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Abstract

In this document, we describe the basic ideas and the methodology identified

to realize the parallel package within the DYNARE project (called the “Parallel

DYNARE” hereafter) and its algorithmic performance. The parallel methodology

has been developed taking into account two different perspectives: the “User per-

spective” and the “Developers perspective”. The fundamental requirement of the

“User perspective” is to allow DYNARE users to use the parallel routines easily,

quickly and appropriately. Under the “Developers perspective”, on the other hand,

we need to build a core of parallelizing routines that are sufficiently abstract and

modular to allow DYNARE software developers to use them easily as a sort of

‘parallel paradigm’, for application to any DYNARE routine or portion of code con-

taining computational intensive loops suitable for parallelization. We will finally

show tests showing the effectiveness of the parallel implementation.
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1 The ideas implemented in Parallel DYNARE

The basic idea behind “Parallel Dynare” is to build a framework to parallelize portions

of code that require a minimal (i.e. start-end communication) or no communications

between different processes, denoted in the literature as “embarrassingly parallel” (Goffe

and Creel, 2008; Barney, 2009). In more complicated cases there are different and more

sophisticated solutions to write (or re-write) parallel codes using, for example, OpenMP

or MPI. Within DYNARE, we can find many portions of code with the above features:

loops of computational sequences with no interdependency that are coded sequentially.

Clearly, this does not make optimal use of computers having 2-4-8, or more cores or CPUs.

The basic idea is to assign the different and independent computational sequences to

different cores, CPU’s or computers and coordinating this new distributed computational

environment with the following criteria:

� provide the necessary input data to any sequence, possibly including results obtained

from previous DYNARE sessions (e.g. a first batch of Metropolis iterations);

� distribute the workload, automatically balancing between the computational re-

sources;

� collect the output data;

� ensure the coherence of the results with the original sequential execution.

Generally, during a program execution, the largest computational time is spent to

execute nested cycles. For simplicity and without loss in generality we can consider here

only for cycles (it is possible to demonstrate that any while cycle admits an equivalent

for cycle). Then, after identifying the most computationally expensive for cycles, we

can split their execution (i.e. the number or iterations) between different cores, CPUs,

computers. For example, consider the following simple MATLAB piece of code:
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...

n=2;

m=10^6;

Matrix= zeros(n,m);

for i=1:n,

Matrix(i,:)=rand(1,m);

end,

Mse= Matrix;

...

Example 1

With one CPU this cycle is executed in sequence: first for i=1, and then for i=2.

Nevertheless, these 2 iterations are completely independent. Then, from a theoretical

point of view, if we have two CPUs (cores) we can rewrite the above code as:

...

n=2;

m=10^6;

<provide to CPU1 and CPU2 input data m>

<Execute on CPU1> <Execute on CPU2>

Matrix1 = zeros(1,m); Matrix2 = zeros(1,m);

Matrix1(1,:)=rand(1,m); Matrix2(1,:)=rand(1,m);

save Matrix1 save Matrix2

retrieve Matrix1 and Matrix2

Mpe(1,:) = Matrix1;

Mpe(2,:) = Matrix2;

Example 2

The for cycle has disappeared and it has been split into two separated sequences that

can be executed in parallel on two CPUs. We have the same result (Mpa=Mse) but the

computational time can be reduced up to 50%.

2 The DYNARE environment

We have considered the following DYNARE components suitable to be parallelized using

the above strategy:

1. the Random Walk- (and the analogous Independent-)-Metropolis-Hastings algo-

rithm with multiple chains: the different chains are completely independent and

do not require any communication between them, so it can be executed on different
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cores/CPUs/Computer Network easily;

2. a number of procedures performed after the completion of Metropolis, that use the

posterior MC sample:

(a) the diagnostic tests for the convergence of the Markov Chain

(McMCDiagnostics.m);

(b) the function that computes posterior IRF’s (posteriorIRF.m).

(c) the function that computes posterior statistics for filtered and smoothed vari-

ables, forecasts, smoothed shocks, etc..

(prior_posterior_statistics.m).

(d) the utility function that loads matrices of results and produces plots for pos-

terior statistics (pm3.m).

Unfortunately, MATLAB does not provide commands to simply write parallel code

as in Example 2 (i.e. the pseudo-commands : <provide inputs>, <execute on CPU>

and <retrieve>). In other words, MATLAB does not allow concurrent programming: it

does not support multi-threads, without the use (and purchase) of MATLAB Distributed

Computing Toolbox. Then, to obtain the behavior described in Example 2, we had to

find an alternative solution.

The solution that we have found can be synthesized as follows:

When the execution of the code should start in parallel (as in Example 2),

instead of running it inside the active MATLAB session, the following steps

are performed:

1. the control of the execution is passed to the operating system (Windows/Linux)

that allows for multi-threading;

2. concurrent threads (i.e. MATLAB instances) are launched on different

processors/cores/machines;

3. when the parallel computations are concluded the control is given back

to the original MATLAB session that collects the result from all parallel
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‘agents’ involved and coherently continue along the sequential computa-

tion.

Three core functions have been developed implementing this behavior, namely MasterParallel.m,

slaveParallel.m and fParallel.m. The first function (MasterParallel.m) operates at

the level of the ‘master’ (original) thread and acts as a wrapper of the portion of code to

be distributed in parallel, distributes the tasks and collects the results from the parallel

computation. The other functions (slaveParallel.m and fParallel.m) operate at the

level of each individual ‘slave’ thread and collect the jobs distributed by the ‘master’,

execute them and make the final results available to the master. The two different im-

plementations of slave operation comes from the fact that, in a single DYNARE session,

there may be a number parallelized sessions that are launched by the master thread.

Therefore, those two routines reflect two different versions of the parallel package:

1. the ‘slave’ MATLAB sessions are closed after completion of each single job, and new

instances are called for any subsequent parallelized task (fParallel.m);

2. once opened, the ‘slave’ MATLAB sessions are kept open during the DYNARE

session, waiting for the jobs to be executed, and are only closed upon completion of

the DYNARE session on the ‘master’ (slaveParallel.m).

We will see that none of the two options is superior to the other, depending on the

model size.

3 Installation and utilization

Here we describe how to run parallel sessions in DYNARE and, for the developers com-

munity, how to apply the package to parallelize any suitable piece of code that may be

deemed necessary.
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3.1 Requirements

3.1.1 For a Windows grid

1. a standard Windows network (SMB) must be in place;

2. PsTools (Russinovich, 2009) must be installed in the path of the master Windows

machine;

3. the Windows user on the master machine has to be user of any other slave machine

in the cluster, and that user will be used for the remote computations.

3.1.2 For a UNIX grid

1. SSH must be installed on the master and on the slave machines;

2. the UNIX user on the master machine has to be user of any other slave machine in

the cluster, and that user will be used for the remote computations;

3. SSH keys must be installed so that the SSH connection from the master to the slaves

can be done without passwords, or using an SSH agent.

3.2 The user perspective

We assume here that the reader has some familiarity with DYNARE and its use. For the

DYNARE users, the parallel routines are fully integrated and hidden inside the DYNARE

environment.

3.2.1 The interface

The general idea is to put all the configuration of the cluster in a config file different

from the MOD file, and to trigger the parallel computation with option(s) on the dynare

command line. The configuration file is designed as follows:

� be in a standard location

– $HOME/.dynare under Unix;
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– c:\Documents and Setting\<username>\Application Data\dynare.ini on Windows;

� have provisions for other Dynare configuration parameters unrelated to parallel

computation

� allow to specify several clusters, each one associated with a nickname;

� For each cluster, specify a list of slaves with a list of options for each slave [if not

explicitly specified by the configuration file, the preprocessor sets the options to

default];

The list of slave options includes:

Name : name of the node;

CPUnbr : this is the number of CPU’s to be used on that computer; if CPUnbr is a

vector of integers, the syntax is [s:d], with d>=s (d, s are integer); the first core

has number 1 so that, on a quad-core, use 4 to use all cores, but use [3:4] to specify

just the last two cores (this is particularly relevant for Windows where it is possible

to assign jobs to specific processors);

ComputerName : Computer name on the network or IP address; use the NETBIOS

name under Windows1, or the DNS name under Unix.;

UserName : required for remote login; in order to assure proper communications be-

tween the master and the slave threads, it must be the same user name actu-

ally logged on the ‘master’ machine. On a Windows network, this is in the form

DOMAIN\username, like DEPT\JohnSmith, i.e. user JohnSmith in windows group

DEPT;

Password : required for remote login (only under Windows): it is the user password on

DOMAIN and ComputerName;

RemoteDrive : Drive to be used on remote computer (only for Windows, for example

the drive C or drive D);

1In Windows XP it is possible find this name in ’My Computer’ − > mouse right click − > ’Property’
− > ’Computer Name’.
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RemoteDirectory : Directory to be used on remote computer, the parallel toolbox will

create a new empty temporary subfolder which will act as remote working directory;

DynarePath : path to matlab directory within the Dynare installation directory;

MatlabOctavePath : path to MATLAB or Octave executable;

SingleCompThread : disable MATLAB’s native multithreading;

Those options have the following specifications:

Node Options type default Win Unix
Local Remote Local Remote

Name string (stop) * * * *
CPUnbr integer (stop) * * * *

or array
ComputerName string (stop) * *
UserName string empty * *
Password string empty *
RemoteDrive string empty *
RemoteDirectory string empty * *
DynarePath string empty
MatlabOctavePath string empty
SingleCompThread boolean true

The cluster options are as follows

Cluster Options type default Meaning Required
Name string empty name of the node *
Members string empty list of members in this cluster *

The syntax of the configuration file will take the following form (the order in which

the clusters and nodes are listed is not significant):
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[cluster]

Name = c1

Members = n1 n2 n3

[cluster]

Name = c2

Members = n2 n3

[node]

Name = n1

ComputerName = localhost

CPUnbr = 1

[node]

Name = n2

ComputerName = karaba.cepremap.org

CPUnbr = 5

UserName = houtanb

RemoteDirectory = /home/houtanb/Remote

DynarePath = /home/houtanb/dynare/matlab

MatlabOctavePath = matlab

[node]

Name = n3

ComputerName = hal.cepremap.ens.fr

CPUnbr = 3

UserName = houtanb

RemoteDirectory = /home/houtanb/Remote

DynarePath = /home/houtanb/dynare/matlab

MatlabOctavePath = matlab

Finally, the DYNARE command line options are:

� conffile=<path>: specify the location of the configuration file if it is not standard

� parallel: trigger the parallel computation using the first cluster specified in config

file

� parallel=<clustername>: trigger the parallel computation, using the given cluster

� parallel_slave_open_mode: use the leaveSlaveOpen mode in the cluster

� parallel_test: just test the cluster, don’t actually run the MOD file
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3.2.2 Preprocessing cluster settings

The DYNARE pre-processor treats user-defined configurations by filling a new sub-structure

in the options_ structure, named parallel, with the following fields:

options_.parallel=

struct(’Local’, Value,

’ComputerName’, Value,

’CPUnbr’, Value,

’UserName’, Value,

’Password’, Value,

’RemoteDrive’, Value,

’RemoteFolder’, Value,

’MatlabOctavePath’, Value,

’DynarePath’, Value);

All these fields correspond to the slave options except Local, which is set by the

pre-processor according to the value of ComputerName:

Local: the variable Local is binary, so it can have only two values 0 and 1. If ComputerName

is set to localhost, the preprocessor sets Local = 1 and the parallel computation

is executed on the local machine, i.e. on the same computer (and working directory)

where the DYNARE project is placed. For any other value for ComputerName, we

will have Local = 0;

In addition to the parallel structure, which can be in a vector form, to allow spe-

cific entries for each slave machine in the cluster, there is another options_ field, called

parallel_info, which stores all options that are common to all cluster. Namely, accord-

ing to the parallel_slave_open_mode in the command line, the leaveSlaveOpen field

takes values:

leaveSlaveOpen=1 : with parallel_slave_open_mode, i.e. the slaves operate ‘Always-

Open’.

leaveSlaveOpen=0 : without parallel_slave_open_mode, i.e. the slaves operate ‘Open-

Close’;
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3.2.3 Example syntax for Windows and Unix, for local parallel runs (assum-

ing quad-core)

In this case, the only slave options are ComputerName and CPUnbr.

[cluster]

Name = local

Members = n1

[node]

Name = n1

ComputerName = localhost

CPUnbr = 4

3.2.4 Examples of Windows syntax for remote runs

� the Windows Password has to be typed explicitly;

� RemoteDrive has to be typed explicitly;

� for UserName, ALSO the group has to be specified, like DEPT\JohnSmith, i.e. user

JohnSmith in windows group DEPT;

� ComputerName is the name of the computer in the windows network, i.e. the output

of hostname, or the full IP address.

Example 1 Parallel codes that are run on a remote computer named vonNeumann with

eight cores, using only the cores 4,5,6, working on the drive ’C’ and folder ’dynare_calcs\Remote’.

The computer vonNeumann is in a net domain of the CompuTown university, with

user John logged with the password *****:
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[cluster]

Name = vonNeumann

Members = n2

[node]

Name = n2

ComputerName = vonNeumann

CPUnbr = [4:6]

UserName = COMPUTOWN\John

Password = *****

RemoteDrive = C

RemoteDirectory = dynare_calcs\Remote

DynarePath = c:\dynare\matlab

MatlabOctavePath = matlab

Example 2 We can build a cluster, combining local and remote runs. For example the

following configuration file includes the two previous configurations but also gives

the possibility (with cluster name c2) to build a grid with a total number of 7 CPU’s

:

[cluster]

Name = local

Members = n1

[cluster]

Name = vonNeumann

Members = n2

[cluster]

Name = c2

Members = n1 n2

[node]

Name = n1

ComputerName = localhost

CPUnbr = 4

[node]

Name = n2

ComputerName = vonNeumann

CPUnbr = [4:6]

UserName = COMPUTOWN\John

Password = *****

RemoteDrive = C

RemoteDirectory = dynare_calcs\Remote

DynarePath = c:\dynare\matlab

MatlabOctavePath = matlab
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Example 3 We can build a cluster, combining many remote machines. For example the

following commands build a grid of four machines with a total number of 14 CPU’s:

[cluster]

Name = c4

Members = n1 n2 n3 n4

[node]

Name = n1

ComputerName = vonNeumann1

CPUnbr = 4

UserName = COMPUTOWN\John

Password = *****

RemoteDrive = C

RemoteDirectory = dynare_calcs\Remote

DynarePath = c:\dynare\matlab

MatlabOctavePath = matlab

[node]

Name = n2

ComputerName = vonNeumann2

CPUnbr = 4

UserName = COMPUTOWN\John

Password = *****

RemoteDrive = C

RemoteDirectory = dynare_calcs\Remote

DynarePath = c:\dynare\matlab

MatlabOctavePath = matlab

[node]

Name = n3

ComputerName = vonNeumann3

CPUnbr = 2

UserName = COMPUTOWN\John

Password = *****

RemoteDrive = D

RemoteDirectory = dynare_calcs\Remote

DynarePath = c:\dynare\matlab

MatlabOctavePath = matlab

[node]

Name = n4

ComputerName = vonNeumann4

CPUnbr = 4

UserName = COMPUTOWN\John

Password = *****

RemoteDrive = C

RemoteDirectory = John\dynare_calcs\Remote

DynarePath = c:\dynare\matlab

MatlabOctavePath = matlab
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3.2.5 Example Unix syntax for remote runs

� no Password and RemoteDrive fields are needed;

� ComputerName is the full IP address or the DNS address.

One remote slave: the following command defines remote runs on the machine name.domain.org.

[cluster]

Name = unix1

Members = n2

[node]

Name = n2

ComputerName = name.domain.org

CPUnbr = 4

UserName = JohnSmith

RemoteDirectory = /home/john/Remote

DynarePath = /home/john/dynare/matlab

MatlabOctavePath = matlab

Combining local and remote runs: the following commands define a cluster of local
an remote CPU’s.

[cluster]

Name = unix2

Members = n1 n2

[node]

Name = n1

ComputerName = localhost

CPUnbr = 4

[node]

Name = n2

ComputerName = name.domain.org

CPUnbr = 4

UserName = JohnSmith

RemoteDirectory = /home/john/Remote

DynarePath = /home/john/dynare/matlab

MatlabOctavePath = matlab

3.2.6 Testing the cluster

In this section we describe what happens when the user omits a mandatory entry or

provides bad values for them and how DYNARE reacts in these cases. In the parallel
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package there is a utility (AnalyseComputationalEnvironment.m) devoted to this task

(this is triggered by the command line option parallel_test). When necessary during

the discussion, we use the parallel entries used in the previous examples.

ComputerName: If Local=0, DYNARE checks if the computer vonNeumann exists and

if it is possible communicate with it. If this is not the case, an error message is

generated and the computation is stopped.

CPUnbr: a value for this variable must be in the form [s:d] with d>=s. If the user

types values s>d, their order is flipped and a warning message is sent. When the

user provides a correct value for this field, DYNARE checks if d CPUs (or cores)

are available on the computer. Suppose that this check returns an integer nC. We

can have three possibilities:

1. nC= d; all the CPU’s available are used, no warning message are generated by

DYNARE;

2. nC> d; some CPU’s will not be used;

3. nC< d; DYNARE alerts the user that there are less CPU’s than those declared.

The parallel tasks would run in any case, but some CPU’s will have multiple

instances assigned, with no gain in computational time.

UserName & Password: if Local = 1, no information about user name and password

is necessary: “I am working on this computer”. When remote computations on a

Windows network are required, DYNARE checks if the user name and password are

correct, otherwise execution is stopped with an error; for a Unix network, the user

and the proper operation of SSH is checked;

RemoteDrive & RemoteDirectory: if Local = 1, these fields are not required since

the working directory of the ‘slaves’ will be the same of the ‘master’. If Local = 0,

DYNARE tries to copy a file (Tracing.txt) in this remote location. If this operation

fails, the DYNARE execution is stopped with an error;
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MatlabOctavePath & DynarePath: MATLAB instances are tried on slaves and the

DYNARE path is checked.

3.3 The Developers perspective

In this section we describe with some accuracy the DYNARE parallel routines.

Windows: With Windows operating system, the parallel package requires the installa-

tion of a free software package called PsTools (Russinovich, 2009). PsTools suite

is a resource kit with a number of command line tools that mimics administrative

features available under the Unix environment. PsTools can be downloaded from

Russinovich (2009) and extracted in a Windows directory on your computer: to

make PsTools working properly, it is mandatory to add this directory to the Win-

dows path. After this step it is possible to invoke and use the PsTools commands

from any location in the Windows file system. PsTools, MATLAB and DYNARE

have to be installed and work properly on all the machines in the grid for parallel

computation.

Unix: With Unix operating system, SSH must be installed on the master and on the

slave machines. Moreover, SSH keys must be installed so that the SSH connections

from the master to the slaves can be done without passwords.

As soon as the computational environment is set-up for working on a grid of CPU’s,

the parallel package allows to parallelize any loop that is computationally expensive,

following the step by step procedure showed in Table 1. This is done using five basic

functions: masterParallel.m, fParallel.m or slaveParallel.m, fMessageStatus.m,

closeSlave.m.

masterParallel is the entry point to the parallelization system:

� It is called from the master computer, at the point where the parallelization

system should be activated. Its main arguments are the name of the function

containing the task to be run on every slave computer, inputs to that function
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stored in two structures (one for local and the other for global variables), and

the configuration of the cluster; this function exits when the task has finished

on all computers of the cluster, and returns the output in a structure vector

(one entry per slave);

� all file exchange through the filesystem is concentrated in this masterParallel

routine: so it prepares and send the input information for slaves, it retrieves

from slaves the info about the status of remote computations stored on remote

slaves by the remote processes; finally it retrieves outputs stored on remote

machines by slave processes;

� there are two modes of parallel execution, triggered by option parallel_slave_open_mode:

– when parallel_slave_open_mode=0, the slave processes are closed after

the completion of each task, and new instances are initiated when a new

job is required; this mode is managed by fParallel.m [‘Open-Close’];

– when parallel_slave_open_mode=1, the slave processes are kept running

after the completion of each task, and wait for new jobs to be performed;

this mode is managed by slaveParallel.m [‘Always-Open’];

slaveParallel.m/fParallel.m: are the top-level functions to be run on every slave;

their main arguments are the name of the function to be run (containing the com-

puting task), and some information identifying the slave; the functions use the input

information that has been previously prepared and sent by masterParallel through

the filesystem, call the computing task, finally the routines store locally on remote

machines the outputs such that masterParallel retrieves back the outputs to the

master computer;

fMessageStatus.m: provides the core for simple message passing during slave execution:

using this routine, slave processes can store locally on remote machine basic info on

the progress of computations; such information is retrieved by the master process

(i.e. masterParallel.m) allowing to echo progress of remote computations on the

master; the routine fMessageStatus.m is also the entry-point where a signal of
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interruption sent by the master can be checked and executed; this routine typically

replaces calls to waitbar.m;

closeSlave.m is the utility that sends a signal to remote slaves to close themselves. In the

standard operation, this is only needed with the ‘Always-Open’ mode and it is called

when DYNARE computations are completed. At that point, slaveParallel.m will

get a signal to terminate and no longer wait for new jobs. However, this utility is

also useful in any parallel mode if, for any reason, the master needs to interrupt the

remote computations which are running;

The parallel toolbox also includes a number of utilities:

� AnalyseComputationalEnviroment.m: this a testing utility that checks that the

cluster works properly and echoes error messages when problems are detected;

� InitializeComputationalEnviroment.m : initializes some internal variables and

remote directories;

� distributeJobs.m: uses a simple algorithm to distribute evenly jobs across the

available CPU’s;

� a number of generalized routines that properly perform delete, copy, mkdir, rmdir

commands through the network file-system (i.e. used from the master to operate

on slave machines); the routines are adaptive to the actual environment (Windows

or Unix);

dynareParallelDelete.m : generalized delete;

dynareParallelDir.m : generalized dir;

dynareParallelGetFiles.m : generalized copy FROM slaves TO master machine;

dynareParallelMkDir.m : generalized mkdir on remote machines;

dynareParallelRmDir.m : generalized rmdir on remote machined;

dynareParallelSendFiles.m : generalized copy TO slaves FROM master ma-

chine;
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In Table 1 we have synthesized the main steps for parallelizing MATLAB codes.

So far, we have parallelized the following functions, by selecting the most computa-

tionally intensive loops:

1. the cycle looping for multiple chain random walk Metropolis:

random_walk_metropolis_hastings,

random_walk_metropolis_hastings_core;

2. the cycle looping for multiple chain independent Metropolis:

independent_metropolis_hastings.m,

independent_metropolis_hastings_core.m;

3. the cycle looping over estimated parameters computing univariate diagnostics:

McMCDiagnostics.m,

McMCDiagnostics_core.m;

4. the Monte Carlo cycle looping over posterior parameter subdraws performing the

IRF simulations (<*>_core1) and the cycle looping over exogenous shocks plotting

IRF’s charts (<*>_core2):

posteriorIRF.m,

posteriorIRF_core1.m, posteriorIRF_core2.m;

5. the Monte Carlo cycle looping over posterior parameter subdraws, that computes

filtered, smoothed, forecasted variables and shocks:

prior_posterior_statistics.m,

prior_posterior_statistics_core.m;

6. the cycle looping over endogenous variables making posterior plots of filter, smoother,

forecasts: pm3.m, pm3_core.m.

3.3.1 Write a parallel code: an example

Using a MATLAB pseudo (but very realistic) code, we now describe in detail how to

use the above step by step procedure to parallelize the random walk Metropolis Hastings
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1. locate within DYNARE the portion of code suitable to be parallelized, i.e. an
expensive cycle for;

2. suppose that the function tuna.m contains a cycle for that is suitable for paral-
lelization: this cycle has to be extracted from tuna.m and put it in a new MATLAB
function named tuna_core.m;

3. at the point where the expensive cycle should start, the function tuna.m invokes
the utility masterParallel.m, passing to it the options_.parallel structure, the
name of the of the function to be run in parallel (tuna_core.m), the local and global
variables needed and all the information about the files (MATLAB functions *.m;
data files *.mat) that will be handled by tuna_core.m;

4. the function masterParallel.m reads the input arguments provided by tuna.m and:

� decides how to distribute the task evenly across the available CPU’s (using the
utility routine distributeJobs.m); prepares and initializes the computational
environment (i.e. copy files/data) for each slave machine;

� uses the PsTools and the Operating System commands to launch new MAT-
LAB instances, synchronize the computations, monitor the progress of slave
tasks through a simple message passing system (see later) and collect results
upon completion of the slave threads;

5. the slave threads are executed using the MATLAB functions
fParallel.m/slaveParallel.m as wrappers for implementing the tasks sent
by the master (i.e. to run the tuna_core.m routine);

6. the utility fMessageStatus.m can be used within the core routine tuna_core.m to
send information to the master regarding the progress of the slave thread;

7. when all DYNARE computations are completed, closeSlave.m closes all open re-
mote MATLAB/OCTAVE instances waiting for new jobs to be run.

Table 1: Procedure for parallelizing portions of codes.
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algorithm. Any other function can be parallelized in the same way.

It is obvious that most of the computational time spent by the

random_walk_metropolis_hastings.m function is given by the cycle looping over the

parallel chains performing the Metropolis:

function random_walk_metropolis_hastings

(TargetFun, ProposalFun, ..., varargin)

[...]

for b = fblck:nblck,

...

end

[...]

Since those chains are totally independent, the obvious way to reduce the computa-

tional time is to parallelize this loop, executing the (nblck-fblck) chains on different

computers/CPUs/cores.

To do so, we remove the for cycle and put it in a new function named <*>_core.m:

function myoutput =

random_walk_metropolis_hastings_core(myinputs,fblck,nblck, ...)

[...]

just list global variables needed (they are set-up properly by fParallel or slaveParallel)

global bayestopt_ estim_params_ options_ M_ oo_

here we collect all local variables stored in myinputs

TargetFun=myinputs.TargetFun;

ProposalFun=myinputs.ProposalFun;

xparam1=myinputs.xparam1;

[...]

here we run the loop

for b = fblck:nblck,

...

end

[...]

here we wrap all output arguments needed by the ‘master’ routine

myoutput.record = record;

[...]

The split of the for cycle has to be performed in such a way that the new <*>_core func-
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tion can work in both serial and parallel mode. In the latter case, such a function will

be invoked by the slave threads and executed for the number of iterations assigned by

masterParallel.m.

The modified random_walk_metropolis_hastings.m is therefore:

function random_walk_metropolis_hastings(TargetFun,ProposalFun,\ldots,varargin)

[...]

% here we wrap all local variables needed by the <*>_core function

localVars = struct(’TargetFun’, TargetFun, ...

[...]

’d’, d);

[...]

% here we put the switch between serial and parallel computation:

if isnumeric(options_.parallel) || (nblck-fblck)==0,

% serial computation

fout = random_walk_metropolis_hastings_core(localVars, fblck,nblck, 0);

record = fout.record;

else

% parallel computation

% global variables for parallel routines

globalVars = struct(’M_’,M_, ...

[...]

’oo_’, oo_);

% which files have to be copied to run remotely

NamFileInput(1,:) = {’’,[ModelName ’_static.m’]};

NamFileInput(2,:) = {’’,[ModelName ’_dynamic.m’]};

[ ...]

% call the master parallelizing utility

[fout, nBlockPerCPU, totCPU] = masterParallel(options_.parallel, ...

fblck, nblck, NamFileInput, ’random_walk_metropolis_hastings_core’,

localVars, globalVars, options_.parallel_info);

% collect output info from parallel tasks provided in fout

[ ...]

end

% collect output info from either serial or parallel tasks

irun = fout(1).irun;

NewFile = fout(1).NewFile;

[...]

Finally, in order to allow the master thread to monitor the progress of the slave threads,

some message passing elements have to be introduced in the <*>_core.m file. The utility

function fMessageStatus.m has been designed as an interface for this task, and can be
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seen as a generalized form of the MATLAB utility waitbar.m.
In the following example, we show a typical use of this utility, again from the random

walk Metropolis routine:

for j = 1:nruns

[...]

% define the progress of the loop:

prtfrc = j/nruns;

% define a running message:

% first indicate which chain is running on the current CPU [b]

% out of the chains [mh_nblock] requested by the DYNARE user

waitbarString = [ ’(’ int2str(b) ’/’ int2str(mh_nblck) ’) ...

% then add possible further information, like the acceptation rate

’ sprintf(’%f done, acceptation rate %f’,prtfrc,isux/j)]

if mod(j, 3)==0 & ~whoiam

% serial computation

waitbar(prtfrc,hh,waitbarString);

elseif mod(j,50)==0 & whoiam,

% parallel computation

fMessageStatus(prtfrc, ...

whoiam, ...

waitbarString, ...

waitbarTitle, ...

options_.parallel(ThisMatlab))

end

[...]

end

In the previous example, a number of arguments are used to identify which CPU and which
computer in the claster is sending the message, namely:

% whoiam [int] index number of this CPU among all CPUs in the

% cluster

% ThisMatlab [int] index number of this slave machine in the cluster

% (entry in options_.parallel)

The message is stored as a MATLAB data file *.mat saved on the working directory of

remote slave computer. The master will will check periodically for those messages and

retrieve the files from remote computers and produce an advanced monitoring plot.

So, assuming to run two Metropolis chains, under the standard serial implementation

there will be a first waitbar popping up on matlab, corresponding to the first chain:
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followed by a second waitbar, when the first chain is completed.

 

 
 
 
 
 

 
 
 
 

 

On the other hand, under the parallel implementation, a parallel monitoring plot will

be produced by masterParallel.m:

 

 
 
 
 
 

 
 
 
 

 

4 Parallel DYNARE: testing

We checked the new parallel platform for DYNARE performing a number of tests, us-

ing different models and computer architectures. We present here all tests performed

with Windows XP/MATLAB. However, similar tests were performed successfully under

Linux/Ubuntu environment. In the Bayesian estimation of DSGE models with DYNARE,

most of the computing time is devoted to the posterior parameter estimation with the

Metropolis algorithm. The first and second tests are therefore focused on the paral-

lelization of the Random Walking Metropolis Hastings algorithm (Sections 4.1-4.2). In

addition, further tests (Sections 4.3-4.4) are devoted to test all the parallelized functions

in DYNARE.

4.1 Test 1.

The main goal here was to evaluate the parallel package on a fixed hardware platform

and using chains of variable length. The model used for testing is a modification of

Hradisky et al. (2006). This is a small scale open economy DSGE model with 6 observed

variables, 6 endogenous variables and 19 parameters to be estimated. We estimated the
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model on a bi-processor machine (Fujitsu Siemens, Celsius R630) powered with an Intel®

Xeon�CPU 2.80GHz Hyper Treading Technology; first with the original serial Metropolis

and subsequently using the parallel solution, to take advantage of the two processors

technology. We ran chains of increasing length: 2500, 5000, 10,000, 50,000, 100,000,

250,000, 1,000,000.

 3
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Figure 1: Computational time (in minutes) versus chain length for the serial and parallel
implementation (Metropolis with two chains).
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Figure 2: Reduction of computational time (i.e. the ‘time gain’) using the parallel coding
versus chain length. The time gain is computed as (Ts − Tp)/Tp, where Ts and Tp denote
the computing time of the serial and parallel implementations respectively.

Overall results are given in Figure 1, showing the computational time versus chain

length, and Figure 2, showing the reduction of computational time (or the time gain)
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Machine Single-processor Bi-processor Dual core
Parallel 8:01:21 7:02:19 5:39:38
Serial 10:12:22 13:38:30 11:02:14
Speed-Up rate 1.2722 1.9381 1.9498
Ideal Speed-UP rate ∼1.5 2 2

Table 2: Trail results with normal PC operation. Computing time expressed in h:m:s.
Speed-up rate is computed as Ts/Tp, where Ts and Tp are the computing times for the
serial and parallel implementations.

with respect to the serial implementation provided by the parallel coding. The gain in

computing time of the exercise is of about 45% on this test case, so reducing from 11.40

hours to about 6 hours the cost of running 1,000,000 Metropolis iterations (the ideal gain

would be of 50% in this case).

4.2 Test 2.

The scope of the second test was to verify if results were robust over different hardware

platforms. We estimated the model with chain lengths of 1,000,000 runs on the following

hardware platforms:

� Single processor machine: Intel® Pentium4® CPU 3.40GHz with Hyper Treading

Technology (Fujitsu-Siemens Scenic Esprimo);

� Bi-processor machine: two CPU’s Intel® Xeon�2.80GHz Hyper Treading Technol-

ogy (Fujitsu-Siemens, Celsius R630);

� Dual core machine: Intel Centrino T2500 2.00GHz Dual Core (Fujitsu-Siemens,

LifeBook S Series).

We first run the tests with normal configuration. However, since (i) dissimilar software

environment on the machine can influence the computation; (ii) Windows service (Net-

work, Hard Disk writing, Demon, Software Updating, Antivirus, etc.) can start during

the simulation; we also run the tests not allowing for any other process to start during

the estimation. Table 2 gives results for the ordinary software environment and process

priority is set as low/normal.
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Environment Computing time Speed-up rate
w.r.t. Table 2

Parallel Waitbar Not Visi-
ble

5:06:00 1.06

Parallel waitbar Not Visi-
ble, Real-time Process pri-
ority, Unplugged network
cable.

4:40:49 1.22

Table 3: Trail results with different software configurations (optimized operating environ-
ment for computational requirements).

Results showed that Dual-core technology provides a similar gain if compared with

bi-processor results, again about 45%. The striking results was that the Dual-core pro-

cessor clocked at 2.0GHz was about 30% faster than the Bi-processor clocked at 2.8GHz.

Interesting gains were also obtained via multi-threading on the Single-processor machine,

with speed-up being about 1.27 (i.e. time gain of about 21%). However, beware that we

burned a number of processors performing tests on single processors with hyper-threading

and using very long chains (1,000,000 runs)! We re-run the tests on the Dual-core ma-

chine, by cleaning the PC operation from any interference by other programs and show

results in Table 3. A speed-up rate of 1.06 (i.e. 5.6% time gain) can be obtained simply

hiding the MATLAB waitbar. The speed-up rate can be pushed to 1.22 (i.e. 18% time

gain) by disconnecting the network and setting the priority of the process to real time.

It can be noted that from the original configuration, taking 11:02 hours to run the two

parallel chains, the computational time can be reduced to 4:40 hours (i.e. for a total time

gain of over 60% with respect to the serial computation) by parallelizing and optimally

configuring the operating environment. These results are somehow surprising and show

how it is possible to reduce dramatically the computational time with slight modification

in the software configuration.

Given the excellent results reported above, we have parallelized many other DYNARE

functions. This implies that parallel instances can be invoked many times during a single

DYNARE session. Under the basic parallel toolbox implementation, that we call the

‘Open/Close’ strategy, this implies that MATLAB instances are opened and closed many

times by system calls, possibly slowing down the computation, specially for ‘entry-level’
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computer resources. As mentioned before, this suggested to implement an alternative

strategy for the parallel toolbox, that we call the ‘Always-Open’ strategy, where the slave

MATLAB threads, once opened, stay alive and wait for new tasks assigned by the master

until the full DYNARE procedure is completed. We show next the tests of these latest

implementations.

4.3 Test 3

In this Section we use the Lubik (2003) model as test function2 and a very simple computer

class, quite diffuse nowadays: Netbook personal Computer. In particular we used the

Dell Mini 10 with Processor Intel® Atom�Z520 (1,33 GHz, 533 MHz), 1 GB di RAM

(with Hyper-trading). First, we tested the computational gain of running a full Bayesian

estimation: Metropolis (two parallel chains), MCMC diagnostics, posterior IRF’s and

filtered, smoothed, forecasts, etc. In other words, we designed DYNARE sessions that

invoke all parallelized functions. Results are shown in Figures 3-4. In Figure 3 we

show the computational time versus the length of the Metropolis chains in the serial and

parallel setting (‘Open/Close’ strategy). With very short chain length, parallel setting

obviously slows down performances of the computations (due to delays in open/close

MATLAB sessions and in synchronization), while increasing the chain length, we can get

speed-up rates up to 1.41 on this ‘entry-level’ portable computer (single processor and

Hyper-threading). In order to appreciate the gain of parallelizing all functions invoked

after Metropolis, in Figure 4 we show the results of the experiment, but without running

Metropolis, i.e. we use the options load_mh_files = 1 and mh_replic = 0 DYNARE

options (i.e. Metropolis and MCMC diagnostics are not invoked). The parallelization of

the functions invoked after Metropolis allows to attain speed-up rates of 1.14 (i.e. time

gain of about 12%). Note that the computational cost of these functions is proportional to

the chain length only when the latter is relatively small. In fact, the number of sub-draws

taken by posteriorIRF.m or prior_posterior_statistics.m is proportional to the

total number of MH draws up to a maximum threshold of 500 sub-draws (for IRF’s) and

2The Lubik (2003) model is also selected as the ‘official’ test model for the parallel toolbox in
DYNARE.
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  Chains Length    Time Serial    Time Parallel 
           
  105        85      151 
  1005        246      287 
  5005        755      599 
  10005        1246      948 
  15005        1647      1250 
  20005        2068      1502 
  25005        2366      1675 
 
Table3. Computational Time using all the parallel functions in DYNARE and the 
Open/Close strategy. 
 
We can also plot the results in table 3. We call this situation Complete Parallel … 

Complete Parallel

0

500

1000

1500

2000

2500

105 1005 5005 10005 15005 20005 25005

MH Runs

C
om

pu
ta

tio
na

l T
im

e 
(s

ec
)

Serial
Parallel

 
Figure 3. The plot of data in Table 3. 
 
 
Figure 3. show as … 
 

Figure 3: Computational Time (s) versus Metropolis length, running all the parallelized
functions in DYNARE and the basic parallel implementation (the ‘Open/Close’ strategy).
(Lubik, 2003).
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Now  we  test  the  computational  time  for  the  model  without  the  Metropolis 
Hasting: 
 
Chains Length    Comp Time Serial    Comp Time Parallel  
     
105        84        117 
1005        121        165 
5005        252        239 
10005        353        330 
15005        366        339 
20005        383        335 
25005        357        314 
 
Table4.  Computational  Time  without  the  computation  of Metropolis  Hasting 
algorithm and the Open/Close strategy. 
 
 
 
We can also plot the results in table 4: 
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Figure 4. The plot of data in Table 4. 

Figure 4: Computational Time (s) versus Metropolis length, loading previously performed
MH runs and running only the parallelized functions after Metropolis (Lubik, 2003). Basic
parallel implementation (the ‘Open/Close’ strategy).
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Figure 4. show as … 
 
Comments … 
 
As reported in … we also introduced a new computational Matlab instances are 
always open … 
 
Chain 
Lenght 

Computational Times: 
Complete Parallel 

Computational Times: 
Partial Parallel 

105 103 95
1005 209 122
5005 504 205

10005 915 306
15005 1203 320
20005 1506 334
25005 1611 322

Table5. Computational Time with Always Open strategy. 
 
We can also plot and compare the results in table 5 with results in table 3 and 4.: 
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Figure 5. The compared computational time for “complete” parallel . 

Figure 5: Comparison of the ‘Open/Close’ strategy and the ‘Always-open’ strategy. Com-
putational Time (s) versus Metropolis length, running all the parallelized functions in
DYNARE (Lubik, 2003).
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Figure 6. The compared computational time for “partial” parallel . 
 
 
3.1. In this section we try to use the QUEST III model Ratto (2009) and: Dell Mini 

10 with Processor Intel® Atom™ Z520 (1,33 GHz, 533 MHz), 1 GB di RAM. 

 

But it is impossible to do it: in fact for example with only 1005 MH runs the 

computational time is serial about 54 min, parallel 40 min. If the runs are 5005 the serial 

time is about 4 h and 4 min … sob! 

 

Test 4 

We proceed as in Test 3 but using the very big models QUEST III and a Notebook 

Samsunq Q 45 with an Dual core Processor Intel Centrino. 

 

 

Figure 6: Comparison of the ‘Open/Close’ strategy and the ‘Always-open’ strategy. Com-
putational Time (s) versus Metropolis length, running only the parallelized functions after
Metropolis (Lubik, 2003).

1,200 sub-draws (for smoother). This is reflected in the shape of the plots, which attain a

plateau when these thresholds are reached. In Figures 5-6 we plot results of the same type

of tests just described, but comparing the ‘Open/Close’ and the ‘Always-open’ strategies.

We can see in both graphs that the more sophisticated approach ’Always-open’ provides

some reduction in computational time. When the entire Bayesian analysis is performed

(including Metropolis and MCMC diagnostics, Figure 5) the gain is on average of 5%,

but it can be more than 10% for short chains. When the Metropolis is not performed, the

gain rises on average at about 10%. As expectable, the gain of the ‘Always-open’ strategy

is specially visible when the computational time spent in a single parallel session is not
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too long if compared to the cost of opening and closing new MATLAB sessions under the

‘Open/Close’ approach.

4.4 Test 4

Here we increase the dimension of the test model, using the QUEST III model (Ratto

et al., 2009), using a more powerful Notebook Samsung Q 45 with an Dual core Processor

Intel Centrino. In Figures 7-8 we show the computational gain of the parallel coding with

the ‘Open/Close’ strategy. When the Metropolis is included in the analysis (Figure 7),

the computational gain increases with the chain length. For 50,000 MH iterations, the

speed-up rate is about 1.42 (i.e. a 30% time gain), but pushing the computation up to

1,000,000 runs provides an almost ideal speed-up of 1.9 (i.e. a gain of about 50% similar

to Figure 1). It is also interesting to note that for this medium/large size model, even at

very short chain length, the parallel coding is always winning over the serial. Excluding

the Metropolis from DYNARE execution (Figure 8), we can see that the speed-up rate of

running the posterior analysis in parallel on two cores reaches 1.6 (i.e. 38% of time gain).
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Chains 
Length  

Time 
Serial  

Time 
Parallel
 

105  98  95
1005  398  255
5005  1463  890

10005  2985  1655
20005  4810  2815
30005  6630  4022
40005  7466  5246
50000  9263  6565

Table6.  Computational  Time  using  all  the  parallel  function  involved  and  the 
Open/Close strategy. 
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Chains 
Length  

Comp 
Time 
Serial  

Comp 
Time 
Parallel 

Figure 7: Computational Time (s) versus Metropolis length, running all the parallelized
functions in DYNARE and the basic parallel implementation (the ‘Open/Close’ strategy).
(Ratto et al., 2009).

We also checked the efficacy of the ‘Always-open’ approach with respect to the ‘Open/Close’

(Figures 9 and 10). We can see in Figure 9 that, running the entire Bayesian analysis, no
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advantage can be appreciated from the more sophisticated ‘Always-open’ approach.

On the other hand, in Figure 10, we can see that the ‘Always-open’ approach still

provides a small speed-up rate of about 1.03. These results confirm the previous comment

that the gain of the ‘Always-open’ strategy is specially visible when the computational

time spent in a single parallel session is not too long, and therefore, the bigger the model

size, the less the advantage of this strategy.

5 Conclusions

The methodology identified for parallelizing MATLAB codes within DYNARE proved to

be effective in reducing the computational time of the most extensive loops. This method-

ology is suitable for ‘embarrassingly parallel’ codes, requiring only a minimal communi-

cation flow between slave and master threads. The parallel DYNARE is built around

a few ‘core’ routines, that act as a sort of ‘parallel paradigm’. Based on those rou-

tines, parallelization of expensive loops is made quite simple for DYNARE developers.

A basic message passing system is also provided, that allows the master thread to mon-

itor the progress of slave threads. The test model ls2003.mod is available in the folder

\tests\parallel of the DYNARE distribution, that allows running parallel examples.
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105  62  63
1005  285  198
5005  498  318

10005  798  488
20005  799  490
30005  781  518
40005  768  503
50005  823  511

100000  801  530
    

Table7. Computational Time without MH  and the Open/Close strategy. 
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Figure 8: Computational Time (s) versus Metropolis length, loading previously performed
MH runs and running only the parallelized functions after Metropolis (Ratto et al., 2009).
Basic parallel implementation (the ‘Open/Close’ strategy).
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105 66 60
1005 273 117
5005 871 332

10005 1588 460
20005 2791 470
30005 3963 492
40005 5292 479
50000 6624 498

Table8. Computational Time with Always Open strategy. 
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 Figure 9: Comparison of the ‘Open/Close’ strategy and the ‘Always-open’ strategy. Com-

putational Time (s) versus Metropolis length, running all the parallelized functions in
DYNARE (Ratto et al., 2009).
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Test 5. 
 
The strong reduction in computational time allow us to compare the use within DSGE 
molling of two distict implementation of Metropolis Hasting Alghoritms: Independent 
and Random Wallking. 
Specifically, we execute the QUEST III models with: 
 
Random Walkin Metropolis Hasting 
 
Chains Lenght Number of Chais 
  
50.000 4 
100.000 2 
200.000 2 and 4 
400.000 3 
500.000 2 
1.000.000 2 
 
 
 
 
Independent Metropolis Hasting 

Figure 10: Comparison of the ‘Open/Close’ strategy and the ‘Always-open’ strategy.
Computational Time (s) versus Metropolis length, running only the parallelized functions
after Metropolis (QUEST III model Ratto et al., 2009).
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Figure 11: Prior (grey lines) and posterior density of estimated parameters (black =
100,000 runs; red = 1,000,000 runs) using the RWMH algorithm (QUEST III model
Ratto et al., 2009).
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Figure 12: Prior (grey lines) and posterior density of estimated parameters (black =
100,000 runs; red = 1,000,000 runs) using the RWMH algorithm (QUEST III model
Ratto et al., 2009).
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Figure 13: Prior (grey lines) and posterior density of estimated parameters (black =
100,000 runs; red = 1,000,000 runs) using the RWMH algorithm (QUEST III model
Ratto et al., 2009).

0.6 0.8 1
0

10

20

30

ρPM

0 0.2 0.4 0.6 0.8
0

2

4

6

ρη

0.6 0.8 1
0

5

10

15

ρC
i

0 2 4 6
0

0.2

0.4

0.6

0.8

κ

0.6 0.7 0.8 0.9
0

10

20

τ INOM
Lag

−0.8 −0.6 −0.4 −0.2 0
0

2

4

6

8

τ IG
Adj

0 0.2 0.4 0.6 0.8
0

2

4

τ IG
Lag

−1 0 1
0

1

2

3

4

τ IG
0

0.4 0.6 0.8 1
0

2

4

hL

Figure 14: Prior (grey lines) and posterior density of estimated parameters (black =
100,000 runs; red = 1,000,000 runs) using the RWMH algorithm (QUEST III model
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A A tale on parallel computing

This is a general introduction to Parallel Computing. Readers can skip it, provided they

have a basic knowledge of DYNARE and Computer Programming (Goffe and Creel, 2008;

Azzini et al., 2007; ParallelDYNARE, 2009). There exists an ample scientific literature

as well as an enormous quantity of information on the Web, about parallel computing.

Sometimes, this amount of information may result ambiguous and confusing in the no-

tation adopted and the description of technologies. Then main the goal here is therefore

to provide a very simple introduction to this subject, leaving the reader to Brookshear

(2009) for a more extensive and clear introduction to computer science.

Modern computer systems (hardware and software) is conceptually identical to the first

computer developed by J. Von Neumann. Nevertheless, over time, hardware, software,

but most importantly hardware & software together have acquired an ever increasing

ability to perform incredibly complex and intensive tasks. Given this complexity, we use

to explain the modern computer systems as the “avenue paradigm”, that we summarize

in the next tale.

Nowadays there is a small but lovely town called “CompuTown”. In CompuTown

there are many roads, which are all very similar to each other, and also many gardens.

The most important road in CompuTown is the Von Neumann Avenue. The first building

in Von Neumann Avenue has three floors (this is a computer system: PC, workstation,

etc.; see Figure 18 and Brookshear (2009)). Floors communicate between them only with

a single stair. In each floor there are people coming from the same country, with the same

language, culture and uses. People living, moving and interacting with each other in the

first and second floor are the programs or software agents or, more generally speaking,

algorithms (see chapters 3, 5, 6 and 7 in Brookshear (2009)). Examples of the latter are

the softwares MATLAB, Octave, and a particular program called the operating system

(Windows, Linux, Mac OS, etc.).

People at the ground floor are the transistors, the RAM, the CPU, the hard disk,

etc. (i.e. the Computer Architecture, see chapters 1 and 2 in Brookshear). People at the

second floor communicate with people at the first floor using the only existing scale (the
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define a set of word, fixed and understood by all: the Programming Languages. 

More specifically we call these high-level programming languages (java, c, 

matlab …), because are relating with people who are on the upper floors of the 

building! 

 

 Second floor: the user programs … 

 

First floor:  
the Operating System  
… 

Ground floor:  
the Hardware  … 

Figure 1. The first building in Von Neumann Avenue: a Computer System

 

In identical way the people in the first floor communicate with the people in 

ground floor. Obviously here people use to communicate low-level 

programming languages (assembler, binary code, machine language …). 

But, most important, people in first floor must also to manage and coordinate the 

requests for people in the ground floor made by the people on the second floor, 

and for example translate and high-level programming languages into binary 

code1: the Operating System.  

Sometimes people are put on the second floor to talk directly with people on the 

ground floor: the system calls. In our software we use frequently system call to 

                                                 
1 The process to transform an high-level programming languages in to binary code is called compilation 
process. 

 2

Figure 18: The first building in Von Neumann Avenue: a Computer System

pipe). In these communications, people talk two different languages, and therefore do not

understand each other. To remove this problem people define a set of words, fixed and

understood by everybody: the Programming Languages. More specifically, these languages

are called high-level programming languages (Java, C/C++, FORTRAN,MATLAB, etc.),

because they are related to people living on the upper floors of the building! Sometimes

people in the building use also pictures to communicate: the icons and graphical user

interface.

In a similar way, people at the first floor communicate with people at the ground floor.

Not surprisingly, in this case, people use low-level programming languages to communi-

cate to each other (assembler, binary code, machine language, etc.). More importantly,

however, people at the first floor must also manage and coordinate the requests from

people on the second floor to people at the ground floor, since there is no direct commu-

nication between ground and second floor. For example they need to translate high-level

programming languages into binary code3: the Operating System performs this task.

Sometimes, people at the second floor try to talk directly with people at the ground

floor, via the system calls. In the parallelizing software presented in this document, we will

use frequently these system calls, to distribute the jobs between the available hardware

3The process to transform an high-level programming languages into binary code is called compilation
process.

41



resources, and to coordinate the overall parallel computational process. If only a single

person without family lives on the ground floor, such as the porter, we have a CPU single

core. In this case, the porter can only do one task at a time for the people in first or

second floor (the main characteristic of the Von Neumann architecture). For example,

in the morning he first collects and sorts the mail for the people in the building, and

only after completing this task he can take care of the garden. If the porter has to

do many jobs, he needs to write in a paper the list of things to do: the memory and

the CPU load. Furthermore, to properly perform its tasks, sometimes the porter has to

move some objects trough the passageways at the ground floor (the System Bus). If the

passageways have standard width, we will have a 32 bits CPU architecture (or bus). If

the passageways are very large we will have, for example, a 64 bits CPU architecture (or

bus). In this scenario, there will be very busy days where many tasks have to be done

and many things have to be moved around: the porter will be very tired, although he

will be able to ‘survive’. The most afflicted are always the people at the first floor. Every

day they have a lot of new, complex requests from the people at the second floor. These

requests must be translated in a correct way and passed to the porter. The people at the

second floor (the highest floor) “live in cloud cuckoo land”. These people want everything

to be done easily and promptly: the artificial intelligence, robotics, etc. The activity in

the building increases over time, so the porter decides to get helped in order to reduce

the execution time for a single job. There are two ways to do this:

� the municipality of CompuTown interconnects all the buildings in the city using

roads, so that the porter can share and distribute the jobs (the Computer Networks):

if the porters involved have the same nationality and language we have a Computer

Cluster, otherwise we have a Grid. Nevertheless, in both cases, it is necessary to

define a correct way in which porters can manage, share and complete a shared job:

the communication protocol (TCP/IP, internet protocol, etc.);

� the building administrator employs an additional porter, producing a Bi-Processor

Computer. In other case, the porter may get married, producing a dual-core CPU.

In this case, the wife can help the porter to perform his tasks or even take entirely
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some jobs for her (for example do the accounting, take care of the apartment, etc.).

If the couple has a children, they can have a further little help: the thread and then

the Hyper-threading technology.

Now a problem arises: who should coordinate the activities between the porters (and

their family) and between the other buildings? Or, in other words, should we refurbish

the first and second floors to take advantage of the innovations on the ground floor and

of the new roads in CompuTown? First we can lodge new persons at the first floor:

the operating systems with a set of network tools and multi-processors support, as well

as new people at the second floor with new programming paradigms (MPI, OpenMP,

Parrallel DYNARE, etc.). Second, a more complex communication scheme between first

and ground floor is necessary, building a new set of stairs. So, for example, if we have

two stairs between ground and first floor and two porters, using multi-processors and

a new parallel programming paradigm, we can assign jobs to each porter directly and

independently, and then coordinate the overall work. In parallel DYNARE we use this

kind of ‘refurbishing’ to reduce the computational time and to meet the request of people

at the second floor.

Unfortunately, this is only an idealized scenario, where all the citizens in CompuTown

live in peace and cooperate between them. In reality, some building occupants argue with

each other and this can cause stopping their job: these kinds of conflicts may be linked

to software and hardware compatibility (between ground and first floor), or to different

software versions (between second and first floor). The building administration or the

municipality of CompuTown have to take care of these problems an fix them, to make the

computer system operate properly.

This tale (that can be also called The Programs’s Society) covered in a few pages the

fundamental ideas of computer science.
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