convention for
#define and enum values.
Empty field names in SETs, SEQUENCEs, and CHOICEs will be
filled. The field name is derived from the type name for that field.
The library types such as INTEGER have default field names
defined by the compiler (see
.../compiler/back-ends/c-gen/rules.c). The first letter of the
field name is in lower case. Again, empty field names should be
fixed properly by adding them to the ASN.1 source.
New type definitions will be generated for SETs, SEQUENCEs,
CHOICEs, ENUMERATED, INTEGERs with named numbers and
BIT STRING with named bits whose definitions are embedded in
other SET, SEQUENCE, SET OF, SEQUENCE OF, or CHOICE
definitions. The name of the new type is derived from the name of
the type in which it was embedded. Perhaps a better way would
use the field name as well, if present.

21

2.3 ASN.1 to C Data Structure Translation
To handle the different scoping rules between ASN.1 and C, the
names of some ASN.1 data structure elements such as
ENUMERATED type symbols may be altered to avoid conflicts. The
T1 type in example ASN.1 module EX1 has no field names so
eSNACC will generate them. It is recommended to provide field
names in the ASN.1 source instead of relying on compiler
generated names. The following is the generated C data structure
for the EX1 module from the ex1.h file (function prototypes have
been removed):
typedef enum

{

A = 0,

B = 1,

 C = 2

} T1Enum; /* ENUMERATED { A(0), B(1), C(2) } */

typedef struct T1Choice /* CHOICE */

{

enum T1ChoiceChoiceId

{

T1CHOICE_ INT1,

T1CHOICE_ OID

} choiceId;

union T1ChoiceChoiceUnion

{

AsnInt int1; /* INTEGER */

AsnOid *oid; /* OBJECT IDENTIFIER */

} a;

} T1Choice;

typedef struct T1Seq /* SEQUENCE */

{

AsnOid id; /* OBJECT IDENTIFIER */

AsnOcts value; /* OCTET STRING */

} T1Seq;

typedef AsnList T1SeqOf; /* SEQUENCE OF INTEGER */

typedef struct T1 /* SEQUENCE */

{

AsnInt *int1; /* INTEGER OPTIONAL */

22

AsnOcts octs; /* OCTET STRING OPTIONAL */

T1Enum t1Enum; /* T1Enum */

T1SeqOf *t1SeqOf; /* T1SeqOf */

struct T1Seq *t1Seq; /* T1Seq */

struct T1Choice *t1Choice; /* T1Choice */

} T1;

Every ASN.1 type definition maps into a C typedef. SETs and
SEQUENCEs map into C structures and other simple types map
into their obvious C counterpart. SET OF and SEQUENCE OF types
map into a generic list type which is doubly linked and NULL
terminated. The reverse link on the lists allows for simpler
backwards encoding. More information on the library types can be
found in Chapter 5.
Comments that contain a fragment of each type's ASN.1 definition
are inserted in the header file to clarify cases where elements have
been renamed.
Aggregate types that are defined in other type definitions are
moved to their own type definitions. For example, notice how the
SEQUENCE and CHOICE that are in type T1 have been moved to
the types T1Seq and T1Choice in the C code. This simplifies code
generation at the cost of introducing new types.
Identifiers for named numbers from INTEGER and ENUMERATED
types and named bits from the BIT STRING type are capitalized in
the C representation. The ENUMERATED type maps to a C enum

and the INTEGER and BIT STRING named numbers/ bits are
handled with #define statements.
Most OPTIONAL elements of SEQUENCEs and SETs are
referenced by pointer. An element is considered present if its
pointer is non-NULL. OCTET STRINGs, BIT STRINGs and OBJECT
IDENTIFIERs are the exceptions, and are included by value even
when they are OPTIONAL because they are small and contain an
internal pointer that can be used to determine their presence. For
an example of this, look at the first two elements of type T1. The
INTEGER type is referenced by pointer because it is OPTIONAL,
but the OCTET STRING type is included (non-pointer) in the T1

type even though it is OPTIONAL.

2.4 Encode Routines
eSNACC generates two kinds of encoding routines. One is PDU
oriented and encodes the type's tag, length and content and the
other only encodes the type's content. The generated encoders only
call the content encoders, except in the case of ANY and ANY

23

DEFINED BY types. Typically, you will only call the PDU oriented
routines from your code.
The content and PDU encoding routine interfaces are similar for all
ASN.1 types. They both take two parameters, one is a buffer
pointer and the other is a pointer to the value to be encoded. For
example the T1 type from module EX1 has the following prototypes
for its encoding routines.
AsnLen BEncT1Content (BUF_ TYPE b, T1 *v);

AsnLen BEncT1 (BUF_ TYPE b, T1 *v);

BEnc Bis short for “BER Encode”. The BUF_TYPE parameter is the
buffer to encode the value into and the T1 * parameter is a pointer
to the instance of the T1 type that is to be encoded.
The BEncT1Content routine only encodes the content of a T1 type
and returns its encoded length; it does not encode its tag
(UNIVERSAL (CONSTRUCTED) 16 for SEQUENCE) or length. The
job of encoding the tag and length is up to any type that
encapsulates T1. This design allows decisions about implicit
tagging to be made at code generation time instead of runtime,
improving performance. Also, different encoding rules may fit into
this model more easily.
The BEncT1 routine encodes the tag (UNIVERSAL
(CONSTRUCTED) 16 for SE- QUENCE), length and content of a T1

type and returns its encoded length. This is the PDU oriented
routine and will only be generated if the user designates the type
as a PDU type via a compiler directive or the type is used as the
content of an ANY or ANY DEFINED BY type (as indicated by an
OBJECT-TYPE macro). A PDU type is a type that defines an entire
PDU; the user will typically be calling the encode and decode
routine for PDU types directly. See Section 4.9 for how to
designate PDU types with compiler directives.
The eSNACC encoders are somewhat strange; they encode a value
starting from the end of its BER representation and work back to
its beginning. This “backwards” encoding technique simplifies the
use of definite lengths on constructed values. Other encoders that
encode forwards, such as those of CASN1, use an intermediate
buffer format so that a buffer containing the encoded length of a
constructed value can be inserted before its encoded content, after
the content has been encoded. Use of intermediate buffers hurts
performance. Other compilers' approaches have been to only
encode indefinite lengths for constructed values, however, this will
not support some encoding rules such as DER. The drawback of
encoding backwards is that BER values cannot be written to
stream-oriented connections as they are encoded.

24

Both definite and indefinite length encodings for constructed
values' lengths are sup- ported. Currently the choice is made when
compiling the generated code, via the USE_INDEF_LEN flag. If
both length forms, definite and indefinite, are required, it easy to
modify the length encoding macros to check a global variable for
the length form to use. For most types, using definite lengths
produces smaller encodings with little performance difference.
After calling an encode routine you should always check the buffer
you encoded into for a write error. This is the only error reporting
mechanism used for the encoders. See the C buffer section
(Section 5.13) for how to check a buffer for a write error.

2.5 Decode Routines
Decoding routines are like the encoding routines in that there are
two kinds, one that decodes the type's tag, length and content and
one that only decodes the type's content. As mentioned in the
encoder section, the content style interface allows implicit tagging
decisions to be made at compile time.
Unlike the encoding routines, the PDU and content decoding
routines take different arguments. For the T1 type the following
would be produced:
void BDecT1Content (BUF_ TYPE b, AsnTag tagId0, AsnLen elmtLen0, T1
*v, AsnLen *bytesDecoded, ENV_ TYPE env);

void BDecT1 (BUF_ TYPE b, T1 *v, AsnLen *bytesDecoded, ENV_ TYPE
env);

Notice that the content decoder, BDecT1Content, has tag and
length parameters that the PDU decoder, BDecT1, does not have.
Since the content decoder does not decode the tag and length on
the value, it is necessary to pass them in as parameters. Only
OCTET STRING and BIT STRING decoders will actually use the
information in the tag parameter.
The BUF_TYPE parameter is the buffer that holds the BER value
being decoded.
The tagId0 parameter is the last tag that was decoded on the
content of the type that is about to be decoded. In the case of type
T1, BDecT1Content gets a tagId0 of UNIVERSAL (CONSTRUCTED)
16, unless it is implicitly tagged by another type. Most content
decoding routines ignore the tag information. OCTET STRING and
BIT STRING decoders use the tag information to determine
whether the contents are constructed or primitive. CHOICE
decoders use the tag information to determine which CHOICE

25

element is present. CHOICE values are treated differently, as will
be explained shortly.
The elmtLen0 parameter is the length of the content of the type
being decoded. This is simply the length decoded from the buffer
by the containing type's decoder just before calling this decode
routine.
The v parameter is a pointer to space allocated for the type being
decoded. This memory is not allocated by the decoding routine
itself; this supports the cases where the type is enclosed in the
struct of the parent (i.e. no extra allocation is necessary). If the
type to be decoded is referenced by pointer from its parent type,
the parent type's decoding routine must allocate the type.
The bytesDecoded parameter maintains the running total of the
number of octets that have been decoded. For example, if I call
BDecT1Content with a bytesDecoded parameter that points to 20
and the encoded length of the T1 value is 30 octets, bytesDecoded

will point to 50 when BDecT1Content returns. Maintaining the
length is vital to determining the presence or absence of
OPTIONAL elements in a SET or at the end of SEQUENCE. Local
variables are used to hold the lengths; there is no global stack of
lengths as with CASN1.
The env parameter is used in conjunction with longjmp calls. When
an decoder encounters a fatal error such as a missing tag, it uses
the env with a longjmp call to pop back to the initial decode call.
Section 5.15 has more error management details.
CHOICEs are decoded a little differently from other types. For all
types except CHOICEs, all of the tag and length pairs on the
content are decoded by the parent type, and the last pair is passed
into a content decoding routine via the tagId0 and elmtLen0

parameters. For CHOICEs, all of the tag and length pairs on the
content are decoded and then the first tag and length pair in the
CHOICE content is decoded by the parent and passed into the
CHOICE content decoding routine. The first tag in a CHOICE's
content is the important tag by which the CHOICE determines
which element is present. This technique simplifies the code for
dealing with untagged CHOICEs embedded in other CHOICEs.
CHOICEs nested in this way mean that a single tag determines
which element is present in more than one CHOICE.
The decoding routines allocate memory to hold the decoded value.
By default eSNACC decoders use nibble memory (see Section 5.14)
which is very efficient in allocation and virtually cost free for
freeing.

26

To save memory, decoders generated by some other tools build
values that reference the data in the encoded PDU for types like
OCTET STRING. eSNACC decoded values do not reference the
BER data in any way for several reasons. One, the encoded value
may be held in some bizarre buffer making access to the value
difficult. Two, with more encoding rules being formalized, this
technique may not always work since the encoded format may be
different from the desired internal format. Three, eSNACC
decoders concatenate any constructed BIT and OCTET STRINGs
values when decoding, to simplify processing in the application.
eSNACC decoders can detect a variety of errors which will be
reported by longjmp . Any tagging errors are reported. SETs must
contain all non-OPTIONAL components and SEQUENCEs must be
in order and contain all non-OPTIONAL components. Extra
components in SETs and SEQUENCEs are considered an error.
Errors will also be reported if you attempt to decode values that
exceed the limitations of the internal representation (e.g. an
integer that is larger than a long int allows).

2.6 Print Routines
All of the generated print routines take similar parameters. For
example the T1 type' s print routine prototype is:
void PrintT1 (FILE *f, T1 *v, unsigned short int indent);

The print routine writes the given value, v , to the given FILE *, f .
The printed value is indented by indent spaces. The values are
printed in an ASN.1 value notation style. PrintT1 prints in the
following style:
{ -- SEQUENCE –

 17,

 '436c696d6220617420537175616d697368'H -- "Climb at Squamish" --,

 0,

 {

 -- SEQUENCE OF –

 18,

 19

 },

 { -- SEQUENCE –

 id {2 40 29},

 value '736f6d6520737472696e67'H -- "some string" –

 },

27

 20

}

OCTET STRINGs are printed in a hexadecimal notation, and any
printable characters are included after the string in an ASN.1
comment. Note that the enumerated type value, 0, did not print its
symbol, “A” from the ENUMERATED type. It would be fairly easy
to modify the C and C++ back ends to generate print routines that
printed the ENUMERATED types' symbols instead of their values.

2.7 Free Routines
eSNACC generates free routines of the form:
void FreeT1 (T1 *v);

These routines will free all the components named type. For
example the above FreeT1 routine will free all the components of
the given T1 value, but not the T1 value itself. The passed in
pointer is not freed because it may be embedded in another type
which will be freed by another call to Asn1Free. All the pieces of
memory are freed using the Asn1Free_ _ macro defined in asn-
config.h. Each library type has its own free routine that may call
Asn1Free. The values are typically allocated during decoding,
using the Asn1Alloc macro.
The memory management can be changed by editing the asn-
config.h file to use your own memory management routines. By
default the memory manager uses the nibble memory system
described in Section 5.14. The nibble memory system does not
need explicit frees of each component so the generated free
routines are not needed. However, if you change the memory
management to use something like malloc and free, you should use
the generated free routines.

2.8 ASN. 1 to C Value Translation
C values will be produced for INTEGER, BOOLEAN and OBJECT
IDENTIFIER values. C extern declarations for the value are put at
the end of the header file (after all of the type definitions). The
value definitions are put at the beginning of the source file. For
example, the following will be produced for the EX1 module (at the
end of file ex1. h):
extern AsnOid anOidVal;

extern AsnOid theSameOidVal;

extern AsnInt anIntVal;

extern AsnBool aBoolVal;

28

extern AsnInt foobar;

(at the beginning of file ex1.c):

AsnOid anOidVal = { 2, "\ 170\ 35" };

AsnOid theSameOidVal = { 2, "\ 170\ 35" };

AsnInt anIntVal = 1;

AsnBool aBoolVal = TRUE;

AsnInt foobar = 29;

2.9 Compiler Directives
eSNACC allows the user to control some aspects of the generated
code by inserting special comments in the ASN.1 source. Warning!
only the isPdu directive has been tested to any extent. Use the
others very carefully and only if you really need to. The compiler
directives have the form:
--snacc <attribute>:"< value>" <attribute>:"< value>" ...

The attribute is the name of one of the accepted attributes and the
value is what the attribute’s new value will be. The attribute value
pairs can be listed in a single –snacc comment or spread out in a
list of consecutive comments.
Compiler directives are only accepted in certain places in the
ASN.1 code. Depending on their location in the ASN.1 source, the
compiler directives affect type definitions or type references. The
directives for type definitions and references are different. Module
level compiler directives to specify output file names and other
information would be useful, but are not implemented.
Here is an example to present some of the compiler directives and
their uses. Let's say your data structure always deals with
PrintableStrings that are null terminated (internally, not in the
encoding). The default eSNACC string type is a structure that
includes a length and char * for the string octets. To change the
default type to a simple char * the best way would be define your
own string type, let' s say MyString as follows:
Foo ::= SET

{

s1 [0] MyString OPTIONAL,

s2 [1] MyString,

i1 [2] INTEGER

}

Bar ::= CHOICE

29

{

s1 MyString,

i1 INTEGER

}

Bell ::= MyString

MyString ::= -- snacc isPtrForTypeDef:" FALSE"

-- snacc isPtrForTypeRef:" FALSE"

-- snacc isPtrInChoice:" FALSE"

-- snacc isPtrForOpt:" FALSE"

-- snacc optTestRoutineName:" MYSTRING_ NON_ NULL"

-- snacc genPrintRoutine:" FALSE"

-- snacc genEncodeRoutine:" FALSE"

-- snacc genDecodeRoutine:" FALSE"

-- snacc genFreeRoutine:" FALSE"

-- snacc printRoutineName:" printMyString"

-- snacc encodeRoutineName:" EncMyString"

-- snacc decodeRoutineName:" DecMyString"

-- snacc freeRoutineName:" FreeMyString"

PrintableString -- snacc cTypeName:" char *"

All but the last –snacc comment bind with the MyString type
definition. The last directive comment binds with the
PrintableString type. The C data structure resulting from the above
ASN.1 and compiler directives is the following:
typedef char *MyString; /* PrintableString */

typedef struct Foo /* SET */

{

MyString s1; /* [0] MyString OPTIONAL */

MyString s2; /* [1] MyString */

AsnInt i1; /* [2] INTEGER */

} Foo;

typedef struct Bar /* CHOICE */

{

enum BarChoiceId

{

BAR_ S1,

BAR_ I1

} choiceId;

30

union BarChoiceUnion

{

 MyString s1; /* MyString */

AsnInt i1; /* INTEGER */

} a;

} Bar;

typedef MyString Bell; /* MyString */

The compiler directives used on the MyString type have some
interesting effects. Notice that MyString is not referenced by
pointer in the CHOICE, SET, or type definition, Bell. The generated
code for encoding field s1 of Foo type will use the code
“MYSTRING_NON_NULL (&fooVal->s1)” to check for the presence
of the OPTIONAL s1 field. The code associated with MYSTRING_
NON_ NULL should return TRUE if the s1 field value is present
and might look like:
#define MYSTRING_ NON_ NULL(s) (* s != NULL)

The argument to optTestRoutine routine will be a pointer to the
field type' s defining type. Note that in the above example,
MyString is a char * , therefore the MYSTRING_ NON_ NULL
macro's argument will be a char *.
Setting the genPrintRoutine etc. attributes to false makes eSNACC
not define or generate any encode, decode, print, or free routines
for the MyString type. You must provide these yourself; the best
approach is to take the normal PrintableString routines and modify
them to handle your special string type.
The names of the encode, decode, print and free routines used for
the MyString type will be based on the ones given with the
printRoutineName etc. attributes. eSNACC will prepend a “B” (for
BER) and append a “Content” to the encode and decode routines
names, so you must provide the BEncMyStringContent and
BDecMyStringContent routines. You may also need the
BEncMyString and BDecMyString routines if MyString is a PDU
type or used in an ANY or ANY DEFINED type.
The PrintableString type has its C type name changed to char * by
the last compiler directive. Thus MyString is defined as a char *.
This directive applies to the PrintableString A type reference. Note
that these directives do not affect the tags or the encoded
representation of the MyString type.
The location of the –snacc comment(s) is important. –snacc
comment(s) between the ::= sign and the following type are
associated with the type being defined. Any compiler directives
after the type and before the next type or value definition are

31

associated with the type. Fields in SETs, SEQUENCEs and
CHOICEs can be modified by putting the compiler directive after
the comma that follows the field type that you wish to modify. In
the case of the last element of one of these types, where there is no
comma, just place it after the field and before the closing bracket
of the parent type.
Attributes shadow the type attributes filled in during the target
language type information generation pass of the compiler. The
type definition attributes are:
cTypeName this is the type name that the generated type will
have. Its value can be any string that is valid as a C type name.
isPdu whether this is a PDU type. A PDU type will have extra
interfaces to the encode and decode routines generated. Its value
can be “TRUE” or “FALSE”.
isPtrForTypeDef TRUE if other types defined solely by this type
definition are defined as a pointer to this type. Its value can be
“TRUE” or “FALSE”.
isPtrForTypeRef TRUE if type references to this type definition
from a SET or SEQUENCE are by pointer. Its value can be “TRUE”
or “FALSE”.
isPtrInChoice TRUE if type references to this type definition from
a CHOICE are by pointer. Its value can be “TRUE” or “FALSE”.
isPtrForOpt TRUE if OPTIONAL type references to this type
definition from a SET or SEQUENCE are by pointer. Its value can
be “TRUE” or “FALSE”.
optTestRoutineName name of the routine to test whether an
OPTIONAL element of this type in a SET or SEQUENCE is present.
The routine should return TRUE if the element is present. The
value of this field is usually just the name of a C macro that tests
for NON- NULL. The argument to the routine will be a pointer to
the type definition's type. The optTestRoutineName value can be
any string value.
defaultFieldName if this type is used in a SET, SEQUENCE or
CHOICE without a field name then this value is used with a digit
appended to it. Its value can be any string that is a valid C field
name in a struct or union.
printRoutineName name of this type definition's printing routine.
Its value can be any string that is a C function or macro name.
encodeRoutineName name of this type definition's encoding
routine. Its value can be any string that is a C function or macro
name.

32

decodeRoutineName name of this type definition's decoding
routine. Its value can be any string that is a C function or macro
name.
freeRoutineName name of this type definition's freeing routine.
Its value can be any string that is a C function or macro name.
isEncDec If this type is used in a SET or SEQUENCE then it is not
encoded or decoded. Its value can be “TRUE” or “FALSE”. This is
handy for adding your own types to a standard that are only for
local use, and are not included in encoded values.
genTypeDef TRUE if you want a C type to be generated for this
type definition. Its values can be “TRUE” or “FALSE”.
genPrintRoutine TRUE if you want a printing routine to be
generated for this type definition. Its values can be “TRUE” or
“FALSE”.
genEncodeRoutine TRUE if you want an encoding routine to be
generated for this type definition. Its values can be “TRUE” or
“FALSE”.
genDecodeRoutine TRUE if you want a decoding routine to be
generated for this type definition. Its values can be “TRUE” or
“FALSE”.
genFreeRoutine TRUE if you want a free routine to be generated
for this type definition. Its values can be “TRUE” or “FALSE”.
The type reference attributes are slightly different from the type
definition attributes due to the semantic differences between a
type definition and a type reference. Type references will inherit
some of their attributes from the referenced type definition. The
following are the valid type reference attributes:
cTypeName this is the type name that the generated type will
have. Its value can be any string that is valid as a C type name.
cFieldName if this is a field in a CHOICE, SET or SEQUENCE
then this holds the C field name for this reference. Its value can be
any string that is valid as a C field name.
isPtr TRUE if this is a pointer to the type named by cTypeName.
This is usually determined from the referenced type definitions
attributes. Its value can be “TRUE” or “FALSE”.
optTestRoutineName if this field is an OPTIONAL component
then this is the name of the routine to test whether it is present.
The routine should return TRUE if the element is present. The
value of this is usually just the name of a C macro that tests for
NULL. The argument to the routine will be a pointer to the type

33

definition's type. The optTestRoutineName value can be any string
value.
printRoutineName name of this type reference's printing routine.
This and the other routine name attributes are useful for special
instances of the referenced type. It is easier to modify the
referenced type definition if you want every instance of this type to
use a certain print etc. routine. Its value can be any string that is a
value C function or macro name.
encodeRoutineName name of this type reference's encoding
routine. Its value can be any string that is a function or macro
name.
decodeRoutineName name of this type reference's decoding
routine. Its value can be any string that is a C function or macro
name.
freeRoutineName name of this type reference's freeing routine.
Its value can be any string that is a C function or macro name.
isEncDec If this type is used in a SET or SEQUENCE then the field
is not encoded or decoded. Its value can be “TRUE” or “FALSE”.
This is handy for adding your own types to a standard that are only
for local use, and are not included in encoded values.
choiceIdSymbol if this is a component of a CHOICE, this string
attribute will be the defined/enum symbol whose value in the
choiceId field indicates the presence of this field.
choiceIdValue if this is a component of a CHOICE, this integer
attribute will be the value associated with the symbol in
choiceIdSymbol.

2.10 Compiling the Generated C Code
The generated C code (and libraries) can be compiled by both ANSI
and K& R C compilers. C function prototypes use the PROTO

macro and C function declarations use the PARAMS macro. These
macros are defined in .../snacc.h and their definitions depend
on whether the __USE_ANSI_C_ flag has been defined in
.../config.h.
When compiling the generated C code you will need:

1. The include directory where the files from .../c-lib/inc/
have been installed in your include path so the C sources can
include the library header files. The header files should be
included with statements like #include <snacc/c/asn-incl.h>
and your C compiler should be supplied with

34

-I/usr/local/include in case eSNACC got installed under
/usr/local/.
2. to link with the correct C ASN.1 runtime library,
depending on the buffer type you choose. In case eSNACC
got installed under /usr/local/, your linker may need to be
supplied with -L/usr/local/lib and one of -lasn1cebuf, -
lasn1cmbuf or -lasn1csbuf as arguments.
3. to link with the math library (-lm), since the ASN.1 REAL
type's encode and decode routine use some math routines.
See the example in .../c-examples/simple/ for a complete
example. The makefile and main routines are probably the
most important. There are several other examples in the
.../c-examples/directory.

35

3 C ASN.1 Library
3.1 Overview
Each library type has a file in the .../c-lib/src/ and .../c-
lib/inc/ directories. Each source file contains the encode,
decode, free and print routines for the given type. This chapter
contains a description of each library type and its routines. This
library is also referred to as the runtime library.
After installing eSNACC, you should test the library types to make
sure that they are encoding and decoding properly. Use the .../c-
examples/test-lib/ example to check them.
In addition to other errors, most decoding routines will report an
error if they attempt to read past the end of the data. Be aware
that some buffer types do not support this type of checking. This is
explained more in the buffer management section.

3.2 Tags
eSNACC's tag representation was motivated by several things.

1. the tags must be easy to compare for equality in if and
switch statements to make tag-based decisions cheap.
2. a tag must be cheap to decode.
3. a tag must be cheap to encode.

The first requirement meant that tags had to be integer types (for
the switch statement). The representation of the tag within the
integer was set by the second requirement.
The best way to decode cheaply is minimize the transformation
between the encoded and decoded (internal) format. So the four
(can be set-up for two) bytes of the long integer are used to hold
the encoded tag, starting with the first octet of the tag in the most
significant byte of the integer and the rest (if any) following. Any
unused (always trailing) bytes in the integer are zero. This limits
the representable tag code to less than 221 but for reasonable
ASN.1 specifications this should not be a problem.
To meet the third requirement the decoded tag representation was
bypassed entirely by using macros (BEncTag1() etc.) that write the
encoded tag octet(s) to the buffer. The writing of an encoded tag
octet involves bit shifting, bitwise ands and bitwise ors with
constant values; most optimizing C compilers can compute these at

36

compile time. This simplifies encoding a tag to writing some
constant byte value(s) to the buffer.
The following excerpt from .../c-lib/inc/asn-tag.h shows
some of the tag routines.
typedef unsigned long int AsnTag;

#define MAKE_ TAG_ ID(class, form, code) ...

#define TAG_ IS_ CONS(tag) ...

#define BEncTag1(b, class, form, code) ...

#define BEncTag2(b, class, form, code) ...

#define BEncTag3(b, class, form, code) ...

#define BEncTag4(b, class, form, code) ...

#define BEncTag5(b, class, form, code) ...

AsnTag BDecTag (BUF_ TYPE b, AsnLen *bytesDecoded, ENV_ TYPE env);

The generated decode routines use the BDecTag to decode a tag
from the buffer. The returned tag value is either used in an if
expression or as the argument to switch statements. The
MAKE_TAG_ID macro is used to make a tag for comparison to the
one returned by BDecTag. The MAKE_TAG_ID is used in switch
statement case labels and in if statements.
Most of the time tags are only compared for equality, however, the
OCTET STRING and BIT STRING decoders check the constructed
bit in the tag using the TAG_IS_CONS macro.
The BEncTag macros are quite fragile because they return the
encoded length of the tag; they cannot be treated as a single
statement. This requires careful use of braces when using them in
your own code in places such as the sole statement in an if
statement. This ugliness is caused by the difficulty in returning
values from multi-line macros (macros are used for performance
here since encoding tags can be a significant part of BER
encoding).
The BDecTag routine will report an error via longjmp if the
encoded tag is longer than can be held in the AsnTag type or if it
read past the end of the data when decoding the tag.

3.3 Lengths
Decoded lengths are represented by unsigned long integers, with
the maximum value indicating indefinite length.

37

eSNACC users can choose between using only indefinite or only
definite lengths when encoding constructed values' lengths when
compiling the generated code. Of course, the generated decoders
can handle both forms. Define the USE_INDEF_LEN symbol when
compiling the generated code if you want to use indefinite lengths
when encoding constructed values. Primitive values are always
encoded with definite lengths as required by the standard; this is
necessary to avoid confusion between a value's content and the
End-Of-Contents marker.
There is no loss of performance when using definite lengths with
eSNACC encoders. This is due the “backwards” encoding as
described in Section 4.4. The schemes used by other compilers'
encoders to handle definite lengths may hurt performance. Most of
the routines in the following code are obvious except for
BEncDefLenTo127(). This is used instead of BEncDefLen in the
generated code when the compiler knows the value being encoded
will not be over 127 octets long. Values such as BOOLEANs,
INTEGERs, and REALs are assumed to be shorter than 127 octets
(constraints on the decoded representation of INTEGERs and
REALs make this valid).
typedef unsigned long int AsnLen;

/* max unsigned value - used for internal rep of indef len */

#define INDEFINITE_LEN ~0L

#ifdef USE_INDEF_LEN

#define BEncEocIfNec(b) BEncEoc (b)

#define BEncConsLen(b, len) 2 + BEncIndefLen (b)

#else

#define BEncEocIfNec(b)

#define BEncConsLen(b, len) BEncDefLen (b, len)

#endif

#define BEncIndefLen(b) ...

#define BEncDefLenTo127(b, len) ...

AsnLen BEncDefLen (BUF_TYPE b, AsnLen len);

AsnLen BDecLen (BUF_TYPE b, AsnLen *bytesDecoded, ENV_TYPE env);

#define BEncEoc(b) ...

#define BDEC_2ND_EOC_OCTET(b, bytesDecoded, env) ...

void BDecEoc (BUF_TYPE b, AsnLen *bytesDecoded, ENV_TYPE env);

The BDecLen routine will report an error via longjmp if it attempts
to read past the end of the data or the decoded length is too large

38

to be held in the AsnLen representation. BDecEoc will report an
error if it attempts to read past the end of the data or one of the
EOC (End- Of- Contents) octets is non- zero.

3.4 BOOLEAN
The BOOLEAN type is represented by an unsigned char. It has the
following routines for manipulating it.

typedef unsigned char AsnBool;

AsnLen BEncAsnBool (BUF_TYPE b, AsnBool *data);

void BDecAsnBool (BUF_TYPE b, AsnBool *result, AsnLen *bytesDecoded,
ENV_TYPE env);

AsnLen BEncAsnBoolContent (BUF_TYPE b, AsnBool *data);

void BDecAsnBoolContent (BUF_TYPE b, AsnTag tag, AsnLen len, AsnBool
*result, AsnLen *bytesDecoded,
ENV_TYPE env);

#define FreeAsnBool(v)

void PrintAsnBool (FILE *f, AsnBool *b, unsigned short int indent);

As discussed in Sections 4.4 and 4.5, BEncAsnBool and
BDecAsnBool encode/decode the UNIVERSAL tag, length and
content of the given BOOLEAN value. The BEncAsnBoolContent

and BDecAsnBoolContent routine only encode/decode the content
of the given BOOLEAN value.
The FreeAsnBool routine does nothing since the BOOLEAN type
does not contain pointers to data; the free routine generator does
not have to check which types need freeing and simply calls the
type's free routine. It also allows the user to modify the types and
their free routines without changing the free routine generator.
However, the ANY and ANY DEFINED BY type hash table
initialization routine generator does need to know which types
have empty free routines because the hash entries contain pointers
to the free functions (NULL is used for the empty free functions
like FreeAsnBool). The INTEGER, NULL, REAL and
ENUMERATED types have empty free routines for the same
reason.
BDecAsnBool will report an error if the tag is not UNIVERSAL-
PRIM-1. BDecAsnBoolContent will report an error if it decodes past
the end of the data or the length of the encoded value (given by the
len parameter) is not exactly one octet.

39

3.5 INTEGER
The INTEGER type is represented by a 32 bit integer type, AsnInt .
The C integer type chosen depends on the machine and compiler
and may be int, long or short, whatever is 32 bits in size. If you are
using INTEGER types that are only positive (via subtyping or
protocol definition) you may want to use the UAsnInt and
associated routines that use the unsigned int for a larger positive
value range.
typedef int AsnInt;

typedef unsigned int UAsnInt;

AsnLen BEncAsnInt (BUF_TYPE b, AsnInt *data);

void BDecAsnInt (BUF_TYPE b, AsnInt *result, AsnLen *bytesDecoded,
ENV_TYPE env);

AsnLen BEncAsnIntContent (BUF_TYPE b, AsnInt *data);

void BDecAsnIntContent (BUF_TYPE b, AsnTag tag, AsnLen elmtLen,
AsnInt *result, AsnLen *bytesDecoded, ENV_TYPE env);

#define FreeAsnInt(v)

void PrintAsnInt (FILE *f, AsnInt *v, unsigned short int indent);

AsnLen BEncUAsnInt (BUF_TYPE b, UAsnInt *data);

void BDecUAsnInt (BUF_TYPE b, UAsnInt *result, AsnLen *bytesDecoded,
ENV_TYPE env);

AsnLen BEncUAsnIntContent (BUF_TYPE b, UAsnInt *data);

void BDecUAsnIntContent (BUF_TYPE b, AsnTag tagId, AsnLen len,
UAsnInt *result, AsnLen *bytesDecoded, ENV_TYPE env);

#define FreeUAsnInt(v)

void PrintUAsnInt (FILE *f, UAsnInt *v, unsigned short int indent);

BDecAsnInt will report an error if the tag is not UNIVERSAL-PRIM-2
BDecAsnIntContent will report an error if it decodes past the end of
the data or the integer value is too large for an AsnInt.

3.6 NULL
The NULL type is represented by the AsnNull type. Its content is
always empty and hence its encoded length always is zero.
typedef char AsnNull;

AsnLen BEncAsnNull (BUF_TYPE b, AsnNull *data);

void BDecAsnNull (BUF_TYPE b, AsnNull *result, AsnLen *bytesDecoded,
ENV_TYPE env);

/* 'return' length of encoded NULL value, 0 */

#define BEncAsnNullContent(b, data) 0

40

void BDecAsnNullContent (BUF_TYPE b, AsnTag tag, AsnLen len, AsnNull
*result, AsnLen *bytesDecoded, ENV_TYPE env);

#define FreeAsnNull(v)

void PrintAsnNull (FILE *f, AsnNull * b, unsigned short int indent);

3.7 REAL
The REAL type is represented by AsnReal, a double. This type's
representation can depend on the compiler or system you are using
so several different encoding routines are provided. Even so, you
may need to modify the code.
If you are using the REAL type in your ASN.1 modules, you should
call the InitAsnInfinity() routine to setup the PLUS_INFINITY and
MINUS_INFINITY values. There are three encode routines
included and they can be selected by defining one of
IEEE_REAL_FMT, IEEE_REAL_LIB or nothing. Defining
IEEE_REAL_FMT uses the encode routine that assumes the double
representation is the standard IEEE double [3]. Defining
IEEE_REAL_LIB uses the encode routine that assumes the IEEE
functions library (isinf, scalbn, signbit etc.) is available. If neither
are defined, the default encode routine uses frexp.
There is only one content decoding routine and it builds the value
through multiplication and the pow routine (requires the math
library). The content decoding routine only supports the binary
encoding of a REAL, not the decimal encoding.
typedef double AsnReal;

extern AsnReal PLUS_INFINITY;

extern AsnReal MINUS_INFINITY;

void InitAsnInfinity();

AsnLen BEncAsnReal (BUF_TYPE b, AsnReal *data);

void BDecAsnReal (BUF_TYPE b, AsnReal *result, AsnLen *bytesDecoded,
ENV_TYPE env);

AsnLen BEncAsnRealContent (BUF_TYPE b, AsnReal *data);

void BDecAsnRealContent (BUF_TYPE b, AsnTag tag, AsnLen len, AsnReal
*result, AsnLen *bytesDecoded, ENV_TYPE env);

/* do nothing */

#define FreeAsnReal(v)

void PrintAsnReal (FILE *f, AsnReal *b, unsigned short int indent);

BDecAsnReal will report an error if the value's tag is not
UNIVERSAL-PRIM-9. BDecAsnReaContentl will report an error if

41

the base is not supported or the decimal type REAL encoding is
received.

3.8 BIT STRING
The BIT STRING type is represented by the AsnBits structure. It
contains a pointer to the bits and integer that holds the length in
bits of the BIT STRING.
In addition to the standard encode, decode, print and free routines,
there are some other utility routines. AsnBitsEquiv returns TRUE
if the given BIT STRINGs are identical. The SetAsnBit, ClrAsnBit
and GetAsnBit are routines for writing and reading a BIT STRING
value.
You may notice that the AsnBits type does not have any means of
handling linked pieces of BIT STRINGs. Some ASN.1 tools use lists
of structures like AsnBits_ to represent BIT STRINGs. This is done
because, as you should be aware, BIT STRINGs can be encoded in
a nested, constructed fashion. The eSNACC BIT STRING decoder
attempts to save you the hassle of dealing with fragments of BIT
STRINGs by concatenating them in the decoding step. Every BIT
STRING value returned by the decoder will have contiguous bits.
Some people contend that fragmented BIT STRINGs are necessary
to support systems that lack enough memory to hold the entire
value. eSNACC encodes value “backwards” so the entire value
must be encoded before it can be sent, thus you must have enough
memory to hold the whole encoded value. If the fragmented
representation is useful to your protocol implementation for other
reasons, it should be fairly simple to modify the BIT STRING
routines. Remember, no significance should be placed on where
constructed BIT STRING values are fragmented.
eSNACC uses a table to hold pointers to the BIT STRING
fragments in the buffer while it is decoding them. Once the whole
BIT STRING value has been decoded, a block of memory that is
large enough to hold the entire BIT STRING is allocated and the
fragments are copied into it. The table initially can hold pointers to
128 fragments. If more table entries are needed the stack will grow
via realloc (with associated performance loss) and will not shrink
after growing. If you wish to modify this behavior, change the
.../c-lib/inc/str-stk.h file.
The FreeAsnBits routine will free memory referenced by the bits

pointer.
typedef struct AsnBits

42

{

int bitLen;

char *bits;

} AsnBits;

extern char numToHexCharTblG[];

#define TO_HEX(fourBits) (numToHexCharTblG[(fourBits) &
0x0f])

#define ASNBITS_PRESENT(abits) ((abits)-> bits != NULL)

AsnLen BEncAsnBits (BUF_TYPE b, AsnBits *data);

void BDecAsnBits (BUF_TYPE b, AsnBits *result, AsnLen *bytesDecoded,
ENV_TYPE env);

AsnLen BEncAsnBitsContent (BUF_TYPE b, AsnBits *bits);

void BDecAsnBitsContent (BUF_TYPE b, AsnLen len, AsnTag tagId,
AsnBits *result, AsnLen *bytesDecoded, ENV_TYPE env);

void FreeAsnBits (AsnBits *v);

void PrintAsnBits (FILE *f, AsnBits *b, unsigned short int indent);

int AsnBitsEquiv (AsnBits *b1, AsnBits *b2);

void SetAsnBit (AsnBits *b1, unsigned long int bit);

void ClrAsnBit (AsnBits *b1, unsigned long int bit);

int GetAsnBit (AsnBits *b1, unsigned long int bit);

BDecAsnBits will report an error if the tag is not UNIVERSAL-
CONS-3 or UNIVERSAL-PRIM-3. When decoding constructed BIT
STRING BER values, an error will be reported if a component other
than the last one has non-zero unused bits in its last octet or an
internal component does not have the UNIVERSAL-3 tag. If the
decoder attempts to read past the end of the data an error will be
reported.

3.9 OCTET STRING
The OCTET STRING type is represented by the AsnOcts structure.
It contains a pointer to the octets and an integer that holds the
length in octets of the OCTET STRING.
As with BIT STRINGs, OCTET STRINGs can have constructed
values. These are handled in the same way as the constructed BIT
STRING values. The decoded representation of an OCTET STRING
is always contiguous.

43

The FreeAsnOcts routine will free the memory referenced by the
octs pointer. The AsnOctsEquiv routine will return TRUE if the
given OCTET STRINGs are identical.
typedef struct AsnOcts

{

unsigned long int octetLen;

char *octs;

} AsnOcts;

#define ASNOCTS_PRESENT(aocts) ((aocts)-> octs != NULL)

AsnLen BEncAsnOcts (BUF_TYPE b, AsnOcts *data);

void BDecAsnOcts (BUF_TYPE b, AsnOcts *result, AsnLen *bytesDecoded,
ENV_TYPE env);

AsnLen BEncAsnOctsContent (BUF_TYPE b, AsnOcts *octs);

void BDecAsnOctsContent (BUF_TYPE b, AsnLen len, AsnTag tagId,
AsnOcts *result, AsnLen *bytesDecoded, ENV_TYPE env);

void FreeAsnOcts (AsnOcts *o);

void PrintAsnOcts (FILE *f, AsnOcts *o, unsigned short int indent);

int AsnOctsEquiv (AsnOcts *o1, AsnOcts *o2);

BDecAsnOcts will report an error if the tag is not UNIVERSAL-
CONS-4 or UNIVERSAL-PRIM-4. When decoding constructed
OCTET STRING BER values, an error will be reported if an internal
component does not have the UNIVERSAL-4 tag. If the decoder
attempts to read past the end of the data an error will be reported.

3.10 Built-in Strings PrintableString, BMPString,
TeletexString, NumericString, IA5String,
UniversalString, UTF8String, VisibleString

The eSNACC run-time library directly supports the various ASN.1
string definitions. This includes validating the actual data
restrictions for the various ASN.1 string types (i.e. encode
operations will fail if invalid characters are being encoded). All
strings support some basic load/unload operations. Some of the
strings will handle wide characters (e.g. BMPString, UTF8String).
For example, in “asn-UTF8String.h”:
int CvtUTF8String2wchar(UTF8String *inOcts, wchar_t **outStr);

int CvtUTF8towchar(char *utf8Str, wchar_t **outStr);

int CvtWchar2UTF8(wchar_t *inStr, char **utf8Str);

44

3.11 OBJECT IDENTIFIER
In eSNACC, OBJECT IDENTIFIERs are kept in their encoded form
to improve performance. The AsnOid type is defined as AsnOcts, as
it holds the octets of the encoded OBJECT IDENTIFIER. It seems
that the most common operation with OBJECT IDENTIFIERs is to
compare for equality, for which the encoded representation (which
is canonical) works well.
There is a linked OBJECT IDENTIFIER representation called OID
and routines to convert it to and from the AsnOid format, but it
should not be used if performance is an issue.
Since the OBJECT IDENTIFIERs are represented AsnOcts, the
AsnOcts content encoding routine can be used for the AsnOid
content encoding routine. The other AsnOcts encoding and
decoding routines cannot be used because the OBJECT
IDENTIFIER has a different tag and cannot be encoded in a
constructed fashion.
An OBJECT IDENTIFIER must have a minimum of two arc numbers
but the decoding routines do not check this.
RELATIVE OIDs have also been added. They are stored in there
encoded form as well, but are not required to have at least two arc
numbers. RELATIVE OIDs must be associated with a root OBJECT
IDENTIFIER.

typedef AsnOcts AsnOid;

#define ASNOID_PRESENT(aoid) ASNOCTS_PRESENT (aoid)

AsnLen BEncAsnOid (BUF_TYPE b, AsnOid *data);

void BDecAsnOid (BUF_TYPE b, AsnOid *result, AsnLen *bytesDecoded,
ENV_TYPE env);

#define BEncAsnOidContent(b, oid) BEncAsnOctsContent(b, oid)

void BDecAsnOidContent (BUF_TYPE b, AsnTag tag, AsnLen len, AsnOid
*result, AsnLen *bytesDecoded, ENV_TYPE env);

#define FreeAsnOid FreeAsnOcts

void PrintAsnOid (FILE *f, AsnOid *b, unsigned short int indent);

#define AsnOidsEquiv(o1, o2) AsnOctsEquiv (o1, o2)

3.12 SET OF and SEQUENCE OF
The SET OF and SEQUENCE OF type are represented by the
AsnList structure. An AsnList consists of a head object that has
pointers to the first, current and last nodes and the current number
of nodes in the list. Each list node has a pointer to its next and
previous list member and the node's data. The first list node's

45

previous pointer is always NULL and the last list node's next
pointer is always NULL.
Each SET OF or SEQUENCE OF type is defined as an AsnList, so
the element type information (kept via a void *) is not kept,
therefore, the AsnList type is not type safe.
The AsnList _ is a doubly linked list to simplify “backwards”
encoding. The reverse link allows the list to be traversed in reverse
so the components can be encoded from last to first.
Initially, the lists were designed to allow the list element itself to
be contained in the list node (hence the elmtSize parameter to the
AsnListNew() routine). The design eventually changed such that
every list element was reference by pointer from the list node.
A small problem with the AsnListNew routine is the memory
allocation. Since it is used by the decoding routines to allocate new
lists, it uses whatever memory management you have setup with
the Asn1Alloc macro (see Section 5.14). This may not be desirable
when building values to be transmitted. You may need to provide
another AsnListNew routine that uses a different allocation scheme
to solve this.
typedef struct AsnListNode

{

struct AsnListNode *prev;

struct AsnListNode *next;

void *data; /* this must be the last field of this structure
*/

} AsnListNode;

typedef struct AsnList

{

AsnListNode *first;

AsnListNode *last;

AsnListNode *curr;

int count; /* number of elements in list */

int dataSize; /* space required in each node for the data */

} AsnList;

#define FOR_EACH_LIST_ELMT(elmt, list) ...

#define FOR_EACH_LIST_ELMT_RVS(elmt, list) ...

#define FOR_REST_LIST_ELMT(elmt, al) ...

#define CURR_LIST_ELMT(al) (al)-> curr-> data

#define NEXT_LIST_ELMT(al) (al)-> curr-> next-> data

46

#define PREV_LIST_ELMT(al) (al)-> curr-> prev-> data

#define LAST_LIST_ELMT(al) (al)-> last-> data

#define FIRST_LIST_ELMT(al) (al)-> first-> data

#define LIST_EMPTY(al) ((al)-> count == 0)

#define CURR_LIST_NODE(al) ((al)-> curr)

#define FIRST_LIST_NODE(al) ((al)-> first)

#define LAST_LIST_NODE(al) ((al)-> last)

#define PREV_LIST_NODE(al) ((al)-> curr-> prev)

#define NEXT_LIST_NODE(al) ((al)-> curr-> next)

#define SET_CURR_LIST_NODE(al, listNode) ((al)-> curr =
(listNode))

void AsnListRemove (AsnList *l);

void *AsnListAdd (AsnList *l);

void *AsnListInsert (AsnList *list);

void AsnListInit (AsnList *list, int dataSize);

AsnList *AsnListNew (int elmtSize);

void *AsnListPrev (AsnList *);

void *AsnListNext (AsnList *);

void *AsnListLast (AsnList *);

void *AsnListFirst (AsnList *);

void *AsnListPrepend (AsnList *);

void *AsnListAppend (AsnList *);

void *AsnListCurr (AsnList *);

int AsnListCount (AsnList *);

AsnList *AsnListConcat (AsnList *, AsnList *);

There are a number of macros for dealing with the list type, the
most important being the list traversal macros. The
FOR_EACH_LIST_ELMT macro acts like a “for” statment that
traverses forward through the list. The first parameter should be a
pointer to the list element type that will be used to hold the current
list element for each iteration of the “for” loop. The second
parameter is the list of elements that you wish to traverse.
The FOR_EACH_LIST_ELMT_RVS macro is identical to the
FOR_EACH_LIST_ELMT macro except that is moves from the back
of the list to the front. The FOR_REST_LIST_ELMT macro is similar
to the other two but it does not reset the curr pointer in the
AsnList type. This has the effect of iterating from the current
element to the end of the list. Look in the generated code for a

47

better indication of how to use these macros. The other macros are
straight forward.

3.13 ANY and ANY DEFINED BY
The ANY and ANY DEFINED BY type are classically the most
irritating ASN.1 types for compiler writers. They rely on
mechanisms outside of ASN.1 to specify what types they contain.
The 1992 ASN.1 standard has rectified this by adding much
stronger typing semantics and eliminating macros.
The ANY DEFINED BY type can be handled automatically by
eSNACC if the SNMP OBJECT-TYPE [10] macro is used to specify
the identifier value to type mappings. The identifier can be an
INTEGER or OBJECT IDENTIFIER. Handling ANY types properly
will require modifications to the generated code since there is no
identifier associated with the type.
The general approach used by eSNACC to handle ANY DEFINED
BY types is to lookup the identifier value in a hash table for the
identified type. The hash table entry contains information about the
type such as the routines to use for encoding and decoding.
Two hash tables are used, one for INTEGER to type mappings and
the other for OBJECT IDENTIFIER to type mappings. eSNACC
generates an InitAny routine for each module that uses the
OBJECT-TYPE macro. This routine adds entries to the hash
table(s). The InitAny routine(s) is called once before any
encoding or decoding is done.
The hash tables are constructed such that an INTEGER or OBJECT
IDENTIFIER value will hash to an entry that contains:

 the anyId _

 the INTEGER or OBJECT IDENTIFIER that maps to it
 the size in bytes of the identified data type
 a pointer to the type's PDU encode routine
 a pointer to the type's PDU decode routine
 a pointer to the type's print routine
 a pointer to the type's free routine

The referenced encode and decode routines are PDU oriented in
that they encode the type's tag(s) and length(s) as well as the
type's content.

48

eSNACC builds an enum called AnyId that enumerates each
mapping defined by the OBJECT-TYPE macros. The name of the
value associated with each macro is used as part of the
enumerated identifier. The anyId in the hash table holds the
identified type's AnyId enum value. The anyId is handy for making
decisions based on the received identifier, without comparing
OBJECT IDENTIFIERs. If the identifiers are INTEGERs then the
anyId is less useful.
With ANY DEFINED BY types, it is important to have the identifier
decoded before the ANY DEFINED BY type is decoded. Hence, an
ANY DEFINED BY type should not be declared before its identifier
in a SET since SETs are un-ordered. An ANY DEFINED BY type
should not be declared after its identifier in a SEQUENCE.
eSNACC will print a warning if either of these situations occur.
The hash tables may be useful to plain ANY types which do not
have an identifier field like the ANY DEFINED BY types; the
OBJECT-TYPE macro can be used to define the mappings and the
SetAnyTypeByInt or SetAnyTypeByOid routine can be called with
the appropriate identifier value before encoding or decoding an
ANY value.
OPTIONAL ANYs and ANY DEFINED BY types that have not been
tagged are a special problem for eSNACC . Unless they are the last
element of a SET or SEQUENCE, the generated code will need to
be modified. eSNACC will print a warning message when it
encounters one of these cases.
To illustrate how ANY DEFINED BY values are handled, we present
typical encoding and decoding scenarios. Each ANY or ANY
DEFINED BY type is represented in C by the AsnAny type which
contains only a void * named value to hold a pointer to the value
and a AnyInfo * named ai which points to a hash table entry.
When encoding, before the ANY DEFINED BY value is encoded,
SetAnyTypeByOid or SetAnyTypeByInt (depending on the type of
the identifier) is called with the current identifier value to set the
AsnAny value' s ai pointer to the proper hash table entry. Then to
encode the ANY DEFINED BY value, the encode routine pointed to
from the hash table entry is called with the value void * from the
AsnAny value. The value void * in the AsnAny should point to a
value of the correct type for the given identifier, if the user set it
up correctly.
Note that setting the void * value is not type safe; one must make
sure that the value' s type is the same as indicated by the
identifier.

49

For decoding, the identifier must be decoded prior to the ANY
DEFINED BY value otherwise the identifier will contain an
uninitialized value. Before the ANY or ANY DEFINED BY value is
decoded, SetAnyTypeByOid or SetAnyTypeByInt (de- pending on
the type of the identifier) is called to set the AsnAny value' s ai
pointer to the proper hash table entry. Then a block of memory of
the size indicated in the hash table entry is allocated, and its
pointer stored in the AsnAny value' s void* entry. Then the
decode routine pointed to from the hash table entry is called with
the newly allocated block as its value pointer parameter. The
decode routine fills in the value assuming it is of the correct type.
Simple!
There is a problem with eSNACC 's method for handling ANY
DEFINED BY types for specifications that have two or more ANY
DEFINED BY types that share some identifier values. Since only
two hash tables are used and they are referenced using the
identifier value as a key, duplicate identifiers will cause
unresolvable hash collisions.
Here is some of the AsnAny related code from the header file. It
should help you understand the way things are done a bit better.
Look in the hash.c and hash.h files as well.

/*

 * 1 hash table for integer keys

 * 1 hash table for oid keys

 */

extern Table *anyOidHashTblG;

extern Table *anyIntHashTblG;

typedef (* EncodeFcn) (BUF_TYPE b, void *value);

typedef void (* DecodeFcn) (BUF_TYPE b, void *value, AsnLen
*bytesDecoded, ENV_TYPE env);

typedef void (* FreeFcn) (void *v);

typedef void (* PrintFcn) (FILE *f, void *v);

/*

 * this is put into the hash table with the

 * int or oid as the key

 */

typedef struct AnyInfo

{

int anyId; /* will be a value from the AnyId enum */

50

AsnOid oid; /* will be zero len/ null if intId is valid */

AsnInt intId;

unsigned int size; /* size of the C data type (ie as ret'd by
sizeof) */

EncodeFcn Encode;

DecodeFcn Decode;

FreeFcn Free; PrintFcn Print;

} AnyInfo;

typedef struct AsnAny

{

AnyInfo *ai; /* point to entry in hash tbl that has routine
ptrs */

void *value; /* points to the value */

} AsnAny;

/*

 * Returns anyId value for the given ANY type.

 * Use this to determine to the type of an ANY after decoding

 * it. Returns -1 if the ANY info is not available

 */

#define GetAsnAnyId(a) (((a)-> ai)? (a)-> ai-> anyId: -1)

/*

 * used before encoding or decoding a type so the proper

 * encode or decode routine is used.

 */

void SetAnyTypeByInt (AsnAny *v, AsnInt id);

void SetAnyTypeByOid (AsnAny *v, AsnOid *id);

/*

 * used to initialize the hash table(s)

 */

void InstallAnyByInt (int anyId, AsnInt intId, unsigned int size,
EncodeFcn encode, DecodeFcn decode, FreeFcn free, PrintFcn print);

void InstallAnyByOid (int anyId, AsnOid *oid, unsigned int size,
EncodeFcn encode, DecodeFcn decode, FreeFcn free, PrintFcn print);

/*

 * Standard enc, dec, free, & print routines.

 * for the AsnAny type.

 * These call the routines referenced from the

 * given value's hash table entry.

51

 */

void FreeAsnAny (AsnAny *v);

AsnLen BEncAsnAny (BUF_TYPE b, AsnAny *v);

void BerDecAsnAny (BUF_TYPE b, AsnAny *result, AsnLen *bytesDecoded,
ENV_TYPE env);

void PrintAsnAny (FILE *f, AsnAny *v, unsigned short indent);

/* AnyDefinedBy is the same as AsnAny */

typedef AsnAny AsnAnyDefinedBy;

#define FreeAsnAnyDefinedBy FreeAsnAny

#define BEncAsnAnyDefinedBy BEncAsnAny

#define BDecAsnAnyDefinedBy BDecAsnAny

#define PrintAsnAnyDefinedBy PrintAsnAny

3.13.1 ANY Automatic Buffer Handling
To handle general “ANY” elements, the eSNACC run-time library
and compiler have been updated to process these elements as
general buffers. The example program demonstrates how to
load/unload the ANY data. It is assumed that the user has
appropriately encoded the data being loaded into the ANY, no data
checking is performed. On decode, the appropriate length (from
the tag/length) is determined and unloaded into the buffer. The
decode operation will fail if the buffer is not properly ASN.1
encoded (with an associated tag/length). It is no longer necessary
to hand-edit the eSNACC generated files for a proper “C” build.
The following code snippet demonstrates this feature; this logic is
presented in the “C” examples directory.

 struct ExpBuf *pBUF, *pBUF2=NULL;

 struct GenBuf *gBUF, *gBUF2=NULL;

 PrintableString *pB; // FIRST, load PrintableString for ANY.

 pBUF = ExpBufAllocBufAndData();

 ExpBuftoGenBuf(pBUF, &gBUF);

 pB = (PrintableString *) calloc(1, sizeof(PrintableString));

 pB->octs = strdup(test);

 pB->octetLen = strlen(test);

 ExpBufResetInWriteRvsMode(gBUF->spare);

 result = BEncPrintableString(gBUF, pB);

 FreePrintableString(pB);

 free(pB);

 ExpBufResetInReadMode(gBUF->bufInfo);

52

 if (result)

 {

 // NEXT, load encoded PrintableString (in gBUF) into ANY of A4

 memset(&A4,'\0', sizeof(A4)); // A4.aBlob is an AsnAny

 iAnyLen = 0;

 SetAnyTypeUnknown((&A4.aBlob)); // SETUP for this buffer of ANY...

 BDecAsnAny(gBUF, &A4.aBlob, &iAnyLen, env);

 if (iAnyLen)

…<<<< SUCCESSFUL ANY load >>>>
…

 SetAnyTypeUnknown((&A5.aBlob)); // SETUP for this buffer of ANY...

 ExpBufResetInWriteRvsMode(gBUF->spare);

 iAnyLen = BEncAsnAny(gBUF, &A5.aBlob);

 if (iAnyLen)

 {

 pPS = (PrintableString *) calloc(1, sizeof(PrintableString));

 iAnyLen = 0; //THE application would have to know the data-type to decode.

 ExpBufResetInReadMode(gBUF->bufInfo);

 BDecPrintableString(gBUF, pPS, &iAnyLen, env); // WILL FAIL if ANY is not PrintableString.

 if (iAnyLen) // SUCCEEDED in deocding ANY, previously encoded

…<<<< SUCCESSFUL ANY unload >>>>
…

3.14 Buffer Management
Encoding and decoding performance is heavily affected by the cost
of writing to and reading from buffers, thus, efficient buffer
management is necessary. Flexibility is also important to allow
integration of the generated encoders and decoders into existing
environments. To provide both of these features, the calls to the
buffer routines are actually macros that can be configured as you
want (see .../c-lib/inc/asn-config.h). Virtually all buffer calls
will be made from the encode/decode library routines. So macros
used in the generated code will make buffer calls.
If your environment uses a single, simple buffer type, the buffer
routine macros can be defined as the macros for your simple buffer
type. This results in the buffer type being bound at compile time,
with no function call overhead from the encode or decode routines.
This also means that the runtime library only works for that buffer
type.
If multiple buffer formats must be supported at runtime, the buffer
macros can be defined like the ISODE buffer calls, where a buffer
type contains pointers to the buffer routines and data of the
current buffer type. This approach will hurt performance since
each buffer operation will be an indirect function call. I have
implemented buffers like this for the table tools (performance is

53

already hosed so slower buffer routines are a drop in the bucket).
See the type tables section for their description.
The backwards encoding technique requires special buffer
primitives that write from the end of the buffer towards the front.
This requirement will make it impossible to define buffer primitives
that write directly to stream oriented objects such as TCP
connections. In cases such as this, you must encode the entire PDU
before sending it. (Or else extend the back-end of the compiler to
produce “forwards” encoders as well).
Nine buffer primitives are required by the runtime library's encode
and decode routines:

 unsigned char BufGetByte(BUF_TYPE b);
 unsigned char BufPeekByte(BUF_TYPE b);
 char *BufGetSeg(BUF_TYPE b, unsigned long int *lenPtr);
 char BufCopy(char *dst, BUF_TYPE b, unsigned long int

*lenPtr);
 void BufSkip (BUF_TYPE b, unsigned long int len);
 void BufPutByteRv (BUF_TYPE b, unsigned char byte);
 void BufPutSegRv (BUF_TYPE b, char *data, unsigned long

int len);
 int BufReadError (BUF_TYPE b);
 int BufWriteError (BUF_TYPE b);

These buffer operations are described in the next subsections. The
ExpBuf, SBuf and MinBuf buffer formats that come with the
eSNACC distribution and how to configure the buffer operations
are discussed following that.

3.14.1 Buffer Reading Routine Semantics
The buffer reading routines are called by the decoder routines. The
following is the list of necessary buffer reading routines and their
semantics. Be sure to setup the buffer in reading mode before
calling any of these routines. The means of putting a buffer in
reading mode depends on the buffer type.
unsigned char BufGetByte (BUF_TYPE b);
Returns the next byte from the buffer and advances the current
pointer such that a subsequent buffer read returns the following
byte(s). This will set the read error flag if an attempt to read past
the end of the data is made.

54

unsigned char BufPeekByte (BUF_TYPE b);
Returns the next byte from the buffer without advancing the
current pointer.
char *BufGetSeg (BUF_TYPE b, unsigned long int *lenPtr);
Returns a pointer to the next bytes from the buffer and advances
the current pointer. *lenPtr should contain the number of bytes to
read. If the buffer has a least *lenPtr contiguous bytes remaining to
be read before calling BufGetSeg, a pointer to them will be
returned and *lenPtr will be unchanged. If there are less than
*lenPtr _ contiguous bytes remaining in the buffer before the call to
BufGetSeg, a pointer to them is returned and *lenPtr is set to the
actual number of bytes that are referenced by the returned pointer.
The current pointer will be advanced by the value returned in
*lenPtr (this may advance to the next buffer segment if any). Note
that the read error flag is not set if *lenPtr is greater than the
remaining number of unread bytes.
unsigned long int BufCopy (char *dst, BUF_TYPE b,
unsigned long int len)
Copies the next len bytes from the buffer into the dst char * and
advances the current pointer appropriately. Returns the number of
bytes actually copied. The number of bytes copied will be less than
requested only if the end of data is reached, in which case the read
error flag is set.
void BufSkip (BUF_TYPE b, unsigned long int len);
Advances the buffer's current pointer by len bytes. This will set the
read error flag if less than len unread bytes remain in the buffer
before the call to BufSkip.
int BufReadError (BUF_TYPE b);
Returns non-zero if a read error occurred for the given buffer.
Read errors occur if one of the buffer reading routines attempted
to read past the end of the buffer's data.

3.14.2 Buffer Writing Routine Semantics
Encoding routines call the buffer writing routines. Here is a list of
the buffer writing routine and their semantics. Before calling the
writing routines, you should make sure the buffer is setup for
writing in reverse mode. The means of doing this depends on the
buffer type.
void BufPutByteRvs (BUF_TYPE b, unsigned char byte);
Writes the given byte to the beginning of the data in the given
buffer. The newly written byte becomes part of the buffer's data

55

such that subsequent writes place bytes before the newly written
byte. If a buffer write error occurs, subsequent writes do nothing.
void BufPutSegRvs (BUF_TYPE b, char *data, unsigned long
int len);
Prepends the given bytes, data, of length len to the beginning of
the data in the given buffer b . The data bytes are written such that
the first byte in data becomes the first byte of the buffer's data,
followed by the rest. (This means the bytes in data are not
reversed, they are simply prepended as a unit to the buffer' s
original data). If a buffer write error occurs, subsequent writes do
nothing.
int BufWriteError (BUF_TYPE b);
Returns non-zero if a write error occurred for the given buffer.
Write errors occur if the buffer runs out of space for data or cannot
allocate another data block (depends on the buffer type).

3.14.3 Buffer Configuration
The runtime library's encode and decode routines as well as the
generated code access the buffers via the nine buffer macros
described in the last two sections. These macros can be defined to
call simple macros for speed or to call functions. Note that the
buffer configuration is bound at the time the library and generated
code are compiled.
The following is from .../include/asn-config.h and shows how
to configure the buffer routines. This setup will make all calls to
BufGetByte _ in the library and generated code call your
ExpBufGetByte routine; the other buffer routines are mapped to
their ExpBuf equivalents in a similar way.
#include "exp-buf.h"

#define BUF_TYPE ExpBuf **

#define BufGetByte(b) ExpBufGetByte (b)

#define BufGetSeg(b, lenPtr) ExpBufGetSeg (b, lenPtr)

#define BufCopy(dst, b, lenPtr) ExpBufCopy (dst, b, lenPtr)

#define BufSkip(b, len) ExpBufSkip (b, len)

#define BufPeekByte(b) ExpBufPeekByte (b)

#define BufPutByteRv(b, byte) ExpBufPutByteRv (b, byte)

#define BufPutSegRv(b, data, len) ExpBufPutSegRv (b, data, len)

#define BufReadError(b) ExpBufReadError (b)

#define BufWriteError(b) ExpBufWriteError (b)

56

If you want to use your own buffer type, simply edit the asn-
config.h file such that it includes your buffer's header file, sets
the BUF_TYPE type, and defines the nine buffer routines
(BufGetByte etc.) to call your buffer routines. Your buffer routines
should have the semantics and prototypes described in the last two
sections (Sections 5.13.1 and 5.13.2). For eSNACC, only the SBuf
is valid; other buffer types may work, but have not been tested on
our releases.

3.14.4 SBuf Buffers
These buffers are still defined, but will not implement many of the
newer features. The recommended/supported buffer type remains
ExpBuf ONLY!
The Sbufs are simple buffers of a fixed size, much like an ExpBuf

that cannot expand. If you attempt to write past the end of the
buffer, the writeError flag will be set and the encoding will fail. If
you attempt to read past the end of a buffer the readError flag will
be set and the decoding will fail.
The Sbufs are useful if you can put a reasonable upper bound on
the size of the encodings you will be dealing with. The buffer
operations are much simpler because the data is contiguous. In
fact, all of the Sbuf buffer operations are implemented by macros.
Look in .../c-examples/simple/sbuf-ex.c for a quick
introduction to using Sbufs in your code. The following operations
are defined for the Sbuf buffers.
/* The nine required buffer operations */

#define SBufSkip(b, skipLen) ...

#define SBufCopy(dst, b, copyLen) ...

#define SBufPeekByte(b) ...

#define SBufGetSeg(b, lenPtr) ...

#define SBufPutSegRvs(b, seg, segLen) ...

#define SBufGetByte(b) ...

#define SBufPutByteRvs(b, byte) ...

#define SBufReadError(b) ...

#define SBufWriteError(b) ...

/* other useful buffer operations */

#define SBufInit(b, data, dataLen) ...

#define SBufResetInReadMode(b) ...

#define SBufResetInWriteRvsMode(b) ...

57

#define SBufInstallData(b, data, dataLen) ...

#define SBufDataLen(b) ...

#define SBufDataPtr(b) ...

#define SBufBlkLen(b) ...

#define SBufBlkPtr(b) ...

#define SBufEod(b) ...

eSNACC is configured to use Sbufs by default. The symbols that
will affect the buffer configuration during compilation of the
libraries and generated code are USE_EXP_BUF and
USE_MIN_BUF

3.15 Error Management
The decoding routines use longjmp to handle any errors they
encounter in the value being decoded. longjmp works by rolling
back the stack to where the setjmp call was made. Every decode
routine takes a jmp_buf parameter (initialized by the setjmp call)
that tells the longjmp routine how to restore the processor to the
correct state. longjmp makes the error management much simpler
since the decoding routines do not have to pass back error codes or
check ones from other decoding routines.
Before a PDU can be decoded, the jmp_buf env > U parameter to the
decoding routine must be initialized using the setjmp routine. This
should be done immediately and only once before calling the
decoding routine. This parameter will be passed down to any other
decoding routines called within a decoding routine. The following
code fragment from .../c-examples/simple/exbuf-ex.c shows
how to use setjmp before decoding.
if ((val = setjmp (env)) == 0)

BDecPersonnelRecord (& buf, &pr, &decodedLen, env);

else

{

decodeErr = TRUE;

fprintf (stderr, "ERROR - Decode routines returned %d\ n",
val); }

The code that will signal an error typically looks like:
if (mandatoryElmtCount1 != 2)

{

Asn1Error (" BDecChildInformationContent: ERROR - non-
optional elmt missing”);

longjmp (env, -108);

58

}

Most longjmp calls are preceded by a call to Asn1Error which takes
a single char * string as a parameter. The library routines and the
generated code try to use meaningful messages as the parameter
Asn1Error _ is defined in .../c-lib/inc/asn-config.h and
currently just prints the given string to stderr. You may wish to
make it do nothing, which may shrink the size of your binary
because all of the error strings will be gone. Asn1Warning is
similar but is not used by the library or generated code anymore.
The encoding routines do no error checking except for buffer
overflows. Hence, they do not use the longjmp mechanism and
instead require you to check the status of the buffer after encoding
(use BufWriteError()). If you are not building your values properly,
for example having random pointers for uninitialized OPTIONAL
elements, the encode routines will fail, possibly catastrophically.

59

4 C++ Code Generation
4.1 Introduction
 The basic model that the generated C++ uses is similar to that of
the generated C, but benefits from the object oriented features of
C++. As with C, two files are generated for each ASN.1 module, a
.cpp and a .h file (the original version created .C source files; this
was modified to .cpp for portability between MS Windows and the
various Unix platforms). If there are multiple .asn1 modules to
compile, it is possible to build these .cpp/.h support files one at a
time by using the eSNACC command line parameter “-I”. The “-I”
directory reference must contain all of the .asn1 files containing
the IMPORT references in order to get a successful compile (only
the directory needs to be specified, very convenient). The eSNACC
compiler will also take all .asn1 files on one command line input.
For error management C++ 's try and throw have replaced the
setjmp longjmp used by the C decoders. This is the new
SnaccException class. A “const char *” is available to any “catch”
block of code to indicate the error (see an example test in
./SNACC/c++-examples/src/main.cpp).
C++ templates are very attractive for type safe lists (for SET OF
and SEQUENCE OF) without duplicating code. Templates are used
for all lists in the eSNACC C++ run-time library (in the original
version, each list generates its own new class with all of the
standard list routines).
As with the C code generation chapter, we will use the EX1 module
to help illustrate some of the code generation. The following is the
same EX1 module used in the C section.
EX1 DEFINITIONS::=

BEGIN

anOidVal OBJECT IDENTIFIER ::= {joint-sio-ccitt 40 foobar(29}

theSameOidVal OBJECT IDENTIFIER ::= (2 40 29}

anIntVal INTEGER ::= 1

aBoolVal BOOLEAN ::= TRUE

T1 ::= SEQUENCE

{

INTEGER OPTIONAL,

OCTET STRING OPTIONAL,

ENUMERATED {a(0), b(1), c(2)},

60

SEQUENCE OF INTEGER,

SEQUENCE {id OBJECT IDENTIFIER, value OCTET STRING},

CHOICE {INTEGER, OBJECT IDENTIFIER}

}

END

4.2 ASN.1 to C++ Naming Conventions
The C++ name for a type or value is the same as its ASN.1 name
with any hyphens converted to underscores.
When an ASN.1 type or value name (after converting any hyphens
to underscores) conflicts with a C++ keyword or the name of a
type in another ASN.1 module (name clashes within the same
ASN.1 scope are considered errors and are detected earlier), the
resulting C++ class name will be the conflicting name with digits
appended to it. A recent feature added to the ASN.1 syntax
parsing will allow users to specify a specific C++ “namespace” for
that module. This will prevent symbol conflicts between modules,
if enabled.
Empty field names in SETs, SEQUENCEs, and CHOICEs will be
filled. The field name is derived from the type name for that field.
The library types such as INTEGER etc. have default field names
defined by the compiler (see
../compiler/back-ends/c++-gen/rules.c). The first letter of the
field name is in lower case. Empty field names should be fixed
properly by adding them to the ASN.1 source.
New type definitions will be generated for SETs, SEQUENCEs,
CHOICEs, ENUMERATED, INTEGERs with named numbers and
BIT STRINGs with named bits whose definitions are embedded in
other SET, SEQUENCE, SET OF, SEQUENCE OF, or CHOICE
definitions. The name of the new type is derived from the name of
the type in which it was embedded and will be made unique by
appending digits if necessary.

4.3 ASN.1 to C++ Class Translation
This section describes how C++ classes are used to represent each
ASN.1 type. First, the general characteristics of each ASN.1 type's
C++ class will be discussed followed by how the aggregate types
(SETs, SEQUENCEs, CHOICEs, SET OFs, and SEQUENCE OFs)
are represented. The representations of non-aggregate types
(INTEGER, BOOLEAN, OCTET STRING, BIT STRING, OBJECT
IDENTIFIER) and ANY and ANY DEFINED BY types are presented

61

in the next chapter since they form part of the C++ ASN.1 runtime
library.
Every ASN.1 type is represented by a C++ class with the following
characteristics:

1. it inherits from the AsnType base class
2. it has a default constructor (no parameters)
3. it has a copy constructor
4. it has a destructor
5. it has a clone method, Clone
 6. it has an assignment operator
7. it has a content encode and decode method, BEncContent
and BDecContent
 8. it has a PDU encode and decode method, BEnc and BDec
9. it has a top level interfaces to the PDU encode and

decode methods (handles the exceptions, etc.) for the user,
BEncPdu and BDecPdu

10. it has a print method, Print , a virtual function that gets
called from a global <<- operator
 11. it has a PDU encode and decode method, PEnc and
PDec (provided the
-b flag has been set)

If the metacode has been enabled (untested in recent releases):
11. it has a virtual function _getdesc that returns the

classes meta description
12. if it is a structured type, it has a virtual function_getref

that returns a pointer to one of its components/ members,
specified through its name

If the Tcl code has been enabled (untested in recent releases):
13. it has a virtual function TclGetDesc to access the

metacode's_getdesc routine from Tcl
14. it has a virtual function TclGetVal to retrieve an

instance's value
15. it has a virtual function TclSetVal _ to change an

instance's value
16. for SET, SEQUENCE, SET OF and SEQUENCE of: it has

a virtual function TclUnSetVal to clear OPTIONAL members
or to delete list elements, respectively

62

The following C++ fragment shows the class features listed above
in greater detail.
Class Foo: public AsnType

{

…// data members

public:

Foo();

Foo (const Foo &);

Foo();

AsnType *Clone() const;

Foo &operator = (const Foo &);

// content encode and decode routines

AsnLen BEncContent(BUF_TYPE b);

void BDecContent(BUF_TYPE b, AsnTag tag, AsnLen elmtLen,

AsnLen &bytesDecoded, ENV_TYPE env);

// PDU (tags/lengths/content) encode and decode routines

AsnLen BEnc (BUF_TYPE b);

void BDec (BUF_TYPE b, AsnLen &bytesDecoded, ENV_TYPE env);

AsnLen PEnc (BUF_TYPE b);

void PDec (BUF_TYPE b, AsnLen &bitsDecoded);

// methods most likely to be used by your code

// Returns non-zero for success

int BEncPdu (BUF_TYPE b, AsnLen &bytesEncoded);

int BDecPdu (BUF_TYPE b, AsnLen &bytesDecoded);

void Print (ostream &os) const;

#if META

const AsnTypeDesc *_getdesc() const;

AsnType *getref (const char *membername, bool create= false);

#if TCL

int TclGetDesc(Tcl_DString *)const;

int TclGetVal(Tcl_Interp *)const;

int TclSetVal(Tcl_Interp *, const char *valstr);

int TclUnsetVal(Tcl_Interp *, const char *membername);

63

#endif

#endif

};

BEnc and BDec are PDU encode and decode methods. BEnc
encodes the tag and length pairs for the object's type as well as the
content (the object's value) to the given buffer, b, and returns the
number of bytes written to the buffer for the encoding.
 BDec decodes the expected tag and length pairs as well as the
content of the object it is invoked upon from the given buffer, b,
and increments bytesDecoded by the byte length of the tag(s),
length(s) and value decoded. A SnaccException will be thrown in
the case of an error.
BEncContent and BDecContent only deal with the content of the
type their object represents. BEncContent > encodes the object's
value to the given buffer, b.
 BDecContent decodes the object's value from the given buffer, b.
The last tag and length pair on the content must be passed in via
the tag and elmtLen parameters. The tag although always present,
will only be used when decoding OCTET STRING and BIT STRING
related types, to determine whether the encoding is constructed.
The elmtLen is the length of the content and may be the indefinite
length form. bytesDecoded is incremented by the actual number of
bytes in the content; this is normally the same as elmtLen unless
the indefinite length form was decoded. A SnaccException will be
thrown if any decoding error occurs. The possible decoding errors
depend on the type that is being decoded.
BEncPdu and BDecPdu are top-level interfaces to the PDU encode
and decode routines. They present the simplest interface; they
return TRUE if the operation succeeded and FALSE if an error
occurred. BEncPdu checks for any buffer writing errors and
BDecPdu checks for any buffer reading errors.
PEnc encodes data using the Packed Encoding Rules (PER). It
NEVER encodes tags and sometimes does not encode a length
determinant.
PDec decodes data that was encoded using the Packed Encoding
Rules.
The Print method prints the object's value in ASN.1 value notation.
When printing SETs and SEQUENCEs, a global variable is used for
the current indent.
The AsnType base class, parameterless constructor and Clone
method are required by the ANY and ANY DEFINED BY type
handling mechanism explained in Sections 7.4 and 7.14. In brief,

64

the AsnType provides a base type that has virtual BEnc, BDec and
Clone routines. The Clone routine is used to generate a new
instance (not a copy) of the object that it is invoked on. This allows
the ANY DEFINED BY type decoder to create a new object of the
correct type from one stored in a hash table, when decoding (the
Clone routine calls the parameterless constructor). The virtual
BEnc and BDec are called from AsnAny BEnc and BDec methods.
The meta routines and the Tcl interface will be described in
chapters 8 and 9, respectively.

4.3.1 Optional C++ namespace Designation
It is possible to specify a C++ namespace for any individual ASN.1
module through the use of the eSNACC “--snacc” pre-processor
directive. For example:

--snacc namespace: "VDATestModule2Namespace"
following the ASN.1 module “BEGIN” statement will specify the
namespace “VDATestModule2Namespace”. All associated ASN.1
references to any elements in this .asn1 file will be appropriately
referenced.

4.3.2 SET and SEQUENCE
SET and SEQUENCE types generate classes that have their
components as public data members. This makes accessing the
components similar to referencing the fields of a C struct. For
example the T1 type in module EX1 will produce the following C++
class:
Class T1: public AsnType

{

public:

AsnInt *integer;

AsnOcts *octs;

T1Enum t1Enum;

T1SeqOf t1 SeqOf;

T1Seq t1 Seq;

T1Choice t1 Choice;

T1();

T1(const T1 &);

T1();

AsnType *Clone() const;

65

T1 &operator=(const T1 &);

AsnLen BEnc(BUF_TYPE b);

void BDec(BUF_TYPE b, AsnLen &bytesDecoded, ENV_TYPE
env);

AsnLen BEncContent(BUF_TYPE b);

void BDecContent(BUF_TYPE b, AsnTag tag, AsnLen
elmtLen,

AsnLen &bytesDecoded, ENV_TYPE env);

int BEncPdu (BUF_TYPE b, AsnLen &bytesEncoded);

int BDecPdu (BUF_TYPE b, AsnLen &bytesDecoded);

void Print (ostream &os) const;

#if META

static const AsnSequenceTypeDesc _desc;

static const AsnSequenceMemberDesc mdescs[];

const AsnTypeDesc *_getdesc() const;

AsnType *_getref (const char *membername, bool create =
false);

#if TCL

int TclGetDesc(Tcl_DString *)const;

int TclGetVal(Tcl_Interp *)const;

int TclSetVal(Tcl_Interp *, const char *valstr);

int TclUnsetVal(Tcl_Interp *, const char *membername);

#endif // TCL

#endif // META

};

All OPTIONAL components in a SET or SEQUENCE are referenced
by pointer. The constructor will automatically set OPTIONAL fields
to NULL. The other methods are as described at the beginning of
this section.
SETs and SEQUENCEs must contain all non-OPTIONAL
components and SEQUENCEs must be ordered, otherwise an error
is reported. Tagging errors are also reported. All detected errors
cause a SnaccException to be thrown.

4.3.3 CHOICE
Each CHOICE type generates a class that has an anonymous union
to hold the components of the CHOICE and a choiceId field to
indicate which component is present.

66

Anonymous (un-named) unions allow you to reference the choice
components with just the field name of the component; this makes
referencing the contents of a CHOICE the same as referencing the
contents of a SET or SEQUENCE.
The choiceId field contains a value in the ChoiceIdEnum that
indicates the CHOICE field that is present. The names in the
enumeration are derived from the field names of the CHOICE
components.
When building a local value to be encoded, you must be sure to set
the choiceId such that it corresponds to the value in the union. The
decoder will set the choiceId when decoding incoming values.
Tagging errors cause a SnaccException to be thrown .
The following C++ class is produced for the CHOICE in the EX1
module.
Class T1Choice: public AsnType

{

public:

enum ChoiceIdEnum

{

integerCid = 0;

oidCid = 1;

};

enum ChoiceIdEnum choiceId

union

{

AsnInt *integer;

AsnOid *oid;

};

T1Choice ();

T1Choice (const T1Choice &);

T1Choice ();

AsnType *Clone() const;

T1Choice &operator=(const T1Choice &);

AsnLen BEncContent(BUF_TYPE b);

void BDecContent(BUF_TYPE b, AsnTag tag, AsnLen
elmtLen,

AsnLen &bytesDecoded, ENV_TYPE env);

AsnLen BEnc(BUF_TYPE b);

67

Void BDec(BUF_TYPE b, AsnLen &bytesDecoded, ENV_TYPE
env);

int BEncPdu (BUF_TYPE b, AsnLen &bytesEncoded);

int BDecPdu (BUF_TYPE b, AsnLen &bytesDecoded);

void Print (ostream &os) const;

#if META

static const Asn ChoiceTypeDesc _desc;

static const Asn ChoiceMemberDesc mdescs[];

const AsnTypeDesc *_getdesc() const;

AsnType *_getref (const char *membername, bool create =
false);

#if TCL

int TclGetDesc(Tcl_DString *)const;

int TclGetVal(Tcl_Interp *)const;

int TclSetVal(Tcl_Interp *, const char *valstr);

#endif // TCL

#endif // META

};

4.3.4 SET OF and SEQUENCE OF
Neither SET OF nor SEQUENCE OF types produce its own list
class, the list template uses a single generic list type for all lists.
This makes the C++ list routines type safe which allows the C++
compiler to detect more programmer errors.
Any tagging errors cause a SnaccException to be thrown. From
the EX1 ASN.1 module the following list is produced:
class T1SeqOf : public AsnSeqOf<AsnInt>

{

public:

 virtual const char * typeName(void) const { return "T1SeqOf"; }

};

AsnSeqOf and AsnSetOf are both based off of the AsnList template.
The AsnList template is taken directly from and inherets all of the
functionality of the standard template C++ library std::list. An
append() function was added to the AsnList template to manipulate
the std::list::insert() function. This change was made in eSNACC
version 1.7.

68

4.3.5 ENUMERATED, Named Numbers and Named Bits
The C++ type generator encapsulates each ENUMERATED type,
INTEGER with named numbers and BIT STRING with named bits
in a new class that inherits from the proper base class and defines
the named elements. This provides a separate scope for these
identifiers so their symbol will be exactly the same as their ASN.1
counterpart. Currently these identifiers are not checked for
conflicts with C++ keywords, so you may have to modify some of
them in the ASN.1 modules.
Inheritance is used for attaching ENUMERATED, named number
and named bit information. ENUMERATED types inherit from the
AsnEnum class, INTEGERs with named number types inherit from
the AsnInt class and BIT STRINGs with named bits inherit from the
AsnBits class.
If the tagging on the type is different from the type it inherits from,
the PDU encode and decode methods are redefined with the
correct tags to override the PDU encode and decode methods of
the base class.
As with the other types, any tagging errors are reported and a
SnaccException is thrown. No range checking is done on the
decoded values although it would be easy to provide a new
BDecContent method in the new class that calls the base class's
and then checks the range of the result.
/* ENUMERATED { a (0), b (1), c (2) } */

class T1Enum: public AsnEnum

{

public:

 T1Enum(): AsnEnum() {}

 T1Enum (int i): AsnEnum (i) {}

 enum

 {

 a = 0,

 b = 1,

 c = 2

 };

};

69

4.4 ASN.1 to C++ Value Translation
C++ const values are used to hold ASN.1 defined values. C++
values will be produced for INTEGER, BOOLEAN and OBJECT
IDENTIFIER ASN.1 values. An extern declaration for each const
value is written at the end of the header file of the value's module.
The const values are defined at the beginning of the .cpp file of
the value's module. The extern declarations are at the end of the
header file so that any required class definitions are available.
The following is from the end of the header file generated for the
EX1 module:
Extern const AsnOid anOidVal;

Extern const AsnOid theSameOidVal;

Extern const AsnInt anIntVal;

Extern const AsnBool aBoolVal;

The following is from the beginning of the .cpp file generated for
the EX1 module:
const AsnOid anOidVal(“2.40.29”);

const AsnOid theSameOidVal(“2.40.29”);

const AsnInt anIntVal(1);

const AsnBool aBoolVal(true);

The C++ constructor mechanism is used to generate these values.
This mechanism is superior to C static initialization because it
allows C++ code to be run to initialize the values.

4.5 Compiler Directives
Compiler directives are ignored by the C++ backend of eSNACC.
If you want to implement them, look at the FillCxxTypeDefInfo
routine in file .../compiler/back-ends/c++-gen/types.c. Then
look at the way it is done for the C back-end (file
.../compiler/back-ends/c-gen/type-info.c)

4.6 Compiling the Generated C++ Code
When compiling the generated C++ code on a Unix platform you
will need:

1. The include directory where the file is from .../c++-
lib/inc/ have been installed in your include path so that
the C++ sources can include these library header files. The
header files should be included with statements like #include

70

<snacc/c++/asn-incl.h> and your C++ compiler should be
supplied with -I/usr/local/include in case eSNACC got
installed under /usr/local/. (For MS Windows, this would
be ./SMPDist/include/esnacc/c++).
2. to link with the C++ ASN.1 runtime library, .../c++-
lib/libasn1c++.a. In case eSNACC got installed under
/usr/local/, your linker may need to be supplied with
-L/usr/local/lib and -lasn1c++ as arguments. (For MS
Windows, this file is in ./SMPDist/lib/cppasn1[_d].lib; the .dll
file is also stored in the %windir%/system32 directory).
3. to link with the math library (-lm), since the ASN.1 REAL
type's encode and decode routine use some math routines.

For MS Windows, the include and library files are placed into
./SMPDist/include/esnacc and ./SMPDist/lib directories, where
SMPDist is in the same directory as ./SNACC (this source). The
library name is “cppasn1.lib”; the “cppasn1.dll” file is
automatically placed into the %windir%/system32 directory.
See the example in .../c++-examples/src/ for a complete
example. The makefile and main routines are probably the most
important. There are several other examples in the .../c++-
examples/directory.

71

5 C++ ASN. 1 Library
5.1 Overview

The following sections describe the C++ representation of the non-
aggregate ASN.1 types, ANY and ANY DEFINED BY types and the
buffer and memory management. These classes and routines make
up the C++ ASN.1 runtime library. Every aggregate ASN.1 type
will be composed of these library types. The source files for this
library are in .../c++-lib/inc/ and .../c++-lib/src/.
As mentioned in the last chapter, each ASN.1 type is represented
by a C++ class, which inherits from the AsnType base class. In
addition to the standard encode, decode, print and clone methods
described in the last chapter, each ASN.1 type class in the library
may also have special constructors and other routines that simplify
their use.
Unlike the classes generated for some of the aggregate types such
as SETs and SEQUENCEs, the library types' data members are
typically protected and accessed via methods.
All of the library classes' BDec routines will report tagging errors
by throwing a SnaccException.
The top level PDU encode and decode methods are the same for all
library types so they are defined as macros in
.../c++-lib/inc/asn-config.h. For clarity's sake, the macro
that is used to define these methods in the library type class
definitions will be replaced with the actual prototypes.

5.2 Tags
The C++ tags are identical to those used in eSNACC's C ASN.1
environment. As with the C representation of tags, 4 byte long
integers limit the maximum representable tag code to 221. Again,
this should not be a problem.
No tags are encoded when PER is used.

5.3 Lengths
The C++ representation of lengths is the same at the C
representation described earlier. Decoded lengths are represented
by unsigned long integers, with the maximum value indicating
indefinite length.

72

eSNACC users cannot set indefinite lengths when encoding
constructed values' lengths. Of course, the generated decoders
can handle both forms. Primitive values are always encoded with
definite lengths as required by the standard; this is necessary to
avoid confusion between a value's content and the End-Of-Contents
marker.
The BDecLen routine will throw an exception if it attempts to read
past the end of the data or the decoded length is too large to be
held in the AsnLen representation. BDecEoc will report an error if
it attempts to read past the end of the data or one of the EOC (End-
Of- Contents) octets is non- zero.
Where PER is used, fragmentation applies. Any object that has a
length greater than or equal to 64k elements will vary. PER only
encodes definite lengths. It is possible to have a PER encoding
with no length determinant.

5.4 The AsnType Base Class
Every ASN.1 type's C++ class uses the AsnType as its base class.
The AsnType base class provides the following virtual functions:

 the destructor
 Clone()
 BEnc()
 BDec()
 PEnc()
 PDec()
 Print()
 _getdesc() (metacode)
 _getref() (metacode)
 TclGetDesc() (Tcl interface)
 TclGetVal() (Tcl interface)
 TclSetVal() (Tcl interface)
 TclUnsetVal() (Tcl interface)
The AsnType class is defined as follows:

class SNACCDLL_API AsnType

{

public:

73

 virtual ~AsnType();

 virtual AsnType *Clone() const=0;

 virtual void BDec (const AsnBuf &b, AsnLen
&bytesDecoded)=0;

 virtual AsnLen BEnc (AsnBuf &b) const =0 ;

 virtual void PDec (const AsnBufBits &b, AsnLen
&bitsDecoded)=0;

 virtual AsnLen PEnc (AsnBufBits &b) const =0 ;

 bool BEncPdu (AsnBuf &b, AsnLen &bytesEncoded) const;

 bool BDecPdu (const AsnBuf &b, AsnLen &bytesDecoded);

 virtual void Print (std::ostream &) const=0;

 virtual const char * typeName(void) const { return "AsnType"; }

#if META

 static const AsnTypeDesc _desc;

 virtual const AsnTypeDesc *_getdesc() const;

 virtual AsnType *_getref (const char *membername, bool
create=false);

private:

 const char *_typename() const;

#if TCL

public:

 virtual int TclGetDesc (Tcl_DString *) const;

 virtual int TclGetVal (Tcl_Interp *) const;

 virtual int TclSetVal (Tcl_Interp *, const char *val);

 virtual int TclUnsetVal (Tcl_Interp *, const char
*membernames);

#endif // TCL

#endif // META

74

};

The AsnType class and its virtual functions were added to support
the ANY DEFINED BY type handling mechanism. This mechanism
is described in this chapter.
Even if you do not use the ANY or ANY DEFINED BY types, the
AsnType base class may be useful for adding features that are
common to all of the types, such as changing the new and delete

functions to improve performance.
Virtual functions provide the simplest method of handling ANY
DEFINED BY and ANY types. Unfortunately, calls to virtual
functions are slower than calls to normal functions due to their
indirect nature. If you do not need support for the ANY DEFINED
BY or ANY types you can remove most of the virtual functions to
improve performance by undefining the SUPPORT_ANY_TYPE

symbol (see the asn-incl.h file).
Note that a virtual destructor is included in the AsnType base class
as well. This is done to make sure the delete routine always gets
the correct size. See pages 215– 217 of Stroustrup [15] for a
discussion of this.

5.5 BOOLEAN
The BOOLEAN type is represented by the AsnBool class. The
following is the class definition of AsnBool from the.
class SNACCDLL_API AsnBool: public AsnType

{

protected:

 bool value;

public:

 AsnBool (const bool val=false): value (val) {}

 virtual AsnType *Clone() const {return new AsnBool(*this);}

 operator bool() const { return value; }

 AsnBool &operator =(bool newvalue){ value = newvalue; return
*this; }

 AsnLen BEnc (BUF_TYPE b);

 void BDec (BUF_TYPE b, AsnLen &bytesDecoded);

 AsnLen BEncContent (BUF_TYPE b);

75

 void BDecContent (BUF_TYPE b, AsnTag tagId, AsnLen
elmtLen, AsnLen &bytesDecoded);

 AsnLen BEnc (BUF_TYPE b);

 void BDec (BUF_TYPE b, AsnLen &bitsDecoded);

 void Print (std::ostream &) const;

 void PrintXML (std::ostream &os, const char
*lpszTitle=NULL) const;

#if META

 static const AsnBoolTypeDesc _desc;

 const AsnTypeDesc *_getdesc() const;

#if TCL

 int TclGetVal (Tcl_Interp *) const;

 int TclSetVal (Tcl_Interp *, const char *val);

#endif // TCL

#endif // META

};

The operator bool() is defined such that when an AsnBool value is
cast to a boolean, it returns the C++ style boolean value of the
AsnBools value. There is also a constructor for AsnBool that builds
an AsnBool value from the given C++ style boolean value. These
two methods allow you to manipulate and access AsnBool values in
a straight forward way as the following code illustrates.
Message::Send()

{

AsnBool okToSend;

bool connectionOpen;

bool pduOk;

…

okToSend = connectionOpen && pduOk; // assign AsnBool from
bool

if (okToSend) // cast AsnBool to bool

}

The AsnBool class contains the standard encode and decode
methods that were described in the “C” library description.

76

BDecContent will throw a SnaccException if the length of an
encoded BOOLEAN value's content is not exactly 1 octet.
Note that the Clone method returns an AsnType * value instead of
an AsnBool *. It might be more obvious to return an AsnBool *
since due to single inheritance an AsnBool is also an AsnType.
However, it must return an AsnType * for it to override the virtual
function Clone defined in the AsnType .
The Print method will print either “TRUE” or “FALSE” depending
on the AsnBool value. No newline or other formatting characters
are printed. The global indent information does not affect the
output from this method.

5.6 INTEGER
The INTEGER type is represented by the AsnInt class.
Improvements have been made to this class that allow for BIG
Integers (greater than 4 bytes long). It is also possible to package
these integer values based on the signed/unsigned ASN.1 rules for
convenience when encoding/decoding big integers.
The following is the class definition of AsnInt from the .../c++-
lib/inc/asn-incl.h file.
class SNACCDLL_API AsnInt : public AsnType
{

private:

 std::basic_string<unsigned char> bytes;

 void storeDERInteger(const unsigned char *pDataCopy, long
dataLen, bool unsignedFlag);

public:

 AsnInt (AsnIntType val=0);

 AsnInt (const char *str, bool unsignedFlag = true);

 AsnInt (const AsnOcts &o, bool unsignedFlag = true);

 AsnInt (const char *str, const size_t len, bool unsignedFlag =
true);

 AsnInt (const AsnInt &that);

 ~AsnInt ();

 virtual AsnType *Clone() const {return new AsnInt(*this);}

 operator AsnIntType() const;

 bool operator == (AsnIntType o) const;

77

 bool operator != (AsnIntType o) const { return !
operator==(o);}

 bool operator == (const AsnInt &o) const;

 bool operator != (const AsnInt &o) const;

 long length(void) const { return bytes.length();}

 const unsigned char * c_str(void) const { return bytes.c_str(); }

 void getPadded(unsigned char *&data, size_t &len, const size_t
padToSize=0) const;

 void Set(const unsigned char *str, size_t len, bool
unsignedFlag=true);

 void Set(AsnIntType i);

 AsnLen BEnc (BUF_TYPE b);

 void BDec (BUF_TYPE b, AsnLen &bytesDecoded);

 AsnLen BEncContent (BUF_TYPE b);

 void BDecContent (BUF_TYPE b, AsnTag tagId, AsnLen
elmtLen, AsnLen &bytesDecoded);

 AsnLen PEnc (BUF_TYPE b);

 void PDec (BUF_TYPE b, AsnLen &bitsDecoded);

 virtual const char * typeName(void) const { return "INTEGER"; }

 void Print (std::ostream &os) const;

 void PrintXML (std::ostream &os, const char *lpszTitle=NULL)
const;

#if META

 static const AsnIntTypeDesc _desc;

 const AsnTypeDesc *_getdesc() const;

#if TCL

 int TclGetVal (Tcl_Interp *) const;

 int TclSetVal (Tcl_Interp *, const char *val);

#endif /* TCL */

#endif /* META */

};

78

5.7 ENUMERATED
The ENUMERATED type is represented by the AsnEnum class. The
following is the class definition of AsnEnum..
class SNACCDLL_API AsnEnum: public AsnInt

{

public:

#if !TCL

 AsnEnum(): AsnInt() {}

#endif

 AsnEnum (int i): AsnInt (i) {}

 virtual AsnType *Clone() const{return new
AsnEnum(*this);}

 AsnLen BEnc (BUF_TYPE b);

 void BDec (BUF_TYPE b, AsnLen &bytesDecoded);

 AsnLen PEnc (BUF_TYPE b);

 void PDec (BUF_TYPE b, AsnLen &bitsDecoded);

#if META

 static const AsnEnumTypeDesc _desc;

 const AsnTypeDesc *_getdesc() const;

#if TCL

 int TclGetVal (Tcl_Interp *) const;

 int TclSetVal (Tcl_Interp *, const char *val);

#endif /* TCL */

#endif /* META */

};

Note that it is not derived from class AsnType directly but from
AsnInt instead.

79

5.8 NULL
The NULL type is provided by the AsnNull class. This class has no
data members and includes only the standard methods.
class SNACCDLL_API AsnNull: public AsnType

{

public:

 virtual AsnType *Clone() const {return new AsnNull(*this);}

 AsnLen BEncContent (BUF_TYPE /*b*/) { return 0; }

 void BDecContent (BUF_TYPE b, AsnTag tagId, AsnLen
elmtLen, AsnLen &bytesDecoded);

 AsnLen BEnc (BUF_TYPE b);

 void BDec (BUF_TYPE b, AsnLen &bytesDecoded);

 AsnLen PEnc (BUF_TYPE b);

 void PDec (BUF_TYPE b, AsnLen &bitsDecoded);

 void Print (std::ostream &os) const;

 void PrintXML (std::ostream &os, const char
*lpszTitle=NULL) const;

#if META

 static const AsnNullTypeDesc _desc;

 const AsnTypeDesc *_getdesc() const;

#if TCL

 int TclGetVal (Tcl_Interp *) const;

 int TclSetVal (Tcl_Interp *, const char *val);

#endif /* TCL */

#endif /* META */

};

5.9 REAL
REAL types are represented by the AsnReal class. Internally, a
double is used to hold the real value. The following is from .../c+
+-lib/inc/asn-incl.h:
class SNACCDLL_API AsnReal: public AsnType

{

protected:

80

 double value;

public:

 AsnReal():value (0.0){}

 AsnReal (double val):value (val){}

 virtual AsnType *Clone() const { return new AsnReal(*this);}

 operator double() const { return value; }

 AsnReal &operator = (double newvalue) { value =
newvalue; return *this; }

 AsnLen BEncContent (BUF_TYPE b);

 void BDecContent (BUF_TYPE b, AsnTag tagId, AsnLen
elmtLen, AsnLen &bytesDecoded);

 AsnLen BEnc (BUF_TYPE b);

 void BDec (BUF_TYPE b, AsnLen &bytesDecoded);

 AsnLen PEnc (BUF_TYPE b);

 void PDec (BUF_TYPE b, AsnLen &bitsDecoded);

 void Print (std::ostream &os) const;

 void PrintXML (std::ostream &os, const char
*lpszTitle=NULL) const;

#if META

 static const AsnRealTypeDesc _desc;

 const AsnTypeDesc *_getdesc() const;

#if TCL

 int TclGetVal (Tcl_Interp *) const;

 int TclSetVal (Tcl_Interp *, const char *val);

#endif /* TCL */

#endif /* META */

};

The double representation and support routines can depend on the
compiler or system you are using so several different encoding
routines are provided. Even so, you may need to modify the code.
There are three content encoding routines included and they can
be selected by defining one of IEEE_REAL_FMT or

81

IEEE_REAL_LIB, or nothing. Defining IEEE_REAL_FMT uses the
encode routine that assumes the double representation is the
standard IEEE double [3]. Defining IEEE_REAL_LIB uses the
encode routine that assumes the IEEE functions library (isinf,
scalbn, signbit etc.) is available. If neither are defined, the default
encode routine uses frexp. Currently, the .../configure script
has not got any checks for the IEEE format or library and therefore
does not define any of the symbols. (This should be fixed.)
AsnReal constants are used to hold PLUS_INFINITY and
MINUS_INFINITY values. These values are initialized using the
AsnReal constructor mechanism with the AsnPlusInfinity and
AsnMinusInfinity routines. If you do not define IEEE_REAL_FMT or
IEEE_REAL_LIB, you should rewrite the AsnPlusInfinity routine
such that it is correct for your system.
There is only one content decoding routine and it builds the value
through multiplication and the pow routine (requires the math
library). The content decoding routine only supports the binary
encoding of a REAL, not the decimal encoding.

5.10 BIT STRING
The BIT STRING type is represented by the AsnBits class.
class SNACCDLL_API AsnBits: public AsnType

{

 AsnBits(const char *stringForm=NULL);

 AsnBits (size_t numBits)

 { bits=NULL;nblFlag = false; Set (numBits); }

 AsnBits (const char *bitOcts, size_t numBits)

 {bits=NULL; nblFlag = false; Set (bitOcts, numBits); }

 AsnBits (const AsnBits &b) { bits=NULL; Set (b); }

 ~AsnBits();

 virtual AsnType *Clone() const {return new
AsnBits(*this);}

 AsnBits &operator = (const AsnBits &b) { Set (b);
return *this; }

 // overwrite existing bits and bitLen values

 void Set (size_t numBits);

82

 void Set (const char *bitOcts, size_t numBits);

 void Set (const AsnBits &b);

 AsnBits & operator = (const char *stringForm);

 bool operator == (const AsnBits &ab) const { return
BitsEquiv (ab); }

 bool operator != (const AsnBits &ab) const { return !
BitsEquiv (ab); }

 bool soloBitCheck(size_t);

 void SetBit (size_t);

 void ClrBit (size_t);

 bool GetBit (size_t) const;

 bool IsEmpty() const;

 void UseNamedBitListRules(bool flag) { nblFlag =
flag; }

 size_t BitLen() const { return bitLen; }

 const char * data() const { return bits; }

 size_t length() const { return ((bitLen+7)/8); }

 AsnLen BEncContent (AsnBuf &b) const;

 void BDecContent (const AsnBuf &b, AsnTag tagId, AsnLen
elmtLen, AsnLen &bytesDecoded);

 AsnLen BEnc (AsnBuf &b) const;

 void BDec (const AsnBuf &b, AsnLen &bytesDecoded);

 AsnLen PEnc (BUF_TYPE b);

 void PDec (BUF_TYPE b, AsnLen &bitsDecoded);

 void Print (std::ostream &) const;

 void PrintXML (std::ostream &os, const char
*lpszTitle=NULL) const;

#if META

 static const AsnBitsTypeDesc _desc;

83

 const AsnTypeDesc *_getdesc() const;

#if TCL

 int TclGetVal (Tcl_Interp *) const;

 int TclSetVal (Tcl_Interp *, const char *val);

#endif /* TCL */

#endif /* META */

private:

 bool BitsEquiv (const AsnBits &ab) const;

 void BDecConsBits (const AsnBuf &b, AsnLen elmtLen,
AsnLen &bytesDecoded);

protected:

 size_t bitLen;

 char *bits;

 bool nblFlag;

};

The AsnBits class contains a pointer to the bits and an integer that
holds the length in bits of the BIT STRING.
In addition to the standard methods, the AsnBits class has methods
for initializing and comparing bit string values and methods for
setting and getting individual bits in a value.
An AsnBits value can be created three ways: from the number of
bits, from a char * and its bit length or from another AsnBits value.
Look at the constructors and the set and reset methods.
SetBit and ClrBit can be used for setting the values of individual
bits in the BIT STRING value. Given the bit's index, SetBits sets
that bit to one. ClrBit sets the bit of the given index to zero. The bit
indexes start at zero, with zero being the first (most significant) bit
in the BIT STRING. GetBit will return true if the specified bit is one
and false if the bit is zero. If the given bit index is too large, SetBit
and ClrBit do nothing and GetBit returns false .
The == and != operators have been overloaded such that given
two AsnBits values, they will behave as expected.
Each AsnBits value stores its bit string in a single contiguous block
of memory. Received BIT STRING values that were encoded in the

84

constructed form are converted to the simple, flat form (see
Section 5.8). eSNACC provides no facility for encoding or internally
representing constructed BIT STRING values.

5.11 OCTET STRING
OCTET STRING values are represented with the AsnOcts class.
class SNACCDLL_API AsnOcts: public AsnType

{

public:

 // constructor always copies strings so destructor can always
delete

 AsnOcts() {m_pFileSeg = NULL;}

 AsnOcts (const char *str) { m_pFileSeg = NULL; m_str.assign(str);
}

 AsnOcts (const char *str, const size_t len) { m_pFileSeg = NULL;
m_str.assign(str, len); }

 AsnOcts (const AsnOcts &o);

// AsnOcts (const std::filebuf &fb);

 virtual ~AsnOcts();

 virtual AsnType *Clone() const { return new AsnOcts(*this);}

 AsnOcts &operator = (const AsnOcts &o) { m_str = o.m_str;
return *this; }

 AsnOcts &operator = (const char *str) { m_str.assign(str);
return *this; }

 void Set (const char *str, size_t len);

 size_t Len() const;

 const std::string & data() const;

 const char * c_str() const;

 const unsigned char * c_ustr() const;

 bool operator == (const AsnOcts &o) const;

 bool operator != (const AsnOcts &o) const;

85

 AsnLen BEncContent (AsnBuf &b) const;

 void BDecContent (const AsnBuf &b, AsnTag tagId, AsnLen
elmtLen, AsnLen &bytesDecoded);

 AsnLen BEnc (AsnBuf &b) const ;

 void BDec (const AsnBuf &b, AsnLen &bytesDecoded);

 AsnLen PEnc (BUF_TYPE b);

 void PDec (BUF_TYPE b, AsnLen &bitsDecoded);

 void Print (std::ostream &os) const;

 void PrintXML (std::ostream &os, const char
*lpszTitle=NULL,

 const char *lpszType=NULL) const;

private:

 void BDecConsOcts (const AsnBuf &b, AsnLen elmtLen,
AsnLen &bytesDecoded);

 void FillStringDeck(AsnBuf &b, AsnLen elmtLen, AsnLen
&bytesDecoded);

 // IF AsnOcts length is < MAX_OCTS, store in AsnString base

 mutable std::string m_str;

 // IF AsnOcts length is > MAX_OCTS, store in m_FileBuf;

 mutable AsnFileSeg *m_pFileSeg;

};

The AsnOcts class contains a pointer to the octets and an integer
that holds the length in octets of the OCTET STRING.
There are four constructors for AsnOcts. The parameterless
constructor will initialize the octet string to zero length with a
NULL octets pointer. The constructor that takes a single char *

assumes that the given string is NULL terminated and initializes
the octet pointer with a pointer to a copy of the given string and
sets the octetLen to the strlen of the string (this does not usually
include the NULL terminator). The constructor that takes char *

and a length, len, initializes the octets pointer to point to a copy of
len characters from the given string and sets the octetLen to len.
The last constructor will initialize an AsnOcts value by copying the
given AsnOcts value.

86

As with the BIT STRING content decoder, OCTET STRING content
decoder can handle constructed values. These are handled in the
same way as the constructed BIT STRING values; they are
converted to the simple contiguous representation. Every OCTET
STRING value will automatically have a NULL terminator
appended to it; this extra character will not be included in the
string's length and will make some strings easier to deal with for
printing etc.
The operator char *() is defined for the AsnOcts class to return a
pointer to the octets. The Len method returns the length in bytes of
the string value. These may be useful for passing the octets to
other functions such as memcpy etc.
The == and != operators have been overloaded such that given
two AsnOcts values, they will behave as expected.
AsnOcts now takes advantage of the multiple-buffer “AsnFileSeg”
class, which allows a limited stream capability. This allows very
large Octet String values to be stored efficiently, not copied
multiple times when decoding.

5.12 Built-in Strings PrintableString, BMPString,
TeletexString, NumericString, VideotexString,
T61String, IA5String, GraphicString, VisibleString,
ISO646String, GeneralString, UniversalString,
UTF8String, UTCTime, GeneralizedTime

The eSNACC run-time library directly supports the various ASN.1
string definitions. This includes validating the actual data
restrictions for the various ASN.1 string types (i.e. encode
operations will fail if invalid characters are being encoded). All
strings support some basic load/unload operations. Some of the
strings will handle wide characters (e.g. BMPString, UTF8String).
The UTCTime and GeneralizedTime strings are built-in due to the
custom ASN.1 tag in the encoding; no format checking is
performed on these strings. All of the string classes as well as
some support classes are presented below. Here are some notes
on translating strings between the various formats.

For any wide character load operation from an 8 bit extended
character, the following example will work to load the value into a
multi-byte ASN.1 string, like UTF8String.
 UTF8String utf8String;
 std::string AAAB(strWithExtendedCharPresent);

87

 std::wstring AAAC;
 for (unsigned int ii=0; ii < AAAB.length(); ii++)
 AAAC += AAAB[ii]; // ASSIGN each 1byte char to
wchar.
 UTF8String SNACC_utf8String(AAAC);

// DEFINE some extra functionality to the "*String" classes using
similar names

class SNACCDLL_API AsnString : public std::string, public AsnType

{

public:

AsnString(const char* str = NULL) { operator=(str); }

AsnString(const std::string& str) { operator=(str); }

AsnString& operator=(const char* str);

AsnString& operator=(const std::string& str) { assign(str);
return *this; }

// const std::string & get();

// void set(const AsnString &o)

int cvt_LDAPtoStr (char *in_string, char **char_ptr);

int cvt_StrtoLDAP (wchar_t *in_string, char **char_ptr);

// returns a null terminated 'C' string

 // const char *c_str() const;

AsnLen BEnc(AsnBuf &b) const;

void BDec(const AsnBuf &b, AsnLen& bytesDecoded);

AsnLen BEncContent(AsnBuf &b) const;

void BDecContent(const AsnBuf &b, AsnTag tagId, AsnLen
elmtLen, AsnLen& bytesDecoded);

// each string type must implement these methods

//

// tagCode should be implemented to return the ASN.1 tag

// corresponding to the character string type.

88

//

// the check method should be implemented to enforce any
rules imposed on the

// character string type.

virtual BER_UNIV_CODE tagCode(void) const = 0;

virtual bool check() const{ return true; }

void Print(std::ostream& os) const;

void PrintXML(std::ostream& os, const char *lpszTitle) const;

private:

void BDecConsString(const AsnBuf &b, AsnLen elmtLen, AsnLen
&bytesDecoded);

};

class SNACCDLL_API NumericString : public AsnString

{

public:

NumericString(const char* str = NULL) : AsnString(str)
{}

NumericString(const std::string& str) : AsnString(str)
{}

NumericString& operator=(const char* str)

{ AsnString::operator=(str); return *this;}

NumericString& operator=(const std::string& str)

{ AsnString::operator=(str); return *this; }

 AsnType* Clone() const{ return new NumericString(*this); }

// ASN.1 tag for the character string

BER_UNIV_CODE tagCode() const{ return NUMERICSTRING_TAG_CODE;
}

bool check() const; // Enforce string
rules

};

89

class SNACCDLL_API PrintableString : public AsnString

{

public:

PrintableString(const char* str = NULL) : AsnString(str) {}

PrintableString(const std::string& str) : AsnString(str) {}

PrintableString& operator=(const char* str)

{ AsnString::operator=(str); return *this;}

PrintableString& operator=(const std::string& str)

{ AsnString::operator=(str); return *this; }

 AsnType* Clone() const{ return new PrintableString(*this); }

// ASN.1 tag for the character string

BER_UNIV_CODE tagCode() const{ return
PRINTABLESTRING_TAG_CODE; }

bool check() const; // Enforce string
rules

};

class SNACCDLL_API TeletexString : public AsnString

{

public:

TeletexString(const char* str = NULL) : AsnString(str)
{}

TeletexString(const std::string& str) : AsnString(str)
{}

TeletexString& operator=(const char* str)

{ AsnString::operator=(str); return *this;}

TeletexString& operator=(const std::string& str)

{ AsnString::operator=(str); return *this; }

 AsnType* Clone() const{ return new TeletexString(*this); }

// ASN.1 tag for the character string

90

BER_UNIV_CODE tagCode() const{ return TELETEXSTRING_TAG_CODE;
}

};

// T61String -- Alternate name for TeletexString

typedef TeletexString T61String;

class SNACCDLL_API VideotexString : public AsnString

{

public:

VideotexString(const char* str = NULL) : AsnString(str)
{}

VideotexString(const std::string& str) : AsnString(str)
{}

VideotexString& operator=(const char* str)

{ AsnString::operator=(str); return *this;}

VideotexString& operator=(const std::string& str)

{ AsnString::operator=(str); return *this; }

 AsnType* Clone() const{ return new VideotexString(*this); }

// ASN.1 tag for the character string

BER_UNIV_CODE tagCode() const{ return
VIDEOTEXSTRING_TAG_CODE; }

};

class SNACCDLL_API IA5String : public AsnString

{

public:

IA5String(const char* str = NULL) : AsnString(str) {}

IA5String(const std::string& str) : AsnString(str) {}

IA5String& operator=(const char* str)

{ AsnString::operator=(str); return *this;}

IA5String& operator=(const std::string& str)

{ AsnString::operator=(str); return *this; }

91

 AsnType* Clone() const{ return new IA5String(*this); }

// ASN.1 tag for the character string

BER_UNIV_CODE tagCode() const{ return IA5STRING_TAG_CODE; }

bool check() const; // Enforce string
rules

};

class SNACCDLL_API GraphicString : public AsnString

{

public:

GraphicString(const char* str = NULL) : AsnString(str)
{}

GraphicString(const std::string& str) : AsnString(str)
{}

GraphicString& operator=(const char* str)

{ AsnString::operator=(str); return *this;}

GraphicString& operator=(const std::string& str)

{ AsnString::operator=(str); return *this; }

 AsnType* Clone() const{ return new GraphicString(*this); }

// ASN.1 tag for the character string

BER_UNIV_CODE tagCode() const{ return GRAPHICSTRING_TAG_CODE;
}

};

class SNACCDLL_API VisibleString : public AsnString

{

public:

VisibleString(const char* str = NULL) : AsnString(str)
{}

VisibleString(const std::string& str) : AsnString(str)
{}

92

VisibleString& operator=(const char* str)

{ AsnString::operator=(str); return *this;}

VisibleString& operator=(const std::string& str)

{ AsnString::operator=(str); return *this; }

 AsnType* Clone() const{ return new VisibleString(*this); }

// ASN.1 tag for the character string

BER_UNIV_CODE tagCode() const{ return VISIBLESTRING_TAG_CODE;
}

bool check() const; // Enforce string
rules

};

// ISO646String -- Alternate name for VisibleString

typedef VisibleString ISO646String;

class SNACCDLL_API GeneralString : public AsnString

{

public:

GeneralString(const char* str = NULL) : AsnString(str)
{}

GeneralString(const std::string& str) : AsnString(str)
{}

GeneralString& operator=(const char* str)

{ AsnString::operator=(str); return *this;}

GeneralString& operator=(const std::string& str)

{ AsnString::operator=(str); return *this; }

 AsnType* Clone() const{ return new GeneralString(*this); }

// ASN.1 tag for the character string

BER_UNIV_CODE tagCode() const{ return GENERALSTRING_TAG_CODE;
}

};

93

// Multi-byte character based definitions... BMP, Universal, UTF8.

class SNACCDLL_API WideAsnString : public std::wstring, public
AsnType

{

public:

WideAsnString(const char* str = NULL)
{ set(str); }

WideAsnString(const std::string& str)
{ set(str.c_str()); }

WideAsnString(const std::wstring& wstr)
{ assign(wstr); }

// each string type must implement these methods

//

// tagCode should be implemented to return the ASN.1 tag
corresponding to the

// character string type.

//

// the check method should be implemented to enforce any
rules imposed on the

// character string type.

virtual BER_UNIV_CODE tagCode() const = 0;

// virtual bool check() const = 0;

AsnLen BEnc(AsnBuf &b) const;

void BDec(const AsnBuf &b, AsnLen &bytesDecoded);

virtual AsnLen BEncContent(AsnBuf &b) const = 0;

virtual void BDecContent(const AsnBuf &b, AsnTag tagId,
AsnLen elmtLen,

AsnLen &bytesDecoded) = 0;

void Print(std::ostream &os) const;

void PrintXML(std::ostream &os, const char *lpszTitle) const;

void set(const char* str);

void getAsUTF8(std::string &utf8String) const;

char* getAsUTF8() const;

94

protected:

AsnLen CombineConsString(const AsnBuf &b, AsnLen elmtLen,
std::string& encStr);

};

class SNACCDLL_API BMPString : public WideAsnString

{

public:

BMPString(const char* str = NULL) : WideAsnString(str)
{}

BMPString(const std::string& str) : WideAsnString(str)
{}

BMPString(const std::wstring& wstr) : WideAsnString(wstr)
{}

BMPString& operator=(const char* str)

{ set(str); return *this;}

BMPString& operator=(const std::string& str)

{ set(str.c_str()); return *this; }

BMPString& operator=(const std::wstring& wstr)

{ assign(wstr); return *this; }

const char* typeName() { return "BMPString"; }

AsnType* Clone() const { return new BMPString(*this); }

AsnLen BEncContent(AsnBuf &b) const;

void BDecContent(const AsnBuf &b, AsnTag tagId, AsnLen
elmtLen,

AsnLen &bytesDecoded);

// ASN.1 tag for the character string

BER_UNIV_CODE tagCode() const{ return BMPSTRING_TAG_CODE; }

// bool check() const; // Enforce string rules

};

class SNACCDLL_API UniversalString : public WideAsnString

{

95

public:

UniversalString(const char* str = NULL) : WideAsnString(str)
{}

UniversalString(const std::string& str) : WideAsnString(str)
{}

UniversalString(const std::wstring& wstr) :
WideAsnString(wstr) {}

UniversalString& operator=(const char* str)

{ set(str); return *this;}

UniversalString& operator=(const std::string& str)

{ set(str.c_str()); return *this; }

UniversalString& operator=(const std::wstring& wstr)

{ assign(wstr); return *this; }

const char* typeName(){ return "UniversalString"; }

AsnType* Clone() const{ return new UniversalString(*this); }

AsnLen BEncContent(AsnBuf &b) const;

void BDecContent(const AsnBuf &b, AsnTag tagId, AsnLen
elmtLen,

AsnLen &bytesDecoded);

// ASN.1 tag for the character string

BER_UNIV_CODE tagCode() const { return
UNIVERSALSTRING_TAG_CODE; }

// bool check() const; // Enforce string rules

};

class SNACCDLL_API UTF8String : public WideAsnString

{

public:

UTF8String(const char* str = NULL) : WideAsnString(str)
{}

UTF8String(const std::string& str) : WideAsnString(str)
{}

UTF8String(const std::wstring& wstr) : WideAsnString(wstr)
{}

96

UTF8String& operator=(const char* str)

{ set(str); return *this;}

UTF8String& operator=(const std::string& str)

{ set(str.c_str()); return *this; }

UTF8String& operator=(const std::wstring& wstr)

{ assign(wstr); return *this; }

const char* typeName(){ return "UTF8String"; }

AsnType* Clone() const{ return new UTF8String(*this); }

AsnLen BEncContent(AsnBuf &b) const;

void BDecContent(const AsnBuf &b, AsnTag tagId, AsnLen
elmtLen,

AsnLen &bytesDecoded);

// ASN.1 tag for the character string

BER_UNIV_CODE tagCode() const{ return UTF8STRING_TAG_CODE; }

// bool check() const; // Enforce string rules

};

// Time Classes

//

class SNACCDLL_API UTCTime : public VisibleString

{

public:

UTCTime(const char* str = NULL) : VisibleString(str) {}

UTCTime(const std::string& str) : VisibleString(str) {}

virtual ~UTCTime()
{}

UTCTime& operator=(const char* str)

{ VisibleString::operator=(str); return *this;}

UTCTime& operator=(const std::string& str)

{ VisibleString::operator=(str); return *this; }

97

 AsnType* Clone() const { return new
UTCTime(*this); }

// ASN.1 tag for the character string

BER_UNIV_CODE tagCode() const { return
UTCTIME_TAG_CODE; }

};

class SNACCDLL_API GeneralizedTime : public VisibleString

{

public:

GeneralizedTime(const char* str = NULL) : VisibleString(str)
{}

GeneralizedTime(const std::string& str) : VisibleString(str)
{}

virtual ~GeneralizedTime(){}

GeneralizedTime& operator=(const char* str)

{ VisibleString::operator=(str); return *this;}

GeneralizedTime& operator=(const std::string& str)

{ VisibleString::operator=(str); return *this; }

 AsnType* Clone() const{ return new GeneralizedTime(*this); }

// ASN.1 tag for the character string

BER_UNIV_CODE tagCode() const { return
GENERALIZEDTIME_TAG_CODE; }

};

5.13 OBJECT IDENTIFIER
OBJECT IDENTIFIER values are represented with the AsnOid class.

class SNACCDLL_API AsnOid : public AsnRelativeOid

{

public:

AsnOid();

AsnOid(const char* pszOID);

98

AsnOid(const AsnOid &that):AsnRelativeOid(that) {m_isRelative
= false;}

virtual AsnType* Clone() const { return
new AsnOid(*this); }

virtual const char* typeName() const { return
"AsnOid"; }

// get a copy of the OID's NULL-terminated dotted string
notation

char* GetChar() const { return strdup(operator const
char*()); }

// set from a number-dot null term string

void PutChar(const char* szOidCopy)
{ Set(szOidCopy); }

AsnOid operator+(const AsnRelativeOid& ro) const;

AsnOid& operator+=(const AsnRelativeOid& ro);

#if META

static const AsnOidTypeDesc _desc;

const AsnTypeDesc* _getdesc() const;

#endif /* META */

};

The AsnOid stores OBJECT IDENTIFIER values in their encoded
form to improve performance. It seems that the most common
operation with OBJECT IDENTIFIERs is to compare for equality,
for which the encoded representation (which is canonical) works
well.
The AsnOid is very similar to the AsnRelativeOid class in all
respects, except that its content is required to have a minimum of
two arc numbers.

class SNACCDLL_API AsnRelativeOid : public AsnType
{
public:

99

AsnRelativeOid()
{ Init(); }
AsnRelativeOid(const AsnRelativeOid& o) { Init();

Set(o); }
AsnRelativeOid(const char* pszOID) { Init();

Set(pszOID); }
virtual ~AsnRelativeOid();

AsnRelativeOid& operator=(const AsnRelativeOid& o)
{ Set(o); return *this; }
operator const char*() const;

virtual AsnType* Clone() const { return new
AsnRelativeOid(*this); }

virtual const char* typeName() const { return
"AsnRelativeOid"; }

size_t Len() const { return
octetLen; }

const char* Str() const { return
oid; }

bool operator==(const AsnRelativeOid& o) const { return
OidEquiv(o); }

bool operator==(const char* o) const;
bool operator!=(const AsnRelativeOid& o) const { return

!operator==(o); }
bool operator!=(const char* o) const { return

!operator==(o); }
bool operator<(const AsnRelativeOid& o) const;

unsigned long NumArcs() const;
void GetOidArray(unsigned long oidArray[]) const;

void Set(const char* szOidCopy);
void Set(const char* encOid, size_t len);
void Set(const AsnRelativeOid& o);

100

void Set(unsigned long arcNumArr[], unsigned long
arrLength);

AsnLen BEnc(AsnBuf& b) const;
void BDec(const AsnBuf& b, AsnLen& bytesDecoded);
AsnLen BEncContent(AsnBuf& b) const;
void BDecContent(const AsnBuf& b, AsnTag tagId, AsnLen

elmtLen,
AsnLen& bytesDecoded);

AsnLen PEnc(AsnBufBits& b) const;
void PDec(AsnBufBits& b, AsnLen& bitsDecoded);

void Print(std::ostream& os, unsigned short indent = 0)
const;

void PrintXML(std::ostream& os, const char* lpszTitle =
NULL) const;

#if META
static const AsnRelativeOidTypeDesc _desc;
const AsnTypeDesc* _getdesc() const;

#if TCL
int TclGetVal(Tcl_Interp*) const;
int TclSetVal(Tcl_Interp* , const char* val);

#endif /* TCL */
#endif /* META */

protected:
size_t octetLen;
char* oid;
mutable char* m_lpszOidString;
bool m_isRelative;

101

private:
void Init() { octetLen = 0; oid = NULL; m_lpszOidString =

NULL;
m_isRelative = true; }

bool OidEquiv(const AsnRelativeOid& o) const;
void createDottedOidStr() const;

};

The AsnRelativeOid class has four constructors, which are similar
to those of the AsnOcts class. A special constructor that takes arc
numbers as parameters and uses default parameters is provided.
Unlike a RELATIVE OID, an OBJECT IDENTIFIER value must have
at least two arc numbers so the first two parameters do not have
default values. All of the other parameters are optional; since their
default value of -1 is an invalid arc number (they must be positive)
they will not be used in the value. For example to build the value
{1 2 3} you simply use AsnOid (“1.2.3”). This constructor is
convenient but is more expensive in terms of CPU time than the
others.
The operator char *() is defined for the AsnRelativeOid class to
return a pointer to the encoded (RELATIVE) OBJECT IDENTIFIER
value. The Len method returns the length in bytes of the encode
(RELATIVE) OBJECT IDENTIFIER value (NOT the number arcs in
the value). These may be useful for passing the octets to other
functions such as memcpy etc. NumArcs returns the number of
arcs that the value is comprised of.
The == and != operators have been overloaded such that given
two AsnOcts values, they will behave as expected.

5.14 SET OF and SEQUENCE OF
In the C ASN.1 library, the list type was in the library because it
was generic and every SET OF and SEQUENCE OF was defined as
an AsnList. In C++, a new class is defined every list from a C++
template, providing a type safe list mechanism. The AsnList class is
based off of the standard template library std::list. These classes
use the std::list template.

102

5.15 ANY and ANY DEFINED BY
The ANY DEFINED BY type can be handled automatically by
eSNACC provided you use the SNMP OBJECT-TYPE macro to
specify the identifier to type mappings. The identifier can be an
INTEGER or OBJECT IDENTIFIER. Handling ANY types properly
will require modifications to the generated code since there is no
identifier associated with the type. If your definition is not handled
by the SNMP OBJECT-TYPE macro(s) or the OID is not recognized
when decoding, then the data is placed in an AsnBuf. These ANY
buffers will perform encode/decode operations as normal eSNACC
classes for consistency. The user has access to the data as a
buffer.
Look at the C and C++ ANY examples and the any.asn1 file
included with this release for information on using the OBJECT-
TYPE macro. Note that the OBJECT-TYPE macro has been modified
slightly to allow INTEGER values (identifiers).
An ANY DEFINED BY type is represented by the AsnAny class.

/* this is put into the hash table with the int or oid as the key */

class SNACCDLL_API AnyInfo

{

public:

 int anyId; // will be a value from the AnyId enum

 AsnOid oid; // will be zero len/null if intId is valid

 AsnIntType intId;

 AsnType *typeToClone;

};

class SNACCDLL_API AsnAny: public AsnType

{

public:

 static Table *oidHashTbl; // all AsnAny class
SNACCDLL_API instances

 static Table *intHashTbl; // share these tables

 mutable AnyInfo *ai; // points to entry in hash tbl for
this type

 AsnType *value;

 AsnBuf *anyBuf; // used if ai == null

103

 AsnAny() { ai = NULL; value = NULL; anyBuf=NULL;}

 AsnAny(const AsnAny &o) { ai = NULL; value = NULL; anyBuf = NULL;
*this = o; }

 virtual ~AsnAny();

 AsnAny &operator = (const AsnAny &o);

 virtual AsnType * Clone() const { return new AsnAny(*this); }

 static void AsnAnyDestroyHashTbls();

 // Recursive call to destroy table during destruction

 static void AsnAnyDestroyHashTbl(Table *&pHashTbl);

 // class SNACCDLL_API level methods

 static void InstallAnyByInt (AsnIntType intId, int anyId,
AsnType *type);

 static void InstallAnyByOid (AsnOid &oid, int anyId,
AsnType *type);

 int GetId() const { return ai ? ai->anyId
: -1; }

 void SetTypeByInt (const AsnInt& id) const;

 void SetTypeByOid (const AsnOid &id) const;

 AsnLen BEnc (AsnBuf &b) const;

 void BDec (const AsnBuf &b, AsnLen &bytesDecoded);

 void Print (std::ostream &) const;

 void PrintXML (std::ostream &os, const char *lpszTitle=NULL)
const;

#if TCL

 int TclGetDesc (Tcl_DString *) const;

 int TclGetVal (Tcl_DString *) const;

 int TclSetVal (Tcl_Interp *, const char *val);

 int TclUnSetVal (Tcl_Interp *, const char *member);

#endif /* TCL */

104

};

The C++ mechanism is similar to the C mechanism which uses
hash tables to hold the identifier to type mappings. In this section
we will discuss the main differences of the C++ ANY DEFINED BY
handling mechanism. You should read Section 5.12 for caveats and
other important information.
In C, the hash table entry held the size of the type and pointers to
its encode, decode, free etc. routines to describe the type. In C++
these have been replaced with a pointer to an instance of the type.
A hash table entry contains:

 The anyId
 the INTEGER or OBJECT IDENTIFIER that maps to it
 a pointer to an instance of the identified type

All C++ ASN.1 types use the AsnType base class, which designates
the following functions as virtual:

 the destructor
 Clone()
 BDec()
 BEnc()
 Print()
 _getdesc() (metacode)
 _getref() (metacode)
 TclGetDesc() (Tcl interface)
 TclGetVal() (Tcl interface)
 TclSetVal() (Tcl interface)
 TclUnsetVal() (Tcl interface)

This allows the ANY DEFINED BY handling routines to treat a
value of any ASN.1 type as an AsnType. So, for each type the ANY
DEFINED BY handling code has access to the virtual methods.
Note that the value field in the AsnAny class and the typeToClone
field in the AsnAny class are both AsnType *.
Before an ANY DEFINED BY value can be decoded, the field that
contains its identifier must have been decoded and used with the
AsnAny value's SetTypeByInt or SetTypeByOid methods. Then the
ANY DEFINED BY value can be decoded by calling its (AsnAny)

105

BDec routine. This in turn calls the Clone routine on the type in the
hash table entry to generate the correct object. Then the BDec
method of the newly created object is called.
When the C ANY DEFINED BY decoder allocates a value, it uses
the size information for the identified type. This is not safe for C++
so the virtual Clone routine was added to the AsnType base class.
This allows the proper constructor mechanism to be used when
allocating the value.
The virtual Clone routine simply calls its type's parameterless
constructor via new>_ j (hence every ASN.1 type's class must have a
parameterless constructor). Clone is a poor name since the routine
only produces a new instance of the given type without copying the
original's data.
The hash tables are automatically initialized using the C++
constructor mechanism. You do not need to call any initialization
routines as described in the C chapter.

5.16 Buffer Management
The C++ buffer management provided with eSNACC has been re-
written to accommodate lists of references to original data
buffers/files. The following is from .../c++-lib/inc/asn-buf.h:
class SNACCDLL_API AsnBuf

{

public:

 AsnBuf();

 AsnBuf(const char *seg, size_t segLen);

 AsnBuf(const std::stringstream &ss);

 AsnBuf(std::streambuf *sb);

 AsnBuf(const AsnBuf &o);

 AsnBuf(const char *pFilename);

 ~AsnBuf() { clear(); }

 void PutByteRvs (char byte);

 void PutSegRvs (const char *seg, size_t segLen);

 void PutStream(std::streambuf *sb);

 unsigned char GetUByte() const { return (unsigned char)
GetByte();}

 char GetByte() const;

106

 unsigned long GetSeg(char *seg, long segLen) const;

 char * GetSeg(long segLen) const;

 void GetSeg(std::string &str, long segLen=0) const;

 AsnFileSeg * GetFileSeg(long segLen) const;

 void PutFileSeg(AsnFileSeg *fs);

 void GrabAny(AsnBuf &anyBuf, SNACC::AsnLen
&bytesDecoded) const;

 const Deck & deck() const {return m_deck;}

 const Card & card() const {return **m_card;}

 unsigned long length() const;

 long splice(AsnBuf &b);

 void skip(size_t skipBytes);

 char PeekByte() const;

 AsnBuf & operator=(const AsnBuf &o);

 bool operator==(const AsnBuf &b) const;

 bool operator<(const AsnBuf &rhs) const;

 void hexDump(std::ostream &os) const;

#ifdef _DEBUG

 void status(std::ostream &os);

#endif

 AsnBufLoc GetReadLoc() const;

 void SetReadLoc(const AsnBufLoc &bl) const;

//#ifdef WIN32

// void ResetMode(std::ios_base::open_mode mode =
std::ios_base::in) const;

//#else

 void ResetMode(std::ios_base::openmode mode = std::ios_base::in)
const;

//#endif

private:

 void clear();

protected:

107

 mutable SNACC::Deck::iterator m_card;

 mutable SNACC::Deck m_deck;

};

This is the only buffer type provided with the C++ library. It uses
a sophisticated list of stream buffers to allow a buffer to be
assigned as it is decoded, not copied, thus saving valuable system
resources on large messages (i.e. on certain elements the decoded
data elements contain references to the original input data buffer,
not a copy of the data). This buffer scheme is also used with Octet
String(s).

5.17 Error Management - SnaccException
The C++ ASN.1 error management is no longer identical to that of
the C ASN.1 model. C++ exception handling (try and throw) are
now being implemented by a new eSNACC class, SnaccException.
The following is the class definition of SnaccException from the
.../c++-lib/inc/snaccexcept.h file.
class SNACCDLL_API SnaccException: public std::exception

{

public:

 SnaccException() throw();

 SnaccException(const char *file, long line_number, const char
*function=NULL,

 const char *whatStr=NULL, long errorCode=DEFAULT_ERROR_CODE)
throw();

 virtual const char * what() const throw();

 void push(const char *file, long line_number, const char
*function=NULL) throw();

 virtual ~SnaccException() throw();

 void getCallStack(std::ostream &os);

 const CallStack * getCallStack(void) const { return stack; }

 SnaccException & operator=(const SnaccException &o);

 long errorCode;

private:

 // first element in array is populated by the constructor. All

 // other elements in the array are populated by push().

 short stackPos;

108

 CallStack stack[STACK_DEPTH];

protected:

 const char *whatStr;

};

SnaccException is an enhancement to the C++ library to use a
standard Exception class derived from the C++ std::exception
class that will enable applications to catch all exceptions using the
standard class. It is important that the application specifically trap
the SnaccException in order to see the details that caused the
error.

109

C++ Test Sources and Code Demonstration
The demonstration program provided with the eSNACC
distribution demonstrates .asn1 file compilation, references to
these ASN.1/class items, and some demonstrations of loading and
referencing data in eSNACC classes. Thread processing, exception
processing, buffer handling, string tests, etc. are also
demonstrated. These various features are shown in the
./SNACC/c++-examples/src directory (“C” features are
demonstrated in the various subdirectories under ./SNACC/c-
examples). Some of the test features are described below.
The various .asn1 files for this project must be compiled using the
eSNACC compiler:

cd ../

..\..\..\SMPDist\bin\esnacc.exe -D -C -I . rfc1157-snmp.asn1

Notice the “-I .” parameter; this allows the compiler to resolve the
rfc1157-snmp.asn1 IMPORT references for the compile to succeed
and produce the rfc1157-snmp.cpp and rfc1157-snmp.h source
files. All 4 .asn1 files in this directory are compiled similarly. The
“vdatest_asn1.asn1” source file demonstrates how to define an OID
to syntax specification for an “ANY DEFINED BY” definition.
The single main program runs all of the various tests. The
“snmp.cpp” source file runs the snmp V1 test suite for ASN.1
compliance; this test suite runs over 20,000 tests. Some are errors
to show graceful handling of ASN.1 decode errors.

For the C++ library, the SNACC/c++-examples/src/vdatest.cpp
source file provides examples of using all eSNACC C++ classes.
This include ANY load/unload operations throught the ANY
DEFINED BY feature as well as general ANY definitions (no OID to
specify a data type). For the “C” library, the source file is
SNACC/c-examples/vdatestC/vdatestC.c.

110

Bibliography
[1] CCITT. Data Communications Networks Open systems
Interconnection (OSI) Model and Notation, Service Definition ,
chapter Recommendation X. 208, Specification of Abstract Syntax
Notation One (ASN.1), pages 57–130. Number Fascicle VIII.4 in
Blue Book. Omnicom, 115 Park St., S. E., Vienna, VA 22180 USA,
November 1989.
[2] CCITT. Data Communications Networks Open systems
Interconnection (OSI) Model and Notation, Service Definition ,
chapter Recommendation X. 209, Spec- ification of Basic Encoding
Rules for Abstract Syntax Notation One (ASN.1), pages 130– 151.
Number Fascicle VIII. 4 in Blue Book. Omnicom, 115 Park St., S.
E., Vienna, VA 22180 USA, November 1989.
[3] Motorola Inc. MC68881 Floating-Point Coprocessor User's
Manual . Motorola Inc., 1985.
[4] ISO. Information technology—open systems interconnection—
abstract syntax notation one (asn.1).
[5] ISO. Working paper for draft proposed international standard
for information systems—programming language c++, 28 April
1995.
[6] Gerald Neufeld and Son Vuong. An overview of asn.1. IEEE
Networks and ISDN Systems , 23(5): 393– 415, Feb 1992.
[7] Gerald Neufeld and Yeuli Yang. An asn.1 to c compiler. IEEE
Transactions on Software Engineering , 16(10): 1209–1220, Oct
1990.
[8] OMG. The common object request broker: Architecture and
specification. Technical report, OMG, 1993.
[9] John K. Ousterhout. Tcl and the TK Toolkit . Addison-Wesley
Publishing Company, 1994. ISBN 0-201-63337-X.
[10] M. Rose and K. McCloghrie. Structure and identification of
management information for tcp/ip-based internets (rfc 1155).
Network Information Center, SRI International, May 1990.
[11] Marshall T. Rose. ISODE, The ISO Development Environment:
User Manual . Wollongong Group, 1129 San Antonio Rd. Palo Alto,
California, USA, February 1990.
[12] Michael Sample. How fast can asn.1 encoding rules go?
Master's thesis, University of British Columbia, Vancouver, B. C.
Canada V6T 1Z2, April 1993.

111

[13] Michael Sample and Gerald Neufeld. Implementing efficient
encoders and decoders for network data representations. IEEE
INFOCOM '93 Proceedings , 3: 1144–1153, Mar 1993.
[14] Douglas Steedman. ASN.1, The Tutorial and Reference .
Technology Appraisals Ltd., 1990. ISBN 1 871802 06 7.
[15] Bjarne Stroustrup. The C++ Programming Language, 2nd
Edition. Addison-Wesley Publishing Co., 1991. ISBN 0201539926.

112

	Application Programming Interface
	Version 1.7
	1 Introduction
	1.1 DigitalNet/Getronics/J.G.Van Dyke & Associates Update Notes (2004)
	1.2 MS Windows Building eSNACC
	1.3 Unix/Linux Configuring and Installing eSNACC
	1.4 Running eSNACC
	1.4.1 Known Bugs

	1.5 Reporting Bugs and Your Own Improvements
	1.6 Version Updates

	2 C Code Generation
	2.1 Introduction
	2.2 ASN.1 to C Naming Conventions
	2.3 ASN.1 to C Data Structure Translation
	2.4 Encode Routines
	2.5 Decode Routines
	2.6 Print Routines
	2.7 Free Routines
	2.8 ASN. 1 to C Value Translation
	2.9 Compiler Directives
	2.10 Compiling the Generated C Code

	3 C ASN.1 Library
	3.1 Overview
	3.2 Tags
	3.3 Lengths
	3.4 BOOLEAN
	3.5 INTEGER
	3.6 NULL
	3.7 REAL
	3.8 BIT STRING
	3.9 OCTET STRING
	3.10 Built-in Strings PrintableString, BMPString, TeletexString, NumericString, IA5String, UniversalString, UTF8String, VisibleString
	3.11 OBJECT IDENTIFIER
	3.12 SET OF and SEQUENCE OF
	3.13 ANY and ANY DEFINED BY
	3.13.1 ANY Automatic Buffer Handling

	3.14 Buffer Management
	3.14.1 Buffer Reading Routine Semantics
	3.14.2 Buffer Writing Routine Semantics
	3.14.3 Buffer Configuration
	3.14.4 SBuf Buffers

	3.15 Error Management

	4 C++ Code Generation
	4.1 Introduction
	4.2 ASN.1 to C++ Naming Conventions
	4.3 ASN.1 to C++ Class Translation
	4.3.1 Optional C++ namespace Designation
	4.3.2 SET and SEQUENCE
	4.3.3 CHOICE
	4.3.4 SET OF and SEQUENCE OF
	4.3.5 ENUMERATED, Named Numbers and Named Bits

	4.4 ASN.1 to C++ Value Translation
	4.5 Compiler Directives
	4.6 Compiling the Generated C++ Code

	5 C++ ASN. 1 Library
	5.1 Overview
	5.2 Tags
	5.3 Lengths
	5.4 The AsnType Base Class
	5.5 BOOLEAN
	5.6 INTEGER
	5.7 ENUMERATED
	5.8 NULL
	5.9 REAL
	5.10 BIT STRING
	5.11 OCTET STRING
	5.12 Built-in Strings PrintableString, BMPString, TeletexString, NumericString, VideotexString, T61String, IA5String, GraphicString, VisibleString, ISO646String, GeneralString, UniversalString, UTF8String, UTCTime, GeneralizedTime
	5.13 OBJECT IDENTIFIER
	5.14 SET OF and SEQUENCE OF
	5.15 ANY and ANY DEFINED BY
	5.16 Buffer Management
	5.17 Error Management - SnaccException

