
EDF R&D

Fluid Dynamics, Power Generation and Environment Department
Single Phase Thermal-Hydraulics Group

6, quai Watier
F-78401 Chatou Cedex

Tel: 33 1 30 87 75 40
Fax: 33 1 30 87 79 16 APRIL 2020

Code Saturne documentation

Code Saturne version practical user’s guide

contact: saturne-support@edf.fr

http://code-saturne.org/ © EDF 2020

EDF R&D Code Saturne version practical user’s guide
Code Saturne

documentation
Page 1/139

ABSTRACT

Code Saturne is a system designed to solve the Navier-Stokes equations in the cases of 2D, 2D ax-
isymmetric or 3D flows. Its main module is designed for the simulation of flows which may be steady
or unsteady, laminar or turbulent, incompressible or potentially dilatable, isothermal or not. Scalars
and turbulent fluctuations of scalars can be taken into account. The code includes specific modules,
referred to as “specific physics”, for the treatment of Lagrangian particle tracking, semi-transparent
radiative transfer, gas combustion, pulverised coal combustion, electricity effects (Joule effect and elec-
tric arcs) and compressible flows. Code Saturne relies on a finite volume discretisation and allows the
use of various mesh types which may be hybrid (containing several kinds of elements) and may have
structural non-conformities (hanging nodes).

The present document is a practical user’s guide for Code Saturne version . It is the result of the
joint effort of all the members in the development team. It presents all the necessary elements to
run a calculation with Code Saturne version . It then lists all the variables of the code which may be
useful for more advanced utilisation. The user subroutines of all the modules within the code are then
documented. Eventually, for each key word and user-modifiable parameter in the code, their definition,
allowed values, default values and conditions for use are given. These key words and parameters are
grouped under headings based on their function. An alphabetical index list is also given at the end of
the document for easier consultation.

Code Saturne is free software; you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation; either version 2 of the License,
or (at your option) any later version. Code Saturne is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

EDF R&D Code Saturne version practical user’s guide
Code Saturne

documentation
Page 2/139

EDF R&D Code Saturne version practical user’s guide
Code Saturne

documentation
Page 3/139

TABLE OF CONTENTS

1 Introduction . 9

2 Quick start . 10

2.1 How to use the Doxygen documentation? . 10

2.2 Running a calculation . 10

2.3 Troubleshooting . 12

3 Practical information about Code Saturne . 12

3.1 System Environment for Code Saturne . 12

3.1.1 Preliminary settings . 12

3.1.2 Configuration file . 12

3.1.3 Standard directory hierarchy . 13

3.1.4 Code Saturne Solver library files . 14

3.2 Setting up and running a calculation . 15

3.2.1 Step by step calculation . 15

3.2.2 Temporary execution directory . 17

3.2.3 Execution modes . 17

3.2.4 Environment variables . 18

3.2.5 Interactive modification of selected parameters 19

3.3 Case preparer . 20

3.4 Supported mesh and post-processing output formats 20

3.4.1 Formats supported for input . 21

3.4.2 Formats supported for input or output 23

3.4.3 Formats supported for output only 27

3.4.4 Meshing tools and associated formats 27

3.4.5 Meshing remarks . 27

3.5 Preprocessor command line options . 27

3.6 Solver command line options . 28

3.7 Launch scripts . 29

3.8 Graphical User Interface . 29

3.9 User subroutines . 31

3.9.1 Preliminary comments . 31

3.9.2 Example routines . 31

3.9.3 Main variables . 31

3.9.4 Using selection criteria in user subroutines 40

3.10 Face and cell mesh-defined properties and selection 42

4 Importing and preprocessing meshes . 44

EDF R&D Code Saturne version practical user’s guide
Code Saturne

documentation
Page 4/139

4.1 Preprocessor options . 44

4.1.1 Mesh selection . 45

4.1.2 Post-processing output . 45

4.1.3 Element orientation correction . 45

4.2 Environment variables . 45

4.2.1 System environment variables . 46

4.3 Optional functionality . 46

4.4 General remarks . 46

4.5 Files passed to the Solver . 47

4.6 Mesh preprocessing . 47

4.6.1 Joining of non-conforming meshes . 47

4.6.2 Periodicity . 48

4.6.3 Parameters for conforming or non-conforming mesh joinings . . . 48

4.6.4 Parameters for periodicity . 50

4.6.5 Modification of the mesh geometry . 50

4.7 Mesh smoothing utilities . 50

4.7.1 Fix by feature . 50

4.7.2 Warped faces smoother . 51

5 Partitioning for parallel runs . 51

5.1 Partitioning stages . 51

5.2 Partitioner choice . 52

5.3 Effect of periodicity . 52

6 Basic modelling setup . 52

6.1 Initialisation of the main parameters . 52

6.2 Selection of mesh inputs: cs user mesh input 53

6.3 Non-default variables initialisation . 54

6.4 Manage boundary conditions . 64

6.4.1 Coding of standard boundary conditions 65

6.4.2 Coding of non-standard boundary conditions 67

6.4.3 Checking of the boundary conditions 70

6.4.4 Sorting of the boundary faces . 70

6.4.5 Boundary conditions with LES . 70

6.5 Manage the variable physical properties . 75

6.5.1 Basic variable physical properties . 75

6.5.2 Modification of the turbulent viscosity 77

6.5.3 Modification of the variable C of the dynamic LES model 77

6.6 User source terms . 78

EDF R&D Code Saturne version practical user’s guide
Code Saturne

documentation
Page 5/139

6.6.1 In Navier-Stokes . 79

6.6.2 For k and ε . 79

6.6.3 For Rij and ε . 79

6.6.4 For ϕ and f . 79

6.6.5 For k and ω . 80

6.6.6 For ν̃t . 80

6.6.7 For user scalars . 80

6.7 Pressure drops (head losses) and porosity 81

6.7.1 Head losses . 81

6.7.2 Porosity . 81

6.8 Management of the mass sources . 82

6.9 User law editor of the GUI . 83

6.10 Modification of the variables at the end of a time step 84

7 Advanced modelling setup . 85

7.1 Use of a specific physics . 85

7.2 Pulverised coal and gas combustion module 90

7.2.1 Boundary conditions . 92

7.2.2 Initialisation of the options of the variables 95

7.3 Heavy fuel oil combustion module . 97

7.3.1 Initialisation of transported variables 97

7.3.2 Boundary conditions . 97

7.4 Radiative thermal transfers in semi-transparent gray media 98

7.4.1 Initialisation of the radiation main parameters 98

7.4.2 Radiative transfers boundary conditions 99

7.4.3 Absorption coefficient of the medium, boundary conditions for
the luminance and calculation of the net radiative flux 101

7.5 Conjugate heat transfer . 102

7.5.1 Thermal module in a 1D wall . 102

7.5.2 Fluid-Thermal coupling with SYRTHES 102

7.6 Particle-tracking (Lagrangian) Module . 103

7.6.1 General information . 103

7.6.2 Activating the particle-tracking module 103

7.6.3 Basic guidelines for standard simulations 103

7.6.4 Prescribing the main modelling parameters (GUI and/or cs user lagr model) 104

7.6.5 Prescribing particle boundary conditions (GUI and/or cs user lagr boundary conditions.c) 105

7.6.6 Advanced particle-tracking set-up . 106

7.7 Compressible module . 107

EDF R&D Code Saturne version practical user’s guide
Code Saturne

documentation
Page 6/139

7.7.1 Initialisation of the options of the variables 107

7.7.2 Management of the boundary conditions 108

7.7.3 Initialisation of the variables . 108

7.7.4 Management of variable physical properties 109

7.8 Management of the electric arcs module . 109

7.8.1 Activating the electric arcs module 109

7.8.2 Initialisation of the variables . 109

7.8.3 Variable physical properties . 109

7.8.4 Boundary conditions . 110

7.8.5 Initialisation of the variable options 111

7.8.6 EnSight output . 111

7.9 Code Saturne-Code Saturne coupling . 112

7.10 Fluid-Structure external coupling . 112

7.11 ALE module . 113

7.11.1 Initialisation of the options . 113

7.11.2 Mesh velocity boundary conditions . 114

7.11.3 Modification of the mesh viscosity . 115

7.11.4 Fluid - Structure internal coupling 115

7.12 Management of the structure property . 116

7.13 Management of the atmospheric module . 117

7.13.1 Directory structure . 117

7.13.2 The atmospheric mesh features . 117

7.13.3 Atmospheric flow model and steady/unsteady algorithm 117

7.13.4 Physical properties . 118

7.13.5 Boundary and initial conditions . 118

7.13.6 User subroutines . 120

7.13.7 Physical models . 120

7.13.8 Atmospheric main variables . 122

7.13.9 Recommendations . 123

7.14 Cavitation module . 123

8 Keyword list . 128

8.1 Input-output . 128

8.1.1 ”Calculation” files . 129

8.1.2 Post-processing for EnSight or other tools 129

8.1.3 Chronological records of the variables on specific points 129

8.1.4 Time averages . 129

8.1.5 Others . 129

EDF R&D Code Saturne version practical user’s guide
Code Saturne

documentation
Page 7/139

8.2 Numerical options . 130

8.2.1 Calculation management . 130

8.2.2 Scalar unknowns . 130

8.2.3 Definition of the equations . 130

8.2.4 Definition of the time advancement 130

8.2.5 Turbulence . 131

8.2.6 Time scheme . 131

8.2.7 Gradient reconstruction . 132

8.2.8 Solution of the linear systems . 132

8.2.9 Convective scheme . 132

8.2.10 Pressure-continuity step . 132

8.2.11 Error estimators for Navier-Stokes 132

8.2.12 Calculation of the distance to the wall 134

8.2.13 Others . 134

8.3 Numerical, physical and modelling parameters 134

8.3.1 Numeric parameters . 134

8.3.2 Physical parameters . 134

8.3.3 Physical variables . 134

8.3.4 Modelling parameters . 134

8.4 ALE . 135

8.5 Thermal radiative transfers: global settings 135

8.6 Electric module (Joule effect and electric arcs): specificities 135

8.7 Compressible module: specificities . 135

9 Bibliography . 136

Index of the main variables and keywords . 138

EDF R&D Code Saturne version practical user’s guide
Code Saturne

documentation
Page 8/139

EDF R&D Code Saturne version practical user’s guide
Code Saturne

documentation
Page 9/139

1 Introduction
Code Saturne is an application designed to solve the Navier-Stokes equations in the cases of 2D, 2D
axi-symmetric and 3D flows. Its main module is designed for the simulation of flows which may be
steady or unsteady, laminar or turbulent, incompressible or potentially dilatable, isothermal or not.
Scalars and turbulent fluctuations of scalars can be taken into account. The code includes specific
modules, referred to as “specific physics”, for the treatment of Lagrangian particle tracking, semi-
transparent radiative transfer, gas combustion, pulverised coal combustion, electricity effects (Joule
effect and electric arcs) and compressible flows.

Code Saturne is free software; you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation; either version 2 of the License,
or (at your option) any later version. Code Saturne is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.1

Code Saturne relies on a finite volume discretisation and allows the use of various mesh types which may
be hybrid (containing several kinds of elements) and may have structural non-conformities (hanging
nodes).

Code Saturne is composed of two main elements and an optional GUI, as shown on Figure 1:

� the Solver module is the numerical solver

� the Preprocessor module is in charge of mesh import

Mesh modification

Mesh partitioning

Mesh and data setup

Post−processing output

Preprocessor

Descending connectivity

Read meshes

Verification output

GUI

Configure run script

Define simulation options

Solver

MPI communication

Navier−Stokes resolution

User−defined functions

Turbulence

Specific physics

Meshes

Simulation

(XML)

options

processing

PostVerification

Visualization

and restart

Checkpoint
Cell

domain

number

Intermediate

Mesh

structure

Figure 1: Code Saturne elements

Code Saturne also relies on the PLE (Parallel Location and Exchange) library (developed by the same
team, under LGPL license) for the management of code coupling; this library can also be used inde-
pendently.

This document is a practical user guide for Code Saturne version . It is the result of the joint effort of
all the members in the development team.

This document provides practical information for the usage of Code Saturne. For more details about
the algorithms and their numerical implementation, please refer to the reports [1], [4] and [10], and to
the theoretical documentation [11].

1You should have received a copy of the GNU General Public License along with Code Saturne; if not, write to the
Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA

EDF R&D Code Saturne version practical user’s guide
Code Saturne

documentation
Page 10/139

The latest updated version of this document is available on-line with the version of Code Saturne and
accessible through the command code saturne info --guide theory.

This document first presents all the necessary elements to run a calculation with Code Saturne version
. It then lists all the variables of the code which may be useful for more advanced users. The user
subroutines of all the modules within the code are then documented. Eventually, for each keyword and
user-modifiable parameter in the code, their definition, allowed values, default values and conditions
for use are given. These keywords and parameters are grouped under headings based on their function.
An alphabetical index is also given at the end of the document for easier reference.

2 Quick start
2.1 How to use the Doxygen documentation?

In addition to the present user guide, a complete Doxygen documentation automatically generated from
the code is available with Code Saturne. It can provide various informations about the implementation
such as details on variables used throughout the code kernel and the user subroutines. It also provides
an easily explorable set of user subroutine examples and Fortran-C naming references for quantities
linked to the mesh or the physical fields.

One can access the Doxygen main page through this link or from a terminal by typing the following
command: code saturne info --guide theory.

On the front page, several tabs are available :

• Modules: list of all the Code Saturne modules,

• Data structures: list of all the Code Saturne structures,

• Files: list of all the source files with a brief description of their purpose,

• User examples: provides various examples of how to use user subroutines,

• Variables and structures references: helps users implementing user C functions, Fortran
subroutines or developing inside the code kernel.

In any case, the search bar can be used to look for a specific keyword which can be a function, a
variable, a structure, a type, etc.

2.2 Running a calculation

We assume in this section that the user has at his disposal the calculation data file (calculation set
up) or already prepared it following for instance the step-by-step guidance provided in Code Saturne
tutorial. The steps described below are intended to provide the user a way to run quickly on a
workstation a calculation through the Graphical User Interface (GUI).

The first thing to do before running Code Saturne is to define an alias to the code saturne script (see
§3.1.1), for example:

alias cs=’${prefix}/bin/code saturne’.

When using the bash shell, a completion file may be sourced so as to allow for syntax auto-completion:

source ${prefix}/etc/bash completion.d/code saturne’.

The second thing is to prepare the computation directories. For instance, the study directory T JUNCTION,
containing a single calculation directory CASE1, will be created by typing the command (see §3.3):

EDF R&D Code Saturne version practical user’s guide
Code Saturne

documentation
Page 11/139

code saturne create -s T JUNCTION

The mesh files should be copied in the directory MESH (though they may also be selected from an-
other directory, see §3.2.1), and the Fortran user files necessary for the calculation in the directory
CASE1/SRC. Finally, the calculation data file setup.xml read by the GUI should be copied to the
directory CASE1/DATA. Once these steps completed, the user should go in the directory CASE1/DATA

and type de command line ./SaturneGUI setup.xml to load the calculation file into the interface. A
window similar to Figure2 will appear. Click on the heading “Calculation management”, select the
heading “Prepare batch calculation”, see Figure 3. After having chosen the number of processors,
press “start calculation” to run the calculation.

Figure 2: Identity and paths

Figure 3: Prepare execution

If no problem arises, the simulation results can be found in the directory CASE1/RESU and be read
directly by ParaView or EnSight in CASE1/RESU/<YYYYMMDD-hhmm>/postprocessing. Calculation
history can be found in the file <YYYYMMDD-hhmm>/run solver.log.

EDF R&D Code Saturne version practical user’s guide
Code Saturne

documentation
Page 12/139

2.3 Troubleshooting

If the calculation does not run properly, the user is advised to check the following points in
CASE1/RESU/<YYYYMMDD-hhmm>:

• if the calculation stops in the pre-processor, the user should check for error messages in the file
preprocessor*.log.

• if the problem is related to boundary conditions, the user should visualise the file error.ensight
with EnSight or ParaView,

• if the calculation stops in the Code Saturne core, the user should look for messages at the end of
the files run solver.log and error*. In addition, the user can track the following keywords in
the log; these are specific error signals:

- SIGFPE: a floating point exception occurred. It happens when there is a division by 0,
when the calculation did not converge, or when a real number reached a value over 10300.
Depending on the architecture Code Saturne is running on, this type of exception may be
caught or ignored.

- SIGSEGV: a memory error such as a segmentation violation occurred. An array may have
exceeded its allocated memory size and a memory location in use was overwritten.

In order to easily find the problem, it is also advised to use a debug version of Code Saturne
(see the installation documentation) in combination with the use of the valgrind tool (if it is
installed). The use of valgrind can be specified in the GUI in the advanced options of the item
“Prepare batch calculation” under the heading “Calculation management” or without the GUI,
in the cs user scripts.py file (this file can be found in DATA/REFERENCE and should be copied
in DATA, see §3.2.1).

3 Practical information about Code Saturne
3.1 System Environment for Code Saturne

3.1.1 Preliminary settings

In order to use Code Saturne, the user should define the following alias (in their .bashrc, or equivalent,
or .alias file, depending on the environment):

alias cs=’${install directory}/bin/code saturne’

where install directory is the base directory where Code Saturne and its components have been
installed2.

This step may be skipped if ${install directory} is in a standard location (such as /usr or
/usr/local.

3.1.2 Configuration file

A configuration file for Code Saturne is available in ${install directory}/etc. This file can be useful
as a post-install step for computing environments using a batch system, for separate front-end and
compute systems (such as Blue Gene systems), or for coupling with SYRTHES 4 or Code Aster (see
the installation documentation for more details).

2Without this step, using the absolute path is still possible

EDF R&D Code Saturne version practical user’s guide
Code Saturne

documentation
Page 13/139

A user may define a local configuration, by copying ${install directory}/etc/code saturne.cfg

(if present) or ${install directory}/etc/code saturne.cfg.template to
$HOME/.code saturne.cfg, then uncomment and define the applicable sections.

Note that this user configuration file’s settings usually apply to all installed Code Saturne versions.

Two options in the .code saturne.cfg file could be useful for the user:

• Set the temporary directory (see §3.2.2 for more details on the temporary execution directory).

• Set the mesh database directory: it is possible to indicate a path where meshes are stored. In
this case, the GUI will propose this directory automatically for mesh selection. Without the
GUI, it is then possible to fill in the cs user scripts.py file (see §3.2.1) with the name of the
desired mesh of the database directory and the code will find it automatically (be careful if you
have the same name for a mesh in the database directory and in the MESH directory, the mesh in
MESH will be used).

3.1.3 Standard directory hierarchy

The standard architecture for the simulation studies is:

An optional study directory containing:

• A directory MESH containing the mesh(es) necessary for the study

• A directory POST for the potential post-processing scripts (not used directly by the code)

• One or several calculation directories

Every calculation directory contains:

• A directory SRC for the potential user subroutines necessary for the calculation

• A directory DATA for the calculation data (data file from the interface, input profiles, thermo-
chemical data, ...), the user script and the XML file.

• A directory SCRIPTS for the launch script

• A directory RESU for the results
To improve the calculation traceability, the files and directories sent to RESU after a calculation
are placed in a subdirectory named after that run’s “id”, which is by default based on the run
date and time, using the format: YYYYMMDD-hhmm. It is also possible to force a specific run id,
using the --id option of code saturne run.

In the standard cases, RESU/<run id> contains a postprocessing directory with the post-processing
(visualization) files, a restart directory for the calculation restart files, a monitoring directory for
the files of chronological record of the results at specific locations (probes),
preprocessor.log and run solver.log files reporting the Preprocessor and the Solver execution. All
files from the DATA directory not in subdirectories are also copied. For a tracing of the modifications in
prior calculations, the user-subroutines used in a calculation are stored in a src saturne subdirectory.
The data files (such as the XML Interface data file and thermo-chemical data files) and launch script
are also copied into the results directory. compil.log and summary are respectively reports of the
compilation stage and general information on the calculation (type of machine, user, version of the
code, ...).

When running, the code may use additional files or directories inside its execution directory, set by the
execution script, which include a mesh input file or directory, as well as a restart directory (which
is a link or copy of a previous run’s checkpoint directory), as well as a run solver.sh script.

EDF R&D Code Saturne version practical user’s guide
Code Saturne

documentation
Page 14/139

Below are typical contents of a case directory CASE1 in a study STUDY
STUDY/CASE1/DATA: Code Saturne data
SaturneGUI Graphical User Interface launch script
setup.xml Graphical User Interface parameter file
REFERENCE Example of user scripts and meteorological

or thermochemical date files (used with the
specific physics modules)

STUDY/CASE1/SRC: Code Saturne user subroutines
REFERENCE Available user subroutines
EXAMPLES Examples of user subroutines
cs user boundary conditions.f90 User subroutines used for the present calculation
cs user parameters.f90

STUDY/CASE1/RESU/YYYYMMDD-hhmm: Results for the calculation YYYYMMDD-hhmm
postprocessing Directory containing the Code Saturne post-processing output

in the EnSight, MED, or CGNS format (both volume and boundary);
src saturne copy of the Code Saturne user subroutines used for the calculation
monitoring Directory containing the chronological records for Code Saturne
checkpoint Directory containing the Code Saturne restart files
compile.log Compilation log
setup.xml Graphical User Interface parameter file used for the

calculation
runcase Copy of the launch script used for the calculation
preprocessor.log Execution report for the Code Saturne Preprocessor
run solver.log Execution report for the Solver module of Code Saturne
summary General information (machine, user, version, ...)

STUDY/CASE1/SCRIPTS: Launch script
runcase Launch script (which may contain batch system keywords)

For coupled calculations, whether with Code Saturne itself or SYRTHES, each coupled calculation
domain is defined by its own directory (bearing the same name as the domain), but results are placed
in a RESU COUPLING directory, with a subdirectory for each run, itself containing one subdirectory per
coupled domain. Coupled cases are run through the standard the code saturne run command, but
require a coupling parameters file (coupling parameters.py) specified using the --coupling option.
The run command must be called from the toplevel (STUDY) directory, so an additional STUDY/runcase
launch script is used in this case. Note that case-local scripts (such as STUDY/CASE1/SCRIPTS/runcase)
are still used by the master script to determine which parameter file to use.

So in the coupled case, calculation results would not be placed in STUDY/CASE1/RESU/YYYYMMDD-hhmm,
but in STUDY/RESU COUPLING/YYYYMMDD-hhmm /CASE1, with the summary file being directly placed in
STUDY/RESU COUPLING/YYYYMMDD-hhmm (as it references all coupled domains).

3.1.4 Code Saturne Solver library files

Information about the content of the Code Saturne base directories is given below. It is not of vi-
tal interest for the user, but given only as general information. Indeed, the case preparer command
code saturne create automatically extracts the necessary files and prepares the launch script without
the user having to go directly into the Code Saturne base directories (see §3.3). The code saturne info

command gives direct access to the most needed information (especially the user’s and theory guides
and the Doxygen documentation) without the user having to look for them in the Code Saturne direc-
tories.

The subdirectories {install directory}/lib and {install directory}/bin contain the libraries
and compiled executables respectively.

The data files (for instance thermochemical data) are located in the directory data.

EDF R&D Code Saturne version practical user’s guide
Code Saturne

documentation
Page 15/139

Below are typical additional contents with a coupled SYRTHES case SOLID1 in a study STUDY
STUDY/runcase Coupled launch script
STUDY/coupling parameters.py Coupled launch parameters
STUDY/SOLID1/DATA: SYRTHES data
syrthes data.syd SYRTHES data file
syrthes.py SYRTHES script
usr examples SYRTHES user subroutine examples

STUDY/RESU COUPLING/YYYYMMDD-hhmm /SOLID1: results (file names defined in syrthes.env)
src SYRTHES user subroutines used in the calculation
compile.log SYRTHES compilation report
listsyr Execution log
geoms SYRTHES solid geometry file
histos1 SYRTHES chronological records at specified monitoring points
resus1 SYRTHES calculation restart file (1 time step)
resusc1 SYRTHES chronological solid post-processing file

(may be transformed into the EnSight
or MED format with the syrthes4ensight
or syrthes4med30 utility)

The user subroutines are available in the directory src/user, with examples in src/user examples.
The case preparer command code saturne create copies all these files in the user directories SRC/REFERENCE
and SRC/EXAMPLES during the case preparation.

The directory bin contains an example of the launch script, the compilation parameter files and various
utility programs.

3.2 Setting up and running a calculation

3.2.1 Step by step calculation

This paragraph summarises the different steps which are necessary to prepare and run a standard case:

• Check the version of Code Saturne set for use in the environment variables (code saturne info

--version). If it does not correspond to the desired version, update the user profile or aliases
to get the required version, logging out of the session and in again if necessary (cf. §3.1.1).

• Prepare the different directories using the code saturne create command (see §3.3).

• It is recommended to place the mesh(es) in the directory MESH, but they may be selected from
other directories, either with the Graphical User Interface (GUI) or the cs user scripts.py file
(see below). Make sure they are in a format compliant with Code Saturne (see §3.4.5). There can
be several meshes in case of mesh joining or coupling with SYRTHES3.

• Go to the directory DATA and launch the GUI using the command ./SaturneGUI.

• If not using the GUI, copy the DATA/REFERENCE/cs user scripts.py file to DATA and edit it,
so that the correct run options and paths may be set. For advanced uses, this file may also be
used in conjunction with the GUI. Just as with user Fortran subroutines below, settings defined
in this file have priority over those defined in the GUI.

• Place the necessary user subroutines in the directory SRC (see §3.9). When not using the Interface,
some subroutines are compulsory.

For all physics:

3SYRTHES 4 uses meshes composed of 4-node tetrahedra

EDF R&D Code Saturne version practical user’s guide
Code Saturne

documentation
Page 16/139

compulsory without Graphical User Interface:

- usipph (in cs user parameters.f90) to specify the turbulence and temperature
models

- usipsu (in cs user parameters.f90) to define most user parameters

- cs user boundary conditions to manage the boundary conditions

very useful without Graphical User Interface:

- cs user model.c (in cs user parameters.c) to define user scalars (species)

- usipes (in cs user parameters.f90) to define monitoring points and additional
parameters for results outputs

very useful:

- usphyv (in cs user physical properties.f90) to manage variable physical prop-
erties (fluid density, viscosity ...)

- cs user initialization to manage the non-standard initialisations

For the “gas combustion” specific physics:

compulsory without Graphical User Interface:

- usppmo (in cs user parameters.f90) to select a specific physics module and com-
bustion model

very useful:

- cs user combustion (in cs user parameters.f90), depending on the selected com-
bustion model, to specify the calculation options for the variables corresponding to
combustion model

For the “pulverized fuel combustion” specific physics:

compulsory without Graphical User Interface:

- usppmo (in cs user parameters.f90) to select the specific physics module

very useful:

- cs user combustion (in cs user parameters.f90) to specify the calculation op-
tions for the variables corresponding to pulverized fuel combustion

or cs user combustion

For the “heavy fuel combustion” specific physics:

(not accessible through the Graphical User Interface in version)

compulsory:

- usppmo (in cs user parameters.f90) to select the specific physics module

- cs user combustion (in cs user parameters.f90) to specify the calculation op-
tions for the variables corresponding to heavy fuel combustion

For the “atmospheric module” specific physics:

compulsory without Graphical User Interface:

- usppmo (in cs user parameters.f90) to select the specific physics module

very useful:

- usati1 (in cs user parameters.f90) to manage the reading of the meteo file

- usadtv or usatsoil (in cs user atmospheric model.f90) to manage the options
to the specific physics

For the “electric module” specific physics (Joule effect and electric arcs):

compulsory without Graphical User Interface:

- usppmo (in cs user parameters.f90) to select the specific physics module

- cs user initialization to initialise the enthalpy in case of Joule effect

- cs user physical properties.c to define the physical properties in case of Joule
effect

EDF R&D Code Saturne version practical user’s guide
Code Saturne

documentation
Page 17/139

very useful:

- cs user model and cs user parameters (in cs user parameters.c) to manage
the options related to the variables corresponding to the electric module

For the “Lagrangian module” (dispersed phase):

(the continuous phase is managed in the same way as for a case of standard physics)

compulsory without Graphical User Interface:

- cs user lagr model to manage the calculation conditions

- cs user lagr boundary conditions to manage the boundary conditions for the
dispersed phase

For the “compressible module”:

compulsory without Graphical User Interface:

- usppmo (in cs user parameters.f90) to select the specific physics module

very useful:

- uscfx1 and uscfx2 (in cs user parameters.f90) to manage the calculation pa-
rameters

- usphyv (in cs user physical properties to manage the variable physical prop-
erties

A comprehensive list of the user subroutines and their instructions for use are given in §3.9.

• If necessary, place in the directory DATA the different external data (input profiles, thermochemical
data files, ...)

• Prepare the launch script runcase, directly or through the Graphical Interface (see §3.7), or
prepare the DATA/cs user scripts.py file.

• Run the calculation and analyse the results

• If necessary, purge the temporary files (in RESU/<run id> or <scratch>/<run id> directory)
(see §3.2.2).

3.2.2 Temporary execution directory

During a calculation, Code Saturne may use a temporary directory for the compilation and the execution
if such a “scratch” directory is defined in the GUI, by setting the CS SCRATCHDIR environment variable,
or in the code saturne.cfg file. In this case, it is only at the end of the compilation that the result
files are only copied at the end in the directory RESU. This is recommended if the compute environment
includes different file-systems, some better suited to data storage, others to intensive I/O. If this is not
the case, there is no point in running in a scratch directory rather than the results directory, as this
incurs additional file copies.

If the environment variable CS SCRATCHDIR is defined, its value has priority over that defined in the
preference file so if necessary, it is possible to define a setting specific to a given run using this
mechanism.

WARNING: in case of an error, the temporary directories are not deleted after a calculation, so that
they may be used for debugging. They may then accumulate and may hinder the correct operation of
the machine.

It is therefore essential to remove them regularly.

3.2.3 Execution modes

As explained before, Code Saturne is composed of two main modules, the Preprocessor and the Solver.
The Preprocessor reads the meshes. The resulting data is transferred to the Solver through specific
files, named mesh input, or placed in a directory of that name when multiple meshes are imported.

EDF R&D Code Saturne version practical user’s guide
Code Saturne

documentation
Page 18/139

Yet, the Preprocessor does not run in parallel and may require a large amount of memory. The launch
scripts therefore allows specifically choosing which modules to run, either through the GUI or through
the cs user scripts.py file:

If a mesh input file or directory is defined (which may be either a mesh input from a previous
Preprocessor run or a mesh output from a previous solver run), the script will copy or link it to the
execution directory, and the Preprocessor will not be rerun.

If domain.exec kernel = False, the Solver will not be run. This is useful when only the mesh
import stage is required.

In a similar manner, the Solver accepts several command-line options relative to execution mode,
notably domain.solver args = ’--preprocess’ or ’--quality’, restricting the run to the prepro-
cessing stages, or preprocessing stages augmented by mesh quality criteria computation. Whenever
the preprocessing stages defined lead to an effective mesh modification, a mesh output file is produced,
which can be used directly as an input for a successive calculation.

The GUI presents the range of options in the form of four execution modes (under the “Mesh“ page):

• mesh import: the Preprocessor is run to transform one or more meshes into an internal
mesh input file (or directory in case of multiple meshes).

• mesh preprocessing: the Solver is run in preprocessing mode, so as to handle all mesh modi-
fication operations, such as joining, periodicity, smoothing, etc. If a mesh input file or directory
is provided, it is used directly; otherwise, mesh import is run first.

• mesh quality criteria: similar to preprocessing, with the addition of mesh quality criteria
computation, and post-processing output of those criteria. Some additional mesh consistency
checks are also run.

• standard: this includes preprocessing, followed by a standard computation.

Note that to allow preprocessing in multiple passes, all defined preprocessing operations are run even
on previously preprocessed meshes. In most cases, those will not produce additional changes (such as
joining already joined meshes), but in the case of mesh smoothing, they might lead to small changes.
So when using a previously preprocessed mesh it is recommended not to define any preprocessing
operations, so as to skip the preprocessing stage.

It is encouraged to separate the preprocessing and calculation runs, as this not only speeds up calcula-
tions, but also ensures that the mesh is identical, regardless of the architecture or number of processors
it is run on. Indeed, when running the same pre-processing stages such as mesh joining on a different
machine or a different number of processors, very minor floating-point truncation errors may lead to
very slightly different preprocessed meshes. The GUI option to “Use unmodified checkpoint mesh in
case of restart“ encourages this usage.

Note also that mesh partitioning is done directly by the Solver. Depending on the partitioning algo-
rithm used, a partition map (partition output/domain number *) may be output, allowing the use
of the same partitioning in future calculations. By default, this file is output when using graph-based
partitioners, which may use randomization and do not guarantee a reproducible output, and is not
output when using a deterministic space-filling curve based partitioning.

If the code was built only with a serial partitioning library, graph-based partitioning may best be run
in a serial pre-processing stage. In some cases, serial partitioning might also provide better partitioning
quality than parallel partitioning, so if both are available, comparing the performance of the code may
be worthwhile, at least for calculations expected to run for many iterations.

3.2.4 Environment variables

Setting a few environment variables specific to Code Saturne allows modifying its default behaviour.
The environment variables used by Code Saturne are described here:

EDF R&D Code Saturne version practical user’s guide
Code Saturne

documentation
Page 19/139

CS SCRATCHDIR

Allows defining the execution directory (see §3.2.2), overriding the default path or settings from the
global or user code saturne.cfg.

CS MPIEXEC OPTIONS

This variable allows defining extra arguments to be passed to the MPI execution command by the run
scripts. If this option is defined, it will have priority over the value defined in the preference file (or
by computed defaults), so if necessary, it is possible to define a setting specific to a given run using
this mechanism. This may be useful when tuning the installation to a given machine, for example
experimenting MPI mapping and “bind to core” features.

3.2.5 Interactive modification of selected parameters

During a calculation, it is possible to change the limit time step number (ntmabs) specified through
the GUI or in cs user parameters.f90. To do so, a file named control file must be placed in the
execution directory (see §3.2.2). The existence of this file is checked at the beginning of each time step.

To change the maximum number of time steps, this file must contain a line indicating the value of the
new limit number of time steps.
If this new limit has already been reached, Code Saturne will stop properly at the end of the current
time step (the results and restart files will be written correctly).
This procedure allows the user to stop a calculation in a clean and interactive way whenever they wish.

The control file may also contain a few other commands, allowing the user to force checkpointing
or postprocessing at a given time step or physical time, or to force an update of log files. The following
commands are available (using the common notations <> to indicate a required argument, [] to indicate
an optional argument).

max time step <time step number>
max time value <time value>
max wall time <wall time>
checkpoint time step <time step number>
checkpoint time value <time value>
checkpoint wall time <wall clock time>
checkpoint time step interval <time step interval>
checkpoint time value interval <time interval>
checkpoint wall time interval <wall time interval>
control file wtime interval <wall time interval>
flush [time step number]
postprocess time step <time step number> [writer id]
postprocess time value <time step value> [writer id]
time step limit <time step count>

The time step limit differs from the max time step command, in the sense that it allows reducing
the maximum number of time steps, but not increasing it. Also, in the case of a restart, it refers to
the number of additional time steps, not to the number of absolute time steps.

Note that for the postprocess time * options, the last argument (writer id is optional. If not
defined, or 0, postprocessing is activated for all writers; if specified, only the writer with the specified
id is affected. Also, postprocessing output by one ore more writers at a future time step may be
cancelled using the negative value of that time step.

For the flush option, the time step is also optional. If not specified, logs and time plots are updated
at the beginning of the next time step. Also, if the control file is empty (such as when created by
the touch control file command on Unix/Linux systems, a flush request for the next time step.

Multiple entries may be defined in this file, with one line per entry.

EDF R&D Code Saturne version practical user’s guide
Code Saturne

documentation
Page 20/139

3.3 Case preparer

The case preparer command code saturne create automatically creates a study directory according
to the typical architecture and copies and pre-fills an example of calculation launch script.

The syntax of code saturne create is as follows:

code saturne create --study STUDY CASE NAME1 CASE NAME2...

creates a study directory STUDY with case subdirectories CASE NAME1 and CASE NAME2... If no case
name is given, a default case directory called CASE1 is created.

code saturne create --case Flow3 --case Flow4

executed in the directory STUDY adds the case directories Flow3 and Flow4. Whenever multiple cases
are created simultaneously, it is assumed they may be coupled, so toplevel runcase and coupling parameters.py

files and RESU COUPLING directory are also created.

In the directory DATA, the code saturne create command places a subdirectory REFERENCE contain-
ing examples of thermochemical data files used for pulverised coal combustion, gas combustion, electric
arcs, or a meteo profile. The file to be used for the calculation must be copied directly in the DATA

directory and its name may either be unchanged, or be referenced using the GUI or using the usppmo

subroutine in cs user parameters.f90. As a rule of thumb, all files in DATA except for SaturneGUI

are copied, but subdirectories are not.
The code saturne create command also places in the directory DATA the launch script for the Graph-
ical User Interface: SaturneGUI.

In the directory SRC, the code saturne create command creates a subdirectory REFERENCE contain-
ing all the available user subroutines, and the subdirectory EXAMPLES containing examples of user
subroutines. Only the user subroutines placed directly under the directory SRC will be considered.
The others will be ignored.

In the directory SCRIPTS, the code saturne create command copies an example of the launch script:
runcase. The XML file may be specified in the script (see §3.7), and using the GUI sets it automatically.

3.4 Supported mesh and post-processing output formats

Code Saturne supports multiple mesh formats, all of these having been requested at some time by users
or projects based on their meshing or post-processing tools. All of these formats have advantages and
disadvantages (in terms of simplicity, functionality, longevity, and popularity) when compared to each
other. The following formats are currently supported by Code Saturne:

- SIMAIL (NOPO)

- I-deas universal

- MED

- CGNS

- EnSight 6

- EnSight Gold

- GAMBIT neutral

- Gmsh

- STAR-CCM+

- Catalyst (co-processing)

EDF R&D Code Saturne version practical user’s guide
Code Saturne

documentation
Page 21/139

These formats are described in greater detail in the following sections. Unless a specific option is used,
the Preprocessor determines the mesh format directly from the file suffix: “.case” for EnSight (6 or
Gold), “.ccm” for STAR-CCM+, “.cgns” for CGNS, “.des” for SIMAIL, “.med” for MED, “.msh”
for Gmsh, “.neu” for GAMBIT neutral, “.unv” for I-deas universal.

Note that the preprocessor can read gzipped mesh files directly (for Formats other than MED or
CGNS, which use specific external libraries) on most machines.

3.4.1 Formats supported for input

3.4.1.1 NOPO/SIMAIL (INRIA/Distene)

This format is output by SIMAIL, which was used heavily at EDF until a few years ago. Code Saturne
does not currently handle cylindrical or spherical coordinates, but it seems that SIMAIL always
outputs meshes in Cartesian coordinates, even if points have been defined in another system. Most
“classical” element types are usable, except for pyramids.

Note that depending on the architecture on which a file was produced by SIMAIL4, it may not be
directly readable by SIMAIL on a different machine, while this is not a problem for the Preprocessor,
which automatically detects the byte ordering and the 32/64 bit variant and adjusts accordingly.

Default extension: .des

File type: semi-portable “Fortran” binary (IEEE integer and floating-point
numbers on 4 or 8 bytes, depending on 32 or 64 bit SIMAIL
version, bytes also ordered based on the architecture)

Surface elements: triangles, quadrangles (+ volume element face references)
Volume elements: tetrahedra, prisms, hexahedra
Zone selection: element face references and volume sub-domains

(interpreted as numbered groups)
Compatibility: all files of this type as long as the coordinate system used is

Cartesian and not cylindrical or spherical
Documentation: Simail user documentation and release notes or MODULEF

documentation: http://www-rocq.inria.fr/modulef
Especially:
http:

//www-rocq.inria.fr/modulef/Doc/FR/Guide2-14/node49.html

3.4.1.2 I-deas universal file

This format was very popular in the 1990’s and early 2000’s, and though the I-deas tool has not focused
on the CFD (or even meshing) market since many years, it is handled (at least in part) by many tools,
and may be considered as a major “legacy” format. It may contain many different datasets, relative
to CAD, meshing, materials, calculation results, or part representation. Most of these datasets are
ignored by Code Saturne, and only those relative to vertex, element, group, and coordinate system
definitions are handled.

This format’s definition evolves with I-deas versions, albeit in a limited manner: some datasets are
declared obsolete, and are replaced by others, but the definition of a given dataset type is never
modified. Element and Vertex definitions have not changed for many years, but group definitions have
gone through several dataset variants through the same period, usually adding minor additional group
types not relevant to meshing. If one were to read a file generated with a more recent version of I-deas
for which this definitions would have changed with no update in the Preprocessor, as the new dataset
would be unknown, it would simply be ignored.

4“little endian” on Intel or AMD processors, or “big endian” on most others, and starting with SIMAIL 7, 32-bit or
64-bit integer and floating-point numbers depending on architecture

http://www-rocq.inria.fr/modulef
http://www-rocq.inria.fr/modulef/Doc/FR/Guide2-14/node49.html
http://www-rocq.inria.fr/modulef/Doc/FR/Guide2-14/node49.html

EDF R&D Code Saturne version practical user’s guide
Code Saturne

documentation
Page 22/139

Note that this is a text format. Most element types are handled, except for pyramids.

Default extension: .unv

File type: text
Surface elements: triangles, quadrangles
Volume elements: tetrahedra, prisms, hexahedra
Zone selection: colors (always) and named groups
Compatibility: I-deas (Master Series 5 to 9, NX Series 10 to 12) at least
Documentation: Online I-deas NX Series documentation, and
https://docs.plm.

automation.siemens.com/

tdoc/nx/10/nx_help/#uid:

index_advanced:

xid602249:id625716:

id625821

3.4.1.3 GAMBIT neutral

This format may be produced by Ansys FLUENT’s GAMBIT meshing tool. As this tool does not
export meshes to other formats directly handled by the Preprocessor (though FLUENT itself may
export files to the CGNS or I-deas universal formats), it was deemed useful to enable the Preprocessor
to directly read files in GAMBIT neutral format.

Note that this is a text format. “Classical” element types are usable.

Default extension: .neu

File type: text
Surface elements: triangles, quadrangles
Volume elements: tetrahedra, pyramids, prisms, hexahedra
Zone selection: boundary conditions for faces, element groups for cells

(interpreted as named groups)
Documentation: GAMBIT on-line documentation

3.4.1.4 EnSight 6

This format is used for output by the Harpoon meshing tool, developed by Sharc Ltd (also the distrib-
utor of EnSight for the United Kingdom). This format may represent all “classical” element types.

Designed for post processing, it does not explicitly handle the definition of surface patches or volume
zones, but allows the use of many parts (i.e. groups of elements) which use a common vertex list.
A possible convention (used at least by Harpoon) is to add surface elements to the volume mesh,
using one part per group. The volume mesh may also be separated into several parts so as to identify
different zones. As part names may contain up to 80 characters, we do not transform them into groups
(whose names could be unwieldy), so we simply convert their numbers to group names.

Also note that files produced by Harpoon may contain badly oriented prisms, so the Preprocessor
orientation correction option (--reorient) may must be used. Meshes built by this tool also contain
hanging nodes, with non-conforming elements sharing some vertices. Mesh joining must thus also be
used, and is not activated automatically, as the user may prefer to specify which surfaces should be
joined, and which ones should not (i.e. to conserve thin walls).

https://docs.plm.automation.siemens.com/tdoc/nx/10/nx_help/#uid:index_advanced:xid602249:id625716:id625821
https://docs.plm.automation.siemens.com/tdoc/nx/10/nx_help/#uid:index_advanced:xid602249:id625716:id625821
https://docs.plm.automation.siemens.com/tdoc/nx/10/nx_help/#uid:index_advanced:xid602249:id625716:id625821
https://docs.plm.automation.siemens.com/tdoc/nx/10/nx_help/#uid:index_advanced:xid602249:id625716:id625821
https://docs.plm.automation.siemens.com/tdoc/nx/10/nx_help/#uid:index_advanced:xid602249:id625716:id625821
https://docs.plm.automation.siemens.com/tdoc/nx/10/nx_help/#uid:index_advanced:xid602249:id625716:id625821

EDF R&D Code Saturne version practical user’s guide
Code Saturne

documentation
Page 23/139

Default extension: .case

File type: text file (extension .case), and text, binary, or Fortran binary file
with (.geo extension), describing integers and floats in the IEEE
format, using 32 bits

Surface elements: triangles, quadrangles
Volume elements: tetrahedra, pyramids, prisms, hexahedra
Zone selection: part numbers interpreted as numbered groups
Compatibility: All files of this type
Documentation: on-line documentation, also available at:

www3.ensight.com/EnSight10_Docs/UserManual.pdf

3.4.1.5 Gmsh

This format is used by the free Gmsh tool. This tool has both meshing and post-processing function-
ality, but Code Saturne only imports the meshes.

Note that some meshes produced by Gmsh man contain some badly oriented elements, so the Prepro-
cessor’s -reorient option may be necessary.

The Preprocessor handles versions 1 and 2 of this array. In version 1, two labels are associated with
each element: the first defines the element’s physical entity number, the second defines its elementary
entity number. Using version 2, it is possible to associate an arbitrary number of labels with each
element, but files produced by Gmsh use 2 labels, with the same meanings as with version 1.

The decision was taken to convert physical entity numbers to groups. It is possible to build a mesh
using Gmsh without defining any physical entities (in which case all elements will belong to the same
group, but the Gmsh documentation clearly says that geometric entities are to be used so as to group
elementary entities having similar “physical” meanings.

To obtain distinct groups with a mesh generated by Gmsh, it is thus necessary for the user to define
physical entities. This requires an extra step, but allows for fine-grained control over the groups
associated with the mesh, while using only elementary entities could lead to a high number of groups.

Default extension: .msh

File type: text or binary file
Surface elements: triangles, quadrangles
Volume elements: tetrahedra, pyramids, prisms, hexahedra
Zone selection: physical entity numbers interpreted as numbered groups
Compatibility: all files of this type
Documentation: included documentation, also available at:

http://www.geuz.org/gmsh

3.4.2 Formats supported for input or output

3.4.2.1 EnSight Gold

This format may represent all “classical” element types, as well as arbitrary polygons and convex
polyhedra.

This format evolves slightly from one EnSight version to another, keeping backwards compatibility.
For example, polygons could not be used in the same part as other element types prior to version
7.4, which removed this restriction and added support for polyhedra. Version 7.6 added support for
material type definitions.

This format offers many possibilities not used by Code Saturne, such as defining values on part of
a mesh only (using “undefined” marker values or partial values), assigning materials to elements,
defining rigid motion, or defining per-processor mesh parts with ghost cells for parallel runs. Note

www3.ensight.com/EnSight10_Docs/UserManual.pdf
http://www.geuz.org/gmsh
http://www.geuz.org/gmsh

EDF R&D Code Saturne version practical user’s guide
Code Saturne

documentation
Page 24/139

that some libraries allowing direct EnSight Gold support do not necessarily support the whole format
specification. Especially, VTK does not support material types. Also, both EnSight Gold (8.2 and
above) and VTK allow for automatic distribution, reducing the usefulness of pre-distributed meshes
with per-processor files.

Note than when using ParaView, if multiple parts (i.e. meshes) are present in a give case, using the
“Extract Blocks” filter is required to separate those parts and obtain a proper visualization, unless the
separate meshes writer option is used. The VisIt software does not seem to handle multiple parts in
an EnSight case, so different meshes must be assigned to different writers, or the separate meshes

option must be used (see §??) when using this tool.

This format may be used as an input format, similar to EnSight 6. Compared to the latter, each part
has its own coordinates and vertex connectivity; hence as a convention, we consider that surface or
volume zones may only be considered to be part of the same mesh if the file defines vertex IDs (which
we consider to be unique vertex labels). In this case, part numbers are interpreted as group names.
Without vertex IDs, only one part is read, and no groups are assigned.

Default extension: directory {case name}.ensight, containing a file with the .case

extension
File type: multiple binary or text files
Surface elements: triangles, quadrangles, polygons
Volume elements: tetrahedra, pyramids, prisms, hexahedra, convex polyhedra
Zone selection: possibility of defining element materials (not used), or interpret part

number as group name if vertex IDs are given
Compatibility: files readable by EnSight 7.4 to 10.0, as well as tools based on the

VTK library, especially ParaView (http://www.paraview.org)
Documentation: online documentation, also available at:

www3.ensight.com/EnSight10_Docs/UserManual.pdf

3.4.2.2 MED

Initially defined by EDF R&D, this format (Modèle d’échanges de Données, or Model for Exchange of
Data) has been defined and maintained through a MED working group comprising members of EDF
R&D and CEA. This is the reference format for the SALOME environment. This format is quite
complete, allowing the definition of all “classical” element types, in nodal or descending connectivity.
It may handle polygonal faces and polyhedral cells, as well as the definition of structured meshes.

This format, which requires a library also depending on the free HDF5 library, allows both for read-
ing and writing meshes with their attributes (“families” of group combinations), as well as handling
calculation data, with the possibility (unused by Code Saturne) of defining variables only on a subset
(“profile”) of a mesh.

The MED library is available under a LGPL license, and is even packaged in some Linux distributions
(at least Debian and Ubuntu). Code Saturne requires at least MED 3.0.2, which in turn requires HDF5
1.8. This format is upwards-compatible with MED 2.3, so old files in that version of the format may
be read, though not output.

http://www.vtk.org
http://www.paraview.org
www3.ensight.com/EnSight10_Docs/UserManual.pdf
http://www.salome-platform.org/
http://www.gnu.org

EDF R&D Code Saturne version practical user’s guide
Code Saturne

documentation
Page 25/139

Default extension: .med

File type: portable binary, based on the HDF5 library
(http://www.hdfgroup.org/HDF5/index.html)

Surface elements: triangles, quadrangles, simple polygons
Volume elements: tetrahedra, pyramids, prisms, hexahedra, simple polyhedra
Zone selection: element families (i.e. colors and groups)
Input compatibility: MED 2.3, 3.0 to 3.3 (only unstructured nodal connectivity is

supported)
Output compatibility: MED 3.0 and above
Documentation: on-line documentation. Download link at http://files.

salome-platform.org/Salome/other/med-3.3.1.tar.gz

3.4.2.3 CGNS

Promoted by organizations including the AIAA, NASA, Boeing Commercial, ANSYS, Airbus, ONERA,
SAFRAN, ANSYS, Pointwise, Inc., Numeca, and others, this format(CFD General Notation System)
is quite well established in the world of CFD. The concept is similar to that of MED, with a bigger
emphasis on normalization of variable names or calculation information, and even richer possibilities.

Slightly older than MED, this library was free from the start, with a good English documentation,
and is thus much better known. It is more focused on CFD, where MED is more generic. A certain
number of tools accompany the CGNS distribution, including a mesh visualizer, and an interpolation
tool.

Code Saturne should be able to read almost any mesh written in this format, though meshes with
over-set interfaces may not be usable for a calculation (calculations with over-set interfaces may be
possible in the context of coupling Code Saturne with itself but with two separate meshes). Other
(abutting) interfaces are not handled automatically (as there are at least 3 or 4 ways of defining them,
and some mesh tools do not export them5), so the user is simply informed of their existence in the
Preprocessor’s log file, with a suggestion to use an appropriate conformal joining option. Structured
zones are converted to unstructured zones immediately after being read.

Boundary condition information is interpreted as groups with the same name. The format does not
yet provide for selection of volume elements, as only boundary conditions are defined in the model
(and can be assigned to faces in the case of unstructured meshes, or vertices in any case). Note that
boundary conditions defined at vertices are not ignored by the Preprocessor, but are assigned to the
faces of which all vertices bear the same condition.6

The Preprocessor also has the capability of building additional volume or surface groups, based on the
mesh sections to which cells or faces belong. This may be activated using a sub-option of the mesh
selection, and allows obtaining zone selection information from meshes that do not have explicit bound-
ary condition information but that are subdivided in appropriate zones or sections (which depends on
the tool used to build the mesh).

When outputting to CGNS, an unstructured connectivity is used for the calculation domain, with no
face joining information or face boundary condition information.7

Many tools support CGNS, though that support may have limitations. Some editors seem to use
different means to mark zones to associate with boundary conditions than the ones recommended in
the CGNS documentation, and some behaviours are worse. Also, some readers do not allow the user
to choose between multiple CGNS bases (meshes in the Code Saturne sense), so when outputting to

5For example, ICEM CFD can join non-conforming meshes, but it exports joining surfaces as simple boundary faces
with user-defined boundary conditions.

6If one of a face’s vertices does not bear a boundary condition, that condition is not transferred to the face.
7Older versions of the documentation specified that a field must be defined on all elements of a zone, so that adding

faces on which to base boundary conditions to a volume mesh would have required also defining volume fields on these
faces. More recent versions of the documentation make it clear that a field must be defined on all elements of maximum
dimension in a zone, not on all elements.

http://www.hdfgroup.org/HDF5/index.html
http://files.salome-platform.org/Salome/other/med-3.3.1.tar.gz
http://files.salome-platform.org/Salome/other/med-3.3.1.tar.gz

EDF R&D Code Saturne version practical user’s guide
Code Saturne

documentation
Page 26/139

CGNS, it may be necessary to output each post-processing mesh using a separate output.

Default extension: .cgns

File type: portable binary (uses the ADF library specific to CGNS, or HDF5)
Surface elements: triangles, quadrangles, simple polygons
Volume elements: tetrahedra, pyramids, prisms, hexahedra, simple polyhedra
Zone selection: Surface zone selection using boundary conditions, no volume zone

selection, but the Preprocessor allows creation of groups associated
to zones or sections in the mesh using mesh selection sub-options

Input compatibility: CGNS 2.5 or CGNS 3.1 and above
Output compatibility: CGNS 3.1 and above
Documentation: See CGNS site: http://www.cgns.org

3.4.2.4 STAR-CCM+

This polyhedral format is the current CD-Adapco (SIEMENS) format, and is based on CD-Adapco’s
libccmio, which is based on ADF (the low-level file format used by CGNS prior to the shift to HDF5).
libccmio comes with a version of ADF modified for performance, but also works with a standard version
from CGNS.

Currently, geometric entity numbers are converted to numbered groups, with the corresponding names
printed to the Preprocessor log. Depending on whether the names were generated automatically or set
by the user, it would be preferable to use the original group names rather than base their names on
their numbers.

This format may also be used for output, though its limitations make this a less general solution than
other output formats: only 3D meshes are handled, though values can be output on boundary face
regions (which may not overlap). As such, to ensure consistency, output using this format is limited
as follows:

� output of the full volume mesh and cell or vertex data on that mesh is handled normally.

� output of the full surface mesh and per face data on that mesh handled normally, only if output
of the full volume mesh to this format is also enabled. It is ignored otherwise.

� output of sub-meshes or meshes built during the preprocessing stage and all other data is ignored.

As such, this formal may be useful for interoperability of data with a CCMIO-based tool-chain, but
simultaneously using another output format to visualize possible error output is recommended.

The CCMIO library is distributed by CD-Adapco to its clients upon demand.

Use of the CGNS format should be preferred to this format when possible, and CGNS output is
available in Star-CCM+ since version 12.06 at least.

Default extension: .ccm

File type: binary file using modified ADF library.
Surface elements: polygons
Volume elements: polyhedra
Zone selection: named face and cell sets

(interpreted as numbered groups, with names appearing in log)
Compatibility: all files of this type?
Documentation: documentation and source code provided by CD-Adapco

http://www.cgns.org

EDF R&D Code Saturne version practical user’s guide
Code Saturne

documentation
Page 27/139

3.4.3 Formats supported for output only

3.4.3.1 Catalyst

This is not a “true” output format in the sense that output is not written directly to file, but is
exported to the Catalyst co-processor. In turn, this co-processor will execute operations based on a
special ParaView Python script, and directly generate output such as images or movies.

Co-processing scripts may be generated under ParaView 4.2 or above, using initial output in another
format (such as EnSight Gold). With ParaView 4.2 to 5.4, this required activating the CoProcessing
plugin. With ParaView 5.5, a ”Generate Script” item can be found directly under the “Catalyst”
menubar item.

A Code Saturne postprocessing writer will try to read a script named <writer name>.py, which should
be places in a case’s DATA directory. Using ParaView 5.5 or above, in the “Name Simulation Inputs”
stage of the Catalyst script generator, the “simulation name” field should be set to the same name as
the script (i.e. writer name).

Note that this output is heavily dependent on ParaView. Some operations may work very well, while
other, similar operations may fail.

Default extension: not applicable
File type: co-processing
Surface elements: triangles, quadrangles, polygons
Volume elements: tetrahedra, pyramids, prisms, hexahedra, convex polyhedra
Compatibility: Catalyst from ParaView 4.2 or above (version 5.4 or above

recommended)
Documentation: online documentation and Wiki, at:

http://paraview.org/Wiki/Main_Page

3.4.4 Meshing tools and associated formats

Most often, the choice of a mesh format is linked to the choice of a meshing tool. Still, some tools allow
exporting a mesh under several formats handled by Code Saturne. This is the case of FLUENT and
ICEM CFD, which can export meshes to both the I-deas universal and CGNS formats (FLUENT’s
GAMBIT is also able to export to I-deas universal format).

Traditionally, users exported files to the I-deas universal format, but it does not handle pyramid
elements, which are often used by these tools to transition from hexahedral to tetrahedral cells in the
case of hybrid meshes. The user is encouraged to export to CGNS, which does not have this limitation.

Tools related to the SALOME platform should preferably use SALOME’s native MED format.

3.4.5 Meshing remarks

WARNING: Some turbulence models (k−ε, Rij−ε SSG, ...) used in Code Saturne are “High-Reynolds”
models. Therefore the size of the cells neighbouring the wall must be greater than the thickness of the
viscous sub-layer (at the wall, y+ > 2.5 is required, and 30 < y+ < 100 is preferable). If the mesh does
not match this constraint, the results may be false (particularly if thermal phenomena are involved).
For more details on these constraints, see the keyword iturb.

3.5 Preprocessor command line options

The main options are:

• --help: provides a summary of the different command line options

http://paraview.org
http://paraview.org/Wiki/Main_Page

EDF R&D Code Saturne version practical user’s guide
Code Saturne

documentation
Page 28/139

• <mesh>: the last argument is used to specify the name of the mesh file. The launch script
automatically calls the Preprocessor for every mesh in the MESHES[] list specified by the user.

• --reorient: attempts to re-orient badly-oriented cells if necessary to compensate for mesh-
generation software whose output does not conform to the format specifications.

3.6 Solver command line options

In the standard cases, the compilation of Code Saturne and its execution are entirely controlled by the
launch script. The potential command line options are passed through user modifiable variables at the
beginning of the cs user scripts.py file (this file may be copied from the DATA/REFERENCE to the
DATA and edited). This way, the user only has to fill these variables and doesn’t need to search deep
in the script for the Solver command line. For more advanced usage, the main options are described
below:

• --app-name: specifies the application name. This is useful only in the case of code coupling,
where the application name is used to distinguish between different code instances launched
together.

• --mpi: specifies that the calculation is running with MPI communications. The number of
processors used will be determined automatically by the Solver. With most MPI implementa-
tions, the code will detect the presence of an MPI environment automatically, and this option is
redundant. It is only kept for the rare case in which the MPI environment might not be detected.

• --preprocess: triggers the preprocessing-only mode. The code may run without any Interface
parameter file or any user subroutine. Only the initial operations such as mesh joining and
modification are executed.

• -q or --quality: triggers the verification mode. The code may run without any Interface pa-
rameter file or any user subroutine. This mode includes the preprocessing stages, and adds
elementary tests:

- the quality criteria of the mesh are calculated (non-orthogonality angles, internal faces off-
set, . . .) and corresponding visualizable post-processing output is generated.

- a few additional mesh consistency tests are run.

• --benchmark: triggers the benchmark mode, for a timing of elementary operations on the ma-
chine. A secondary option --mpitrace can be added. It is to be activated when the benchmark
mode is used in association with an MPI trace utility. It restricts the elementary operations to
those implying MPI communications and does only one of each elementary operation, to avoid
overfilling the MPI trace report.
This command is to be placed in the
textttdomain.solver args variable in the cs user scripts.py file to be added automatically to
the Solver command line.

• --trace: activates the tracing of the output to the standard output. This option can be specified
in the domain.logging args field of the user script.

• --logp: activates the output for the processors of rank 1 to N − 1 in a calculation in parallel on
N processors. in files run solver r0001.log to run solver rN − 1.log. This option can be
specified in the domain.logging args field of the user script.

• -h or --help: displays a summary of the different command line options.

EDF R&D Code Saturne version practical user’s guide
Code Saturne

documentation
Page 29/139

3.7 Launch scripts

The case preparer command code saturne create places an example of launch script, runcase, in
the SCRIPTS directory. This script is quite minimalist and is known to work on every architecture
Code Saturne has been tested on. If a batch system is available, this script will contain options for
batch submission. The script will then contain a line setting the proper PYTHONPATH variable for
Code Saturne to run. Finally, it simply contains the code saturne run command, possible with a
--param option when a parameters file defined by the GUI is used. Other options recognized by
code saturne run may be added.

In the case of a coupled calculation, this script also exists, and may be used for preprocessing stages,
but an additional runcase and accompanying coupling parameters.py file is added in the directory
above the coupled case directories, and may be used to define the list of coupled cases, as well as global
options, such as MPI options of the temporary execution directory.

When not using the GUI, or if additional options must be accessed, the cs user scripts.py file
may be copied from the DATA/REFERENCE to the DATA and edited. This file contains several Python
functions:

• define domain parameter file allows defining the choice of a parameters file produced by the
GUI. This is generally not useful, as the parameters file may be directly defined in runcase,
or passed as an option to code saturne run, but could be useful when running more complex
parametric scripts, and is provided for the sake of completeness.

• define domain parameters allows defining most parameters relative to case execution for the
current domain, including advanced options not accessible through the GUI. This function is
the most important one in the user scripts file, and contains descriptions of the various options.
Note that in most examples, setting of options is preceded by a if domain.param == None: line,
ensuring the settings are only active if no GUI-defined parameters file is present. This is used to
prevent accidental override of parameters defined by the GUI: parameters defined through the
user script have priority over the GUI parameters file, so if both are used, these tests may be
removed for parameters which should be defined through user scripts.

3.8 Graphical User Interface

A Graphical User Interface is available with Code Saturne. This Interface creates or reads an XML file
according to a specific Code Saturne schema which is then interpreted by the code.

In version , the Graphical Interface manages calculation parameters, standard initialisation values and
boundary conditions for standard physics, pulverised fuel combustion, gas combustion, atmospheric
flows, Lagrangian module, electrical model, compressible model and radiative transfers (user subrou-
tines can still be completed though).

The Interface is optional. Every data that can be specified through the Interface can also be specified
in the user subroutines. In case of conflict, all calculation parameters, initialisation value or boundary
condition set directly in the user subroutines will prevail over what is defined by the Interface. However,
it is no longer necessary to redefine everything in the user subroutines. Only what was not set or could
not be set using the Graphical Interface should be specified.

WARNING: There are some limitations to the changes that can be made between the Interface and
the user routines. In particular, it is not possible to specify a certain number of solved variables in
the Interface and change it in the user routines (for example, it is not possible to specify the use of
a k − ε model in the Interface and change it to Rij − ε in cs user parameters.f90, or to define
additional scalars in cs user parameters.f90 with respect to the Interface). Also, all boundaries
should be referenced in the Interface, even if the associated conditions are intended to be modified
in cs user boundary conditions, and their nature (entry, outlet, wall8, symmetry) should not be

8Smooth and rough walls are considered to have the same nature

EDF R&D Code Saturne version practical user’s guide
Code Saturne

documentation
Page 30/139

changed.

For example, in order to set the boundary conditions of a calculation corresponding to a channel flow
with a given inlet velocity profile, one should:
- set the boundary conditions corresponding to the wall and the output using the Graphical Interface
- set a dummy boundary condition for the inlet (uniform velocity for instance) - set the proper velocity
profile at inlet in cs user boundary conditions. The wall and output areas must not appear in
cs user boundary conditions. The dummy velocity entered in the Interface will not be taken into
account.

The Graphical User Interface is launched with the ./SaturneGUI command in the directory DATA. The
first step is then to load an existing parameter file (in order to modify it) or to open a new one. The
headings to be filled for a standard calculation are the following:

- Identity and paths: definition of the calculation directories (STUDY, CASE, DATA, SRC,
SCRIPTS, MESH).

- Calculation environment: definition of the mesh file(s), stand-alone execution of the Preprocessor
module (used by the Interface to get the groups of the boundary faces).

- Thermophysical models: physical model, ALE mobile mesh features, turbulence model, thermal
model, coupling with SYRTHES.

- Additional scalars: definition, initialisation of the scalars, and physical characteristics.

- Physical properties: reference pressure, fluid characteristics, gravity. It is also possible to write
user laws for the density, the viscosity, the specific heat and the thermal conductivity in the
interface through the use of a formulae interpreter.

- Volume conditions: initialisation of the variables, and definition of the zones where to apply head
losses or source terms.

- Boundary conditions: definition of the boundary conditions for each variable. The colors of the
boundary faces may be read directly from a “preprocessor.log*” files created by the Preprocessor
or a “run solver.log” file from a previous Solver run.

- Numerical parameters: number and type of time step, advanced parameters for the numerical
solution of the equations.

- Calculation control: parameters concerning the time averages, time step, location of the probes
where some variables will be monitored over time, definition of the frequency of the outputs in
the calculation log and in the chronological records and of the EnSight outputs. The item Profiles
allows to save, with a given frequency, 1D profiles on an axis defined from two points provided
by the user.

- Calculation management: management of the calculation restarts, updating of the launch script
(temporary execution directory, parallel computing, user data or result files, ...) and interactive
launch of the calculation.

The Code Saturne tutorial [14] offers a step-by-step guidance to the setting up of some simple calcula-
tions with the Code Saturne Interface.

To launch Code Saturne using an XML parameter file, the name of the file must be given using the
--param option of code saturne run in the launch script (see §3.7). When the launch script is
edited from the Interface (Calculation management → Prepare batch analysis), this option is set
automatically.

EDF R&D Code Saturne version practical user’s guide
Code Saturne

documentation
Page 31/139

3.9 User subroutines

3.9.1 Preliminary comments

The user can run the calculations with or without an interface, with or without the user subrou-
tines. Without interface, some user subroutines are needed (see §3.2.1). With interface, all the user
subroutines are optional.

The parameters can be read in the interface and then in the user subroutines. In the case that a
parameter is specified in the interface and in a user subroutine, it is the value in the user subroutine
that is taken into account. For this reason, all the examples of user subroutines are placed in the
EXAMPLES directory by the case setup code saturne create (and available subroutines in the directory
REFERENCE).

3.9.2 Example routines

Some user subroutines may be used for many different user definitions. As including enough examples
in those subroutines would make them very difficult to read, these routines provided as templates only,
with separate examples in a case’s EXAMPLES subdirectory of its SRC directory.

Example file names are defined by inserting the name of the matching example in the file name. For
example, a basic example for cs user boundary conditions.f90 is provided in
cs user boundary conditions-base.f90, while an example dedicated to atmospheric flows is pro-
vided in cs user boundary conditions-atmospheric.f90.

The user is encouraged to check what examples are available, and to study those that are relevant to
a given setup.

Template user subroutines contain three sections the user may define, marked by the following strings:

� INSERT VARIABLE DEFINITIONS HERE

� INSERT ADDITIONAL INITIALIZATION CODE HERE

� INSERT MAIN CODE HERE

Comparing template and example files with a graphical file comparison tool should help the user
highlights the matching sections from the examples, so it is recommended as good practice for those
not already very familiar with those user subroutines.

3.9.3 Main variables

This section presents a non-exhaustive list of the main variables that may be encountered by the user.
Most of them should not be modified by the user. They are calculated automatically from the data.
However it may be useful to know what they represent. Developers can also refer to [11].

These variables are listed in the alphabetical index at the end of this document (see § 8).

The type of each variable is given: integer [i], real number [r], integer array [ia], real array [ra].

For a further detailed list of variables, one can refer to the dedicated Doxygen documentation.

3.9.3.1 Array sizes

For array sizes, please refer to the following Doxygen documentation:

� Mesh dimensions,

EDF R&D Code Saturne version practical user’s guide
Code Saturne

documentation
Page 32/139

� General variable array dimensions,

� Specific variable array dimensions.

3.9.3.2 Geometric variables

The main geometric variables are available in most of the subroutines and directly accessible through
arrays defined in the mesh module (i.e. use mesh). For further details, please refer to the following
Doxygen documentation.

3.9.3.3 Physical variables

Almost all physical variables9 can be accessed via the cs field API and are available in all the
subroutines as fields (either through their name or their id). The previous system, which used multi-
dimensional arrays, has been progressively replaced by the cs field API.

For a thorough description of the user management of all physical variables as well as the corresponding
syntaxes between the cs field API (both in C and Fortran) and the previous system, please refer to
the dedicated Doxygen documentation.

Note that local arrays of values of physical variables, retrieved via the cs field API, follow a naming
convention, fully described at this page of the Doxygen documentation. It is highly recommended to
follow this convention to ease the comprehension.

About the solved variables

The indexes allowing marking out the different solved variables (from 1 to nvar) are integers available
in a “module” called numvar.

For example, ipr refers to the variable “pressure”.

The list of integers referring to solved variables can be accessed through the following Doxygen doc-
umentation. These variable index-numbers can be used to retrieve the corresponding field indices
(for instance, ivarfl(ipr) is the field index for the pressure), but also for some arrays of variable
associated options (for instance, visls0(itempk) is the viscosity of the temperature).

To access the main solved variables, please refer to the following Doxygen documentation.

Concerning the solved scalar variables (apart from the variables pressure, k, ε, Rij , ω, ϕ, f , α, νt), the
following is very important:

- The designation “scalar” refers to scalar variables which are solution of an advection equation,
apart from the variables of the turbulence model (k, ε, Rij , ω, ϕ, f , α, νt): for instance the
temperature, scalars which may be passive or not, “user” or not. The mean value of the square
of the fluctuations of a “scalar” is a “scalar”, too. The scalars may be divided into two groups:
nscaus “user” scalars and nscapp “specific physics” scalars, with nscal=nscaus+nscapp. nscal
must be less than or equal to nscamx.

- The jth user scalar is, in the whole list of the nscal scalars, the scalar number j. In the list of
the nvar solved variables, it corresponds to the variable number isca(j).

- The jth scalar related to a specific physics is, in the whole list of the nscal scalars, the scalar
number iscapp(j). In the list of the nvar solved variables, it corresponds to the variable number
isca(iscapp(j)).

- Apart from specific physics, the temperature (or the enthalpy) is the scalar number iscalt in
the list of the nscal scalars. It corresponds to the variable number isca(iscalt). if there is no
thermal scalar, iscalt is equal to -1.

9except some of the properties defined at the cell centers

EDF R&D Code Saturne version practical user’s guide
Code Saturne

documentation
Page 33/139

- A “user” scalar number j may represent the mean of the square of the fluctuations of a scalar k
(i.e. the average ϕ′ϕ′ for a fluctuating scalar ϕ). This can be made either via the interface or by
declaring that scalar using cs parameters add variable variance in cs user parameters.c

(if the scalar in question is not a “user” scalar, the selection is made automatically). For in-
stance, if j and k are “user” scalars, the variable ϕ corresponding to k is the variable number
isca(k)=isca(iscavr(j)).10.

About the physical properties at the cell centers
To access the physical properties, please refer to the following Doxygen documentation. Some index
numbers are also described in the physical properties numbering Doxygen documentation.

Note: Variable physical properties
Some physical properties such as specific heat or diffusivity are often constant (choice made by the

user). In that case, in order to limit the necessary memory, these properties are stored as a simple real
number rather than in a domain-sized array of reals.

• This is the case for the specific heat Cp.

- If Cp is constant, it can be specified in the interface or by indicating icp=0 in
cs user parameters.f90, and the property will be stored in the real number cp0.

- If Cp is variable, it can be specified in the interface or by indicating icp=1 in
cs user parameters.f90. The code will then modify this value to make icp refer to the
effective property field id corresponding to the specific heat, in a way which is transparent
for the user. For each cell iel, the value of Cp can then be defined in usphyv in an array
which pointer can be retrieved by calling field get val s(icp, cpro cp).

• This is the same for the diffusivity K of each scalar iscal.

- If k is constant, it can be specified in the interface or by calling field set key int(ivarfl(isca(iscal)),

kivisl, -1) in cs user parameters.f90, (in usipsu) and the property will be stored in
the real number visls0(iscal).

- If k is variable, it can be specified in the interface or by calling field set key int(ivarfl(isca(iscal)),

kivisl, 0) in cs user parameters.f90, (in usipsu). The code will then modify this key
value to make it refer to the effective field id corresponding to the diffusivity of the scalar
iscal, in a way which is transparent for the user. For each cell iel, the value of k is then
given in usphyv and stored in the field whose id is given by calling field set key int(ivarfl(isca(iscal)),

kivisl, ...).

Two other variables, hbord and tbord, should be noted here, although they are relatively local (they
appear only in the treatment of the boundary conditions) and are used only by developers.

hbord(nfabor) [ra]: Array of the exchange coefficient for temperature (or enthalpy) at the boundary
faces. The table is allocated only if isvhb is set to 1 in the subroutine tridim (which is note
a user subroutine), which is done automatically, but only if the coupling with SYRTHES or
the 1D thermal wall module are activated..

tbord(nfabor) [ra]: Temperature (or enthalpy) at the boundary faces11. The table is allocated only
if isvtb is set to 1 in the subroutine tridim (which is note a user subroutine), which is done
automatically but only if the coupling with SYRTHES or the 1D thermal wall module are
activated..

Tables hbord and tbord are of size nfabor, although they concern only the wall boundary faces.

10It is really ϕ′ϕ′, and not

√
ϕ′ϕ′

11It is the physical temperature at the boundary faces, not the boundary condition for temperature. See [11] for more
details on boundary conditions

EDF R&D Code Saturne version practical user’s guide
Code Saturne

documentation
Page 34/139

3.9.3.4 Variables related to the numerical methods

The main numerical variables and “pointers” are described in the Doxygen documentation below.

Boundary conditions

� ifmfbr and isympa arrays.

� itrifb, itypfb and uetbor arrays.

Distance to the wall

� dispar and yplpar arrays.

Pressure drops and porosity

� icepdc, ckupdc and porosi arrays as well as ncepdcncepdc.

Mass sources

� icetsm, itypsm and smacel arrays as well as ncetsm.

Wall 1D thermal module

nfpt1d [i]: Number of boundary faces which are coupled with a wall 1D thermal module. See the
user subroutine cs user 1d wall thermal.c.

ifpt1d [ia]: Array allowing marking out the numbers of the nfpt1d boundary faces which are cou-
pled with a wall 1D thermal module. The numbers of these boundary faces are given by
ifpt1d(ii), with 16ii6nfpt1d. See the user subroutine cs user 1d wall thermal.c.

nppt1d [ia]: Number of discretisation cells in the 1D wall for the nfpt1d boundary faces which are
coupled with a 1D wall thermal module. The number of cells for these boundary faces is given
by nppt1d(ii), with 16ii6nfpt1d. See the user subroutine cs user 1d wall thermal.c.

eppt1d [ia]: Thickness of the 1D wall for the nfpt1d boundary faces which are coupled with a 1D
wall thermal module. The wall thickness for these boundary faces is therefore given by
eppt1d(ii), with 16ii6nfpt1d. See the user subroutine cs user 1d wall thermal.c.

Others

dt(ncelet) [ra]: Value of the time step.

ifmcel(ncelet) [ia]: Family number of the elements. See note 1.

./doxygen/src/group__mesh.html#ifmfbr
./doxygen/src/group__mesh.html#isympa
./doxygen/src/group__coupled__case.html#itrifb
./doxygen/src/group__coupled__case.html#itypfb
./doxygen/src/group__coupled__case.html#uetbor
./doxygen/src/group__auxiliary.html#dispar
./doxygen/src/group__auxiliary.html#yplpar
./doxygen/src/group__auxiliary.html#icepdc
./doxygen/src/group__auxiliary.html#ckupdc
./doxygen/src/group__auxiliary.html#porosi
./doxygen/src/group__auxiliary.html#ncepdc
./doxygen/src/group__auxiliary.html#icetsm
./doxygen/src/group__auxiliary.html#itypsm
./doxygen/src/group__auxiliary.html#smacel
./doxygen/src/group__auxiliary.html#ncetsm

EDF R&D Code Saturne version practical user’s guide
Code Saturne

documentation
Page 35/139

s2kw(ncelet) [ra]: Square of the norm of the deviatoric part of the deformation rate tensor (S2 =
2SDijS

D
ij). This array is defined only with the k − ω (SST) turbulence model.

divukw [ia]: Divergence of the velocity. More precisely it is the trace of the velocity gradient (and
not a finite volume divergence term). In the cell iel, div(u) is given by divukw(iel1). This
array is defined only with the k − ω SST turbulence model (because in this case it may be
calculated at the same time as S2)..

Note: boundary conditions
The gradient boundary conditions in Code Saturne boil down to determine a value for the current
variable Y at the boundary faces fb, that is to say Yfb , value expressed as a function of YI′ , value of Y
in I ′, projection of the center of the adjacent cell on the straight line perpendicular to the boundary
face and crossing its center:

Yfb = Agfb +BgfbYI′ . (1)

For a face ifac, the pair of coefficients Agfb , B
g
fb

is may be accessed using the field get coefa s and
field get coefb s functions, replacing s with v for a vector.

The flux boundary conditions in Code Saturne boil down to determine the value of the diffusive flux
of the current variable Y at the boundary faces fb, that is to say Dib (Kfb , Y), value expressed as
a function of YI′ , value of Y in I ′, projection of the center of the adjacent cell on the straight line
perpendicular to the boundary face and crossing its center:

Dib (Kfb , Y) = Affb +BffbYI′ . (2)

For a face ifac, the pair of coefficients Affb , B
f
fb

may be accessed using the field get coefaf s and
field get coefbf s functions, replacing s with v for a vector.

The divergence boundary conditions in Code Saturne boil down to determine a value for the current
variable Y (mainly the Reynolds stress components, the divergence div

(
R
)

used in the calculation of
the momentum equation) at the boundary faces fb, that is to say Yfb , value expressed as a function of
YI′ , value of Y in I ′, projection of the center of the adjacent cell on the straight line perpendicular to
the boundary face and crossing its center:

Yfb = Adfb +BdfbYI′ . (3)

For a face ifac, the pair of coefficients Adfb , B
d
fb

may be accessed using the field get coefad s and
field get coefbd s functions, replacing s with v for a vector.

EDF R&D Code Saturne version practical user’s guide
Code Saturne

documentation
Page 36/139

3.9.3.5 User arrays

Modules containing user arrays accessible from all user subroutines may be defined in the user modules.f90

file. This file is compiled before any other Fortran user file, to ensure modules may be accessed in
other user subroutines using the use <module> construct. It may contain any routines or variables
the user needs, and contains no predefined routines or variables (i.e. the only specificity of this file is
that a file with this name is compiled before all others).

3.9.3.6 Parallelism and periodicity

Parallelism is based on domain partitioning: each processor is assigned a part of the domain, and data
for cells on parallel boundaries is duplicated on neighbouring processors in corresponding “ghost”, or
“halo” cells (both terms are used interchangeably). Values in these cells may be accessed just the same
as values in regular cells. Communication is only required when cell values are modified using values
from neighbouring cells, as the values in the “halo” can not be computed correctly (since the halo
does not have access to all its neighbours), so halo values must be updated by copying values from the
corresponding cells on the neighbouring processor.

Compared to other tools using a similar system, a specificity of Code Saturne is the separation of the
halo in two parts: a standard part, containing cells shared through faces on parallel boundaries, and an
extended part, containing cells shared through vertices, which is used mainly for least squares gradient
reconstruction using an extended neighbourhood. Most updates need only to operate on the standard
halo, requiring less data communication than those on the extended halos.

Figure 4: Parallel domain partitioning: halos

Periodicity is handled using the same halo structures as parallelism, with an additional treatment for
vector and coordinate values: updating coordinates requires applying the periodic transformation to
the copied values, and in the case of rotation, updating vector and tensor values also requires applying
the rotation transformation. Ghost cells may be parallel, periodic, or both. The example of a pump
combining parallelism and periodicity is given in Figure 5. In this example, all periodic boundaries
match with boundaries on the same domain, so halos are either parallel or periodic.

Figure 5: Combined parallelism and periodicity

Activation

Parallelism is activated by means of the GUI or of the launch scripts in the standard cases:

EDF R&D Code Saturne version practical user’s guide
Code Saturne

documentation
Page 37/139

• On clusters with batch systems, the launching of a parallel run requires to complete the batch
cards located in the beginning of runcase script, and set the number of MPI processes, or the
numbers of physical nodes and processors per node (ppn) wanted. This can be done through the
Graphical Interface or by editing the runcase file directly. The number of processors defined
here will override the number defined through the GUI in a non-batch environment (so that
studies defined on one environment may be migrated to larger compute resources easily), but it
may be overridden by the define case parameters function from the cs user scripts.py file,
or by setting the n procs weight, n procs min, and n procs max parameters for the different
domains defined in coupling parameters.py.

• On clusters with unsupported batch systems, runcase file may have to be modified manually.
Please do not hesitate to contact the Code Saturne support (saturne-support@edf.fr) so that these
modifications can be added to the standard launch script to make it more general.

• A parallel calculation may be stopped in the same manner as a sequential one using the file
control file (see paragraph 3.2.5).

• The standard elements of information displayed in the log (marked out with ’v ’ for the min/max
values of the variables), ’c ’ for the data concerning the convergence and ’a ’ for the values
before clipping) are global values for the whole domain and not related to each processor.

User subroutines

The user can check in a subroutine

- that the presence of periodicity is tested with the variable iperio (=1 if periodicity is activated);

- that the presence of rotation periodicities is tested with the variable iperot (number of rotation
periodicities);

- that running of a calculation in parallel is tested for with the variable irangp (irangp is worth
-1 in the case of a non-parallel calculation and p− 1 in the case of a parallel calculation, p being
the number of the current processor)

Attention must be paid to the coding of the user subroutines. If conventional subroutines like
cs user parameters.f90 or cs user boundary conditions usually do not cause any problem, some
kind of developments are more complicated. The most usual cases are dealt with below.
Examples are given for the subroutine cs user extra operations.

• Access to information related to neighbouring cells in parallel and periodic cases.
When periodicity or parallelism are brought into use, some cells of the mesh become physically
distant from their neighbours. Concerning parallelism, the calculation domain is split and dis-
tributed between the processors: a cell located at the “boundary” of a given processor may have
neighbours on different processors.
In the same way, in case of periodicity, the neighbouring cells of cells adjacent to a periodic face
are generally distant.
When data concerning neighbouring cells are required for the calculation, they must first be
searched on the other processors or on the other edge of periodic frontiers. In order to ease the
manipulation of these data, they are stored temporarily in virtual cells called “halo” cells, as can
be seen in Figure 4. It is in particular the case when the following operations are made on a
variable A:

- calculation of the gradient of A (use of the subroutine grdcel);

- calculation of an internal face value from the values of A in the neighbouring cells (use of
ifacel).

EDF R&D Code Saturne version practical user’s guide
Code Saturne

documentation
Page 38/139

The variable A must be exchanged before these operations can be made: to allow it, the subrou-
tine synsca may be called.

• Global operations in parallel mode.
In parallel mode, the user must pay attention when performing global operations. The following
list is not exhaustive:

- calculation of extreme values on the domain (for instance, minimum and maximum of some
calculation values);

- test of the existence of a certain value (for instance, do faces of a certain color exist?);

- verification of a condition on the domain (for instance, is a given flow value reached some-
where?);

- counting out of entities (for instance, how many cells have pressure drops?);

- global sum (for instance, calculation of a mass flow or the total mass of a pollutant).

The user may refer to the different examples present in the directory EXAMPLES in the
cs user extra operations-parallel operations.f90 file. Care should be taken with the fact
that the boundaries between subdomains consist of internal faces shared between two processors
(these are indeed internal faces, even if they are located at a “processor boundary”). They
should not be counted twice (once per processor) during global operations using internal faces
(for instance, counting the internal faces per processor and summing all the obtained numbers
drives into over-evaluating the number of internal faces of the initial mesh).

• Writing operations that should be made on one processor only in parallel mode.
In parallel mode, the user must pay attention during the writing of pieces of information. Writing
to “run solver.log” can be done simply by using the nfecra logical unit (each processor will write
to its own “run solver.log” file): use write(nfecra,
If the user wants an operation to be done by only one processor (for example, open or write a file),
the associated instructions must be included inside a test on the value of irangp (generally it is
the processor 0 which realises these actions, and we want the subroutine to work in non-parallel
mode, too: if (irangp.le.0) then ...).

Some notes about periodicity

Note that periodic faces are not part of the domain boundary: periodicity is interpreted as a “geomet-
ric” condition rather than a classical boundary condition.

Some particular points should be reminded:

- Periodicity can also work when the periodic boundaries are meshed differently (periodicity of
non-conforming faces), except for the case of a 180 degree rotation periodicity with faces coupled
on the rotation axis.

- rotation periodicity is incompatible with

- semi-transparent radiation,

- reinforced velocity-pressure coupling (ipucou=1).

- although it has not been the case so far, potential problems might be met in the case of rotation
periodicity with the Rij−ε (LRR) model. They would come from the way of taking into account
the orthotropic viscosity (however, this term usually has a low influence).

3.9.3.7 Variables saved to allow calculation restarts

The directory checkpoint contains:

- main: main restart file,

EDF R&D Code Saturne version practical user’s guide
Code Saturne

documentation
Page 39/139

- auxiliary: auxiliary restart file (see ileaux, iecaux),

- radiative transfer: restart file for the radiation module,

- lagrangian: main restart file for the Lagrangian module,

- lagrangian stats: auxiliary restart file for the Lagrangian module (mainly for the statistics),

- 1dwall module: restart file for the 1D wall thermal module,

- vortex: restart file for the vortex method (see ivrtex).

The main restart file contains the values in every cell of the mesh for pressure, velocity, turbulence
variables and all the scalars (user scalars et specific physics scalars. Its content is sufficient for a
calculation restart, but the complete continuity of the solution at restart is not ensured12.

The auxiliary restart file completes the main restart file to ensure solution continuity in the case of a
calculation restart. If the code cannot find one or several pieces of data required for the calculation
restart in the auxiliary restart file, default values are then used. This allows in particular to run
calculation restarts even if the number of faces has been modified (for instance in case of modification
of the mesh merging or of periodicity conditions13). More precisely, the auxiliary restart file contains
the following data:

- type and value of the time step, turbulence model,

- density value at the cells and boundary faces, if it is variable,

- values at the cells of the other variable physical properties, when they are extrapolated in time
(molecular dynamic viscosity, turbulent or sub-grid scale viscosity, specific heat, scalar diffusiv-
ity). The specific heat is stored automatically for the Joule effect (in case the user should need it
at restart to calculate the temperature from the enthalpy before the new specific heat has been
estimated),

- time step value at the cells, if it is variable,

- mass flow value at the internal and boundary faces (at the last time step, and also at the previous
time step if required by the time scheme),

- boundary conditions,

- values at the cells of the source terms when they are extrapolated in time,

- number of time-averages, and values at the cells of the associated cumulated values,

- for each cell, distance to the wall when it is required (and index-number of the nearest boundary
face, depending on icdpar),

- values at the cells of the external forces in balance with a part of the pressure (hydrostatic, in
general),

- for the D3P gas combustion model: massic enthalpies and temperatures at entry, type of bound-
ary zones and entry indicators,

- for the EBU gas combustion model: temperature of the fresh gas, constant mixing rate (for the
models without mixing rate transport), types of boundary zones, entry indicators, temperatures
and mixing rates at entry,

12In other words, a restart calculation of n time steps following a calculation of m time steps will not yield strictly the
same results as a direct calculation on m+n time steps, whereas it is the case when the auxiliary file is used

13Imposing a periodicity changes boundary faces into internal faces

EDF R&D Code Saturne version practical user’s guide
Code Saturne

documentation
Page 40/139

- for the LWC gas combustion model: the boundaries of the probability density functions for
enthalpy and mixing rate, types of boundary zones, entry indicators, temperatures and mixing
rates at entry,

- for the pulverised coal combustion: coal density, types of boundary zones, variables ientat,
ientcp, inmoxy, timpat, x20 (in case of coupling with the Lagrangian module, iencp and x20

are not saved),

- for the pulverised fuel combustion: types of boundary zones, variables ientat, ientfl, inmoxy,
timpat, qimpat , qimpfl,

- for the electric module: the tuned potential difference dpot and, for the electric arcs module,
the tuning coefficient coejou (when the boundary conditions are tuned), the Joule source term
for the enthalpy (when the Joule effect is activated) and the Laplace forces (with the electric arc
module).

It should be noted that, if the auxiliary restart file is read, it is possible to run calculation restarts
with relaxation of the density14(when it is variable), because this variable is stored in the restart file.
On the other hand, it is generally not possible to do the same with the other physical properties (they
are stored in the restart file only when they are extrapolated in time, or with the Joule effect for the
specific heat).

Apart from vortex which has a different structure and is always in text format, all the restart files
are binary files. Nonetheless, they may be dumped or compared using the cs io dump tool.

In the case of parallel calculations, it should be noted that all the processors will write their restart
data in the same files. Hence, for instance, there will always be one and only one main file, whatever
the number of processors used. The data in the file are written according to the initial full domain
ids for the cells, faces and nodes. This allows in particular to restart using p processors a calculation
begun with n processors, or to make the restart files independent of any mesh renumbering that may
be carried out in each domain.

WARNING: if the mesh is composed of several files, the order in which they appear in the launch script
or in the Graphical Interface must not be modified in case of a calculation restart15.

NOTE: when joining of faces or periodicity is used, two nodes closer than a certain (small) toler-
ance will be merged. Hence, due to numerical truncation errors, two different machines may yield
different results. This might change the number of faces in the global domain16 and make restart files
incompatible. Should that problem arise when making a calculation restart on a different architec-
ture, the solution is to ignore the auxiliary file and use only the main file, by setting ileaux = 0 in
cs user parameters.f90

3.9.4 Using selection criteria in user subroutines

In order to use selection criteria (cf. §3.10) in Fortran user subroutines, a collection of utility subrou-
tines is provided. The aim is to define a subset of the mesh, for example:

- boundary regions (cf. cs user boundary conditions, usalcl, cs user radiative transfer bcs.f90,
cs user lagr boundary conditions, ...),

- volume initialization (cf. cs user initialization, ...),

- head-loss region (cf. cs user head losses.f90),

- source terms region (cf. cs user source terms),

14Such a relaxation only makes sense for a steady calculation
15When uncertain, the user can check the saved copy of the launch script in the RESU directory, or the head of the

preprocessor*.log files, which repeat the command lines passed to the Preprocessor module
16The number of cells will not be modified, it is always the sum of the number of cells of the different meshes

EDF R&D Code Saturne version practical user’s guide
Code Saturne

documentation
Page 41/139

- advanced post-processing (cf. cs user postprocess.c, cs user extra operations, ...),

This section explains how to define surface or volume sections, in the form of lists lstelt of nlelt

elements (internal faces, boundary faces or cells). For each type of element, the user calls the appro-
priate Fortran subroutine: getfbr for boundary faces, getfac for internal faces and getcel for cells.
All of these take the three following arguments:

- the character string which contains the selection criterion (see some examples below),

- the returned number of elements nlelt,

- the returned list of elements lstelt.

Several examples of possible selections are given here:

- call getfbr(’Face_1, Face_2’, nlelt, lstelt) to select boundary faces in groups Face 1
or Face 2,

- call getfac(’4’, nlelt, lstelt) to select internal faces of color 4,

- call getfac(’not(4)’, nlelt, lstelt) to select internal faces which have a different color
than 4,

- call getfac(’4 to 8’, nlelt, lstelt) to internal faces with color between 4 and 8 internal
faces,

- call getcel(’1 or 2’, nlelt, lstelt) to select cells with colors 1 or 2,

- call getfbr(’1 and y > 0’, nlelt, lstelt) to select boundary faces of color 1 which have
the coordinate Y > 0,

- call getfac(’normal[1, 0, 0, 0.0001]’, nlelt, lstelt) to select internal faces which have
a normal direction to the vector (1,0,0),

- call getcel(’all[]’, nlelt, lstelt) to select all cells.

The user may then use a loop on the selected elements.
For instance, in the subroutine cs user boundary conditions used to impose boundary conditions,
let us consider the boundary faces of color number 2 and which have the coordinate X <= 0.01 (so
that call getfbr(’2 and x <= 0.01’, nlelt,lstelt)); we can do a loop (do ilelt = 1, nlelt)
and obtain ifac = lstelt(ilelt).

More examples are available in the doxygen documentation.

Note: legacy method using explicit families and properties

The selection method for user subroutines by prior versions of Code Saturne is still available, though
it may be removed in future versions. This method was better adapted to working with colors than
with groups, and is explained here:

From Code Saturne’s point of view, all the references to mesh entities (boundary faces and volume
elements) correspond to a number (color number or negative of group number) associated with the
entity. An entity may have several references (for instance, one entity may have one color and belong
to several groups). In Code Saturne, these references may be designated as “properties”.
The mesh entities are gathered in equivalence classes on the base of their properties. These equivalence
classes are called “families”. All the entities of one family have the same properties. In order to know
the properties (in particular the color) of an entity (a boundary face for example), the user must first
determine the family to which it belongs.

EDF R&D Code Saturne version practical user’s guide
Code Saturne

documentation
Page 42/139

For instance, let’s consider a mesh whose boundary faces have all been given one color (for example
using SIMAIL). The family of the boundary face ifac is ifml=ifmfbr(ifac). The first (and only)
property of this family is the color icoul, obtained for the face ifac with icoul=iprfml(ifml,1).
In order to know the property number corresponding to a group, the utility function numgrp(nomgrp,

lngnom) (with a name nomgrp of the type character* and its length lngnom of the type integer)
can be used.

3.10 Face and cell mesh-defined properties and selection

The mesh entities may be referenced by the user during the mesh creation. These references may then
be used to mark out some mesh entities according to the need (specification of boundary conditions,
pressure drop zones, ...). The references are generally of one of the two following types:

• color. A color is an integer possibly associated with boundary faces and volume elements by
the mesh generator. Depending on the tool, this concept may have different names, which
Code Saturne interprets as colors. Most tools allow only one color per face or element.

- I-deas uses a color number with a default of 7 (green) for elements, be they volume elements
or boundary “surface coating” elements. Color 11 (red) is used for for vertices, but vertex
properties are ignored by Code Saturne.

- SIMAIL uses the equivalent notions of “reference” for element faces, and “subdomain”
for volume elements. By default, element faces are assigned no reference (0), and volume
elements domain 1.

- Gmsh uses “physical property” numbers.

- EnSight has no similar notion, but if several parts are present in an EnSight 6 file, or
several parts are present and vertex ids are given in an Ensight Gold file, the part number
is interpreted as a color number by the Preprocessor.

- The MED 2.3 model allowed integer “attributes”, though many tools working with this
format ignored those and only handle groups.

• groups. Named “groups” of mesh entities may also be used with many mesh generators or
formats. In some cases, a given cell or face may belong to multiple groups (as some tools allow
new groups to be defined by boolean operations on existing groups). In Code Saturne, every
group is assigned a group number (base on alphabetical ordering of groups).

- I-deas assigns a group number with each group, but by default, this number is just a
counter. Only the group name is considered by Code Saturne (so that elements belonging to
two groups with identical names and different numbers are considered as belonging to the
same group).

- CGNS allows both for named boundary conditions and mesh sections. If present, boundary
condition names are interpreted as group names, and groups may also be defined based on
element section or zone names using additional Preprocessor options (-grp-cel or -grp-fac
followed by section or zone).

- Using the MED format, it is preferable to use “groups” than colors, as many tools ignore
the latter.

Selection criteria may be defined in a similar fashion whether using the GUI or in user subroutines.
Typically, a selection criteria is simply a string containing the required color numbers or group names,
possibly combined using boolean expressions. Simple geometric criteria are also possible.

A few examples are given below:

ENTRY

1 or 7

all[]

EDF R&D Code Saturne version practical user’s guide
Code Saturne

documentation
Page 43/139

3.1 >= z >= -2 or not (15 or entry)

range[04, 13, attribute]

sphere[0, 0, 0, 2] and (not no_group[])

Strings such as group names containing white-space or having names similar to reserved operators may
be protected using “escape characters”.17 More complex examples of strings with protected strings
are given here:

"First entry" or Wall\ or\ sym

entry or \plane or "noone’s output"

The following operators and syntaxes are allowed (fully capitalized versions of keywords are also al-
lowed, but mixed upper-case/lower-case versions are not):

escape characters
protect next character only: \
protect string: ’string’ "string"

basic operators
priority: ()

not: not ! !=

and: and & &&

or: or | || , ;

xor: xor ^

general functions
select all: all[]

entities having no group or color: no group[]

select a range of groups or colors: range[first, last]
range[first, last, group]

range[first, last, attribute]

For the range operator, first and last values are inclusive. For attribute (color) numbers, natural
integer value ordering is used, while for group names, alphabetical ordering is used. Note also that in
the bizarre (not recommended) case in which a mesh would contain for example both a color number
15 and a group named “15”, using range[15, 15, group] or range[15, 15, attribute] could be
used to distinguish the two.

Geometric functions are also available. The coordinates considered are those of the cell or face centres.
Normals are of course usable only for face selections, not cell selections.

17Note that for defining a string in Fortran, double quotes are easier to use, as they do not conflict with Fortran’s
single quotes delimiting a string. In C, the converse is true. Also, in C, to define a string such as \plane, the string
\\plane must be used, as the first \ character is used by the compiler itself. Using the GUI, either notation is easy.

EDF R&D Code Saturne version practical user’s guide
Code Saturne

documentation
Page 44/139

geometric functions
face normals: normal[x, y, z, epsilon]

normal[x, y, z, epsilon = epsilon]
plane, ax+ by + cz + d = 0 form: plane[a, b, c, d, epsilon]

plane[a, b, c, d, epsilon = epsilon]
plane[a, b, c, d, inside]

plane[a, b, c, d, outside]

plane, normal + point in plane form: plane[nx, ny, nz, x, y, z, epsilon]
plane[nx, ny, nz, x, y, z, epsilon = epsilon]
plane[nx, ny, nz, x, y, z, inside]

plane[nx, ny, nz, x, y, z, outside]

box, extents form: box[xmin, ymin, zmin, xmax, ymax, zmax]
box, origin + axes form: box[x0, y0, z0,

dx1, dy1, dz1, dx2, dy2, dz2, dx3, dy3, dz3]

cylinder: cylinder[x0, y0, z0, x1, y1, z1, radius]
sphere: sphere[xc, yc, zc, radius]
inequalities: >, <, >=, <= associated with x, y, z or X, Y, Z keywords

and coordinate value;
xmin <= x < xmax type syntax is allowed.

In the current version of Code Saturne, all selection criteria used are maintained in a list, so that
re-interpreting a criterion already encountered (such as at the previous time step) is avoided. Lists
of entities corresponding to a criteria containing no geometric functions are also saved in a compact
manner, so re-using a previously used selection should be very fast. For criteria containing geometric
functions, the full list of corresponding entities is not maintained, so each entity must be compared to
the criterion at each time step. Heavy use of many selection criteria containing geometric functions
may thus lead to reduced performance.

4 Importing and preprocessing meshes
Importing meshes is done by the Preprocessor module, while and preprocessing is done mainly by the
code Solver (except for element orientation checking, which is done by the Preprocessor).

The Preprocessor module of Code Saturne reads the mesh file(s) (under any supported format) and
translates the necessary information into a Solver input file.

When multiple meshes are used, the Preprocessor is called once per mesh, and each resulting output
is added in a mesh input directory (instead of a single mesh input file).

The executable of the Preprocessor module is cs preprocess, and is normally called through the
run script, so it is not in standard paths (it is at <prefix>/libexec/code saturne/cs preprocess).
Its most useful options and sub-options are described briefly here. To obtain a complete and up-
to-date list of options and environment variables, use the following command: cs preprocess -h or
cs preprocess --help. Many options, such as this one, accept a short and a long version.

Nonetheless, it may be useful to call the Preprocessor manually in certain situations, especially for
frequent verification when building a mesh, so its use is described here. Verification may also be done
using the GUI or the mesh quality check mode of the general run script.

The Preprocessor is controlled using command-line arguments. A few environment variables allow
advanced users to modify some behaviours or to obtain a trace of memory management.

4.1 Preprocessor options

Main choices are done using command-line options. For example:

cs preprocess --num 2 fluid.med

EDF R&D Code Saturne version practical user’s guide
Code Saturne

documentation
Page 45/139

means that we read the second mesh defined in the fluid.med file, while:

cs preprocess --no-write --post-volume med fluid.msh

means that we read file fluid.msh, and do not produce a mesh input file, but do output a fluid.med

file (effectively converting a Gmsh file to a MED file).

4.1.1 Mesh selection

Any use of the preprocessor requires one mesh file (except for cs preprocess and cs preprocess -h

which respectively print the version number and list of options). This file is selected as the last
argument to cs preprocess, and its format is usually automatically determined based on its extension
(c.f. 3.4.1 page 21) but a --format option allows forcing the format choice of the selected file.

For formats allowing multiple meshes in a single file, the --num option followed by a strictly positive
integer allows selection of a specific mesh; by default, the first mesh is selected.

For meshes in CGNS format, we may in addition use the --grp-cel or --grp-fac options, followed
by the section or zone keywords, to define additional groups of cell or faces based on the organization
of the mesh in sections or zones. The sub-options have no effect on meshes of other formats.

4.1.2 Post-processing output

By default, the Preprocessor does not generate any post-processor output. By adding --post-volume

[format], with the optional format argument being one of ensight, med, or cgns to the command-line
arguments, the output of the volume mesh to the default or indicated format is provoked.

In case of errors, output of error visualization output is always produced, and by adding --post-error

[format], the format of that output may be selected (from one of ensight, med, or cgns, assuming
MED and CGNS are available),

4.1.3 Element orientation correction

Correction of element orientation is possible and can be activated using the --reorient option.

Note that we cannot guarantee correction (or even detection) of a bad orientation in all cases. Not all
local numbering possibilities of elements are tested, as we focus on “usual” numbering permutations.
Moreover, the algorithms used may produce false positives or fail to find a correct renumbering in the
case of highly non convex elements. In this case, nothing may be done short of modifying the mesh,
as without a convexity hypothesis, it is not always possible to choose between two possible definitions
starting from a point set.

With a post-processing option such as --post-error or, --post-volume, visualizable meshes of cor-
rected elements as well as remaining badly oriented elements are generated.

4.2 Environment variables

Setting a few environment variables specific to the Preprocessor allows modifying its default be-
haviour. In general, if a given behaviour is modifiable through an environment variable rather than
by a command-line option, it has little interest for a non-developer, or its modification is potentially
hazardous. The environment variables used by the Preprocessor are described here:

OMP NUM THREADS

Deactivating OpenMP by setting OMP NUM THREADS=1.

CS PREPROCESS MEM LOG

EDF R&D Code Saturne version practical user’s guide
Code Saturne

documentation
Page 46/139

Allows defining a file name in which memory allocation, reallocation, and freeing is logged.

CS PREPROCESS MIN EDGE LEN

Under the indicated length (10−15 by default), an edge is considered to be degenerate and its vertices
will be merged after the transformation to descending connectivity. Degenerate edges and faces will
thus be removed. Hence, the post-processed element does not change, but the Solver may handle a
prism where the preprocessor input contained a hexahedron with two identical vertex couples (and
thus a face of zero surface). If the Preprocessor does not print any information relative to this type of
correction, it means that it has not been necessary. To completely deactivate this automatic correction,
a negative value may be assigned to this environment variable.

CS PREPROCESS IGNORE IDEAS COO SYS

If this variable is defined and is a strictly positive integer, coordinate systems in I-deas universal format
files will be ignored. The behaviour of the Preprocessor will thus be the same as that of versions 1.0
and 1.1. Note that in any case, non Cartesian coordinate systems are not handled yet.

CS RENUMBER

Deactivating renumbering is possible by setting CS RENUMBER=off.

4.2.1 System environment variables

Some system environment variables may also modify the behaviour of the Preprocessor. For example,
if the Preprocessor was compiled with MED support on an architecture allowing shared (dynamic)
libraries, the LD PRELOAD environment variable may be used to define a “prioritary” path to load MED
or HDF5 libraries, thus allowing the user to experiment with other versions of these libraries without
recompiling the Preprocessor. To determine which shared libraries are used by an executable file, use
the following command: ldd {executable path}.

4.3 Optional functionality

Some functions of the Preprocessor are based on external libraries, which may not always be available.
It is thus possible to configure and compile the Preprocessor so as not to use these libraries. When
running the Preprocessor, the supported options are printed. The following optional libraries may be
used:

� CGNS library. In its absence, CGNS format support is deactivated.

� MED-file library. In its absence, MED format is simply deactivated.

� libCCMIO library. In its absence, CCM format is simply deactivated.

� Read compressed files using Zlib. With this option, it is possible to directly read mesh files
compressed with a gzip type algorithm and bearing a .gz extension. This is limited to formats
not already based on an external library (i.e. it is not usable with CGNS, MED, or CCM files),
and has memory and CPU time overhead, but may be practical. Without this library, files must
be uncompressed before use.

4.4 General remarks

Note that the Preprocessor is in general capable of reading all “classical” element types present in
mesh files (triangles, quadrangles, tetrahedra, pyramids, prisms, and hexahedra). Quadratic or cubic
elements are converted upon reading into their linear counterparts. Vertices referenced by no element

EDF R&D Code Saturne version practical user’s guide
Code Saturne

documentation
Page 47/139

(isolated vertices or centres of higher-degree elements) are discarded. Meshes are read in the order
defined by the user and are appended, vertex and element indices being incremented appropriately. 18

At this stage, volume elements are sorted by type, and the fluid domain post-processing output is
generated if required.

In general, groups assigned to vertices are ignored. selections are thus based on faces or cells. with
tools such as SIMAIL, faces of volume elements may be referenced directly, while with I-deas or
SALOME, a layer of surface elements bearing the required colors and groups must be added. Internally,
the Preprocessor always considers that a layer of surface elements is added (i.e. when reading a
SIMAIL mesh, additional faces are generated to bear cell face colors. When building the faces →
cells connectivity, all faces with the same topology are merged: the initial presence of two layers of
identical surface elements belonging to different groups would thus lead to a calculation mesh with
faces belonging to two groups).

4.5 Files passed to the Solver

Data passed to the Solver by the Preprocessor is transmitted using a binary file, using “big endian”
data representation, named mesh input (or contained in a directory of that name).

When using the Preprocessor for mesh verification, data for the Solver is not always needed. In this
case, the --no-write option may avoid creating a Preprocessor output file.

4.6 Mesh preprocessing

4.6.1 Joining of non-conforming meshes

Conforming joining of possibly non-conforming meshes may be done by the solver, and defined either
using the Graphical User Interface (GUI) or the cs user join user function. In the GUI, the user must
add entries in the “Face joining” section of the “Meshes” tab in the item “Calculation environment
→ Meshes selection”. The user may specify faces to be joined, and can also modify basic joining
parameters, see Figure6. For a simple mesh, it is rarely useful to specify strict face selection criteria, as

Figure 6: Conformal or non-conformal joining

joining is sufficiently automated to detect which faces may actually be joined. For a more complex mesh,
or a mesh with thin walls which we want to avoid transforming into interior faces, it is recommended
to filter boundary faces that may be joined by using face selection criteria. This has the additional
advantage of reducing the number of faces to test for in the intersection/overlap search, and thus
reduced to the time required by the joining algorithm.

One may also modify tolerance criteria using 2 options:

18Possible entity labels are not maintained, as they would probably not be unique when appending multiple meshes.

EDF R&D Code Saturne version practical user’s guide
Code Saturne

documentation
Page 48/139

fraction r assigns value r (where 0 < r < 0.49) to the maximum intersection distance
multiplier (0.1 by default). The maximum intersection distance for a given
vertex is based on the length of the shortest incident edge, multiplied by r.
The maximum intersection at a given point along an edge is interpolated from
that at its vertices, as shown on the left of Figure 7;

plane c assigns the maximum angle between normals for two faces to be considered
coplanar (25◦ by default); this parameter is used in the second stage of the
algorithm, to reconstruct conforming faces, as shown on the right of figure 7.

Intersection points

Maximum intersection distances

angle between two faces
reconstructed face

Figure 7: Maximum intersection tolerance and faces normal angle

In practice, we are sometimes led to increase the maximum intersection distance multiplier to 0.2 or
even 0.3 when joining curved surfaces, so that all intersection are detected. As this influences merging
of vertices and thus simplification of reconstructed faces, but also deformation of “lateral” faces, it
is recommended only to modify it if necessary. As for the plane parameter, its use has only been
necessary on a few meshes up to now, and always in the sense of reducing the tolerance so that face
reconstruction does not try to generate faces from initial faces on different surfaces.

4.6.2 Periodicity

Handling of periodicity is based on an extension of conforming joining, as shown on Figure 8. It is thus
not necessary for the periodic faces to be conforming (though it usually leads to better mesh quality).
All options relative to conforming joining of non-conforming faces also apply to periodicity. Note also
that once pre-processed, 2 periodic faces have the same orientation (possibly adjusted by periodicity
of rotation).

This operation can also be performed by the solver and specified either using the GUI or the
cs user periodicity function.

As with joining, it is recommended to filter boundary faces to process using a selection criterion. As
many periodicities may be built as desired, as long as boundary faces are present. Once a periodicity
is handled, faces having periodic matches do not appear as boundary faces, but as interior faces, and
are thus not available anymore for other periodicities.

4.6.3 Parameters for conforming or non-conforming mesh joinings

The setting of these parameters is done in the user subroutine cs user join (called once). The user
can specify the parameters used for the joining of different meshes. Below is given the list of the
standard parameters which can me modified:

- fract: the initial tolerance radius associated to each vertex is equal to the length of the shortest
incident edge, multiplied by this fraction,

- plane: when subdividing faces, 2 faces are considered coplanar and may be joined if the angle
between their unit normals (in degrees) does not exceed this parameter,

- iwarnj: the associated verbosity level (debug level if over 3).

EDF R&D Code Saturne version practical user’s guide
Code Saturne

documentation
Page 49/139

In the call of the function cs join add, a selection criteria for mesh faces to be joined is specified.

The call to the function ’cs join set advanced param’ allows defining parameters not available through
the GUI.

The list of advanced modifiable parameters is given below:

- mtf: a merge tolerance factor, used to locally modify the tolerance associated to each vertex
before the merge step. Depending on its value, four scenarios are possible:

→ if mtf = 0, no vertex merge

→ if mtf < 1, the vertex merge is more strict. It may increase the number of tolerance
reduction and therefore define smaller subset of vertices to merge together but it can drive
to loose intersections.

→ if mtf = 1, no change occurs

→ if mtf > 1, the vertex merge is less strict. The subset of vertices able to merge is greater.

- pmf: a pre-merge factor. This parameter is used to define a limit under which two vertices are
merged before the merge step,

- tcm: a tolerance computation mode. If its value is:

→ 1 (default), the tolerance is the minimal edge length related to a vertex, multiplied by a
fraction.

→ 2, the tolerance is computed like for 1 with, in addition, the multiplication by a coefficient
equal to the maximum between sin(e1) and sin(e2); where e1 and e2 are two edges sharing
the same vertex V for which we want to compute the tolerance.

→ 11, it is the same as 1 but taking into account only the selected faces.

→ 12, it is the same as 2 but taking into account only the selected faces.

- icm: the intersection computation mode. If its value is:

→ 1 (default), the original algorithm is used. Care should be taken to clip the intersection on
an extremity.

→ 2, a new intersection algorithm is used. Caution should be used to avoid clipping the
intersection on an extremity.

- maxbrk: defines the maximum number of equivalence breaks which is enabled during the merge
step,

- maxsf: defines the maximum number of sub-faces used when splitting a selected face

The following are advanced parameters used in the search algorithm for face intersections between
selected faces (octree structure). They are useful in case of memory limitation:

- tml: the tree maximum level is the deepest level reachable during the tree building,

- tmb: the tree maximum boxes is the maximum number of bounding boxes (BB) which can be
linked to a leaf of the tree (not necessary true for the deepest level),

- tmr: the tree maximum ratio. The building of the tree structure stops when the number of
bounding boxes is superior to the product of tmr with the number of faces to locate. This is an
efficient parameter to reduce memory consumption.

Examples of mesh modification are given in the following doxygen documentation.

EDF R&D Code Saturne version practical user’s guide
Code Saturne

documentation
Page 50/139

4.6.4 Parameters for periodicity

Periodicities can be set directly in the Graphical User Interface (GUI) or using the user function
cs user periodicity (called once during the calculation initialisation). In both cases, the user can
choose between 3 types of periodicities: translation, rotation, or mixed (see Figure9). Then specific
parameters must be set.

As periodicity is an extension of mesh joining, all parameters (whether basic or advanced) available for
mesh joining are also applicable for periodicity, in addition to the parameters defining the periodicity
transformation.

4.6.5 Modification of the mesh geometry

Functions called only once during the calculation initialisation.

The user function cs user mesh input allows a detailed selection of imported meshes read, reading
files multiple times, applying geometric transformations, and renaming groups.

The user function cs user mesh modify may be used for advanced modification of the main cs mesh t

structure.

WARNING: Caution must be exercised when using this function along with periodicity. Indeed, the
periodicity parameters are not updated accordingly, meaning that the periodicity may not be valid after
mesh vertex coordinates have changed. It is particularly true when one rescales the mesh. Rescaling
should thus be done in a separate run, before defining periodicity.

The user function cs user mesh thinwall allows insertion of thin walls in the calculation mesh. Cur-
rently, this function simply transforms the selected internal faces into boundary faces, on which bound-
ary conditions can (and must) be applied.

Faces on each side of a thin wall will share the same vertices, so post-processing of the main volume
mesh may not show the inserted walls, though they will appear in the main boundary output mesh.

4.7 Mesh smoothing utilities

Function called once only during the calculation initialisation.

The smoothing utilities may be useful when the calculation mesh has local defects. The principle of
smoothers is to mitigate the local defects by averaging the mesh quality. This procedure can help for
calculation robustness or/and results quality.

The user function cs user mesh smoothe allows to use different smoothing functions detailed below.

WARNING 1: Caution must be exercised when using this function along with periodicity. Indeed,
the periodicity parameters are not currently updated accordingly, meaning that the periodicity may be
unadapted after one changes the mesh vertex coordinates. It is particularly true when one rescales the
mesh. Rescaling should thus be done in a separate run, before defining periodicity.

WARNING 2: Caution must be exercised when using smoothing utilities because the geometry may be
modified. In order to preserve geometry, the function cs mesh smoother fix by feature allows to fix
by a feature angle criterion the mobility of boundary vertices.

4.7.1 Fix by feature

The vertex normals are defined by the average of the normals of the faces sharing the vertex. The
feature angle between a vertex and one of its adjacent faces is defined by the angle between the vertex
normal and the face normal.

This function sets a vertex if one of its feature angles is less than cos(θ) where θ is the maximum

EDF R&D Code Saturne version practical user’s guide
Code Saturne

documentation
Page 51/139

feature angle (in degrees) defined by the user. In fact, if θ = 0◦ all boundary vertices will be fixed,
and if θ = 90◦ all boundary vertices will be free.

Fixing all boundary vertices ensures the geometry is preserved, but reduces the smoothing algorithm’s
effectiveness.

4.7.2 Warped faces smoother

The function cs mesh smoother unwarp allows reducing face warping in the calculation mesh.

Be aware that, in some cases, this algorithm may degrade other mesh quality criteria.

5 Partitioning for parallel runs
Graph partitioning (using one of the optional Metis or Scotch libraries) is done by the Solver.
Unless explicitly deactivated, this stage produces one or several “cell → domain” distribution files,
named domain number p for a partitioning on p sub-domains, which may be read when starting a
subsequent computation so as to avoid re-running that stage. These files are placed in a directory
named partition output.

The Solver redistributes data read in mesh input based on the associated (re-read or computed) par-
titioning, so there is no need to run any prior script when running on a different number of processors,
although a previous partitioning may optionally be re-used.

Without a graph-based partitioning library, or based on the user’s choice, the Solver will use a built-in
partitioning using a space-filling curve (Z or Hilbert curve) technique. This usually leads to partition-
ings of lower quality than with graph partitioning, but parallel performance remains reasonable.

Partitioning options may be defined using the GUI or by calling the appropriate functions in the
cs user partition options user function.

5.1 Partitioning stages

Partitioning is always done just after reading the mesh, unless a partitioning input file is available, in
which case the partitioning replaces this stage.

When a mesh modification implying a change of cell connectivity graph is expected, the mesh may be
repartitioned after the pre-processing stage, prior to calculation. By default, re-partitioning is only
done if the partitioning algorithm chosen for that stage is expected to produce different results due
to the connectivity change. This is the case for graph-based algorithms such as those of Metis or
Scotch, when mesh joining is defined, or additional periodic matching is defined (and the algorithm
is not configured to ignore periodicity information).

There are thus two possible partitioning stages:

� CS PARTITION FOR PREPROCESS, which is optional, and occurs just after reading the mesh.

� CS PARTITION MAIN, which occurs just after reading the mesh if it is the only stage, or after mesh
preprocessing (and before computation), if the partitioning for preprocessing stage is activated.

The number of partitioning stages is determined automatically based on information provided through
cs partition set preprocess hints(), but repartitioning may also be forced or inhibited using the
cs partition set preprocess() user function.

EDF R&D Code Saturne version practical user’s guide
Code Saturne

documentation
Page 52/139

5.2 Partitioner choice

If the Solver has been configured with both PT-Scotch or Scotch and ParMetis or Metis libraries,
PT-Scotch will be used by default19, but the user may force the selection of another partitioning type
using either the GUI or user routines.

In addition to graph-based partitionings, a space-filling curve based algorithm is available, using either
a Morton (Z) or Peano-Hilbert curve, in the computation domain’s bounding box or bounding curve.

When partitioning for preprocessing, a space-filling curve is used, unless forced by calling
cs partition set algorithm() with the appropriate algorithm choice for the
CS PARTITION FOR PREPROCESS stage.

5.3 Effect of periodicity

By default, face periodicity relations are taken into account when building the “cell→ cell” connectivity
graph used for partitioning. This allows better partitioning optimization, but increases the probability
of having groups of cells at opposite sides of the domain in a same sub-domain. This is not an issue for
standard calculations, but may degrade performance of search algorithms based on bounding boxes.
It is thus possible to ignore periodicity when partitioning a mesh.

Also, partitioning using a space-filling curve ignores periodicity.

Note that nothing guarantees that a graph partitioner will not place disjoint cells in the same sub-
domain independently of this option, but this behaviour is rare.

6 Basic modelling setup

6.1 Initialisation of the main parameters

This operation is done in the Graphical User Interface (GUI) or by using the user subroutines in
cs user parameters.f90. In the GUI, the initialisation is performed by filling the parameters dis-
played in Figure10 to 25. If the ’Mobile mesh’ option is activated, please see Section 7.11.4 for more
details. The headings filled for the initialisation of the main parameters are the followings:

- Thermophysical model options: Steady or unsteady algorithm, specific physics, ALE mobile
mesh, turbulence model, thermal model and species transport (definition of the scalars and
their variances), see Figure 10 to Figure 13. If a thermal scalar, temperature or enthalpy, is
selected, two other headings on conjugate heat transfer and radiative transfers can be filled in
(see Figure 12).

- Body forces: gravity and coriolis forces, see Figure 14.

- Physical properties: reference pressure, velocity and length, fluid properties (density, viscosity,
thermal conductivity, specific heat and scalar diffusivity), see Figure 15 to Figure 16. If non-
constant values are used for the fluid properties, and if the GUI is not used, the
cs user physical properties file must be used, see § 6.5.1.

- Volume conditions: definition of volume regions (for initialisation, head losses and source terms,
see § 6.6 and § 6.7), initialisation of the variables (including scalars), see Figure 17.

- Boundary conditions: definition and parametrisation of boundary conditions for all variables
(including scalars). If the GUI is not used, the cs user boundary conditions file must be used,
see § 6.4.

19Though ParMetis will be chosen before serial Scotch in a parallel run

EDF R&D Code Saturne version practical user’s guide
Code Saturne

documentation
Page 53/139

- Numerical parameters: number and type of time steps, and advanced parameters for the numer-
ical solution of the equations, see Figure 18 to Figure 20.

- Calculation control: parameters related to the time averages, the locations of the probes where
some variables will be monitored over time (if the GUI is not used, this information is specified
in § 6.3), the definition of the frequency of the outputs in the calculation log, the post-processing
output writer frequency and format options, and the post-processing output meshes and variables
selection, see Figure 21, Figure 22, Figure 23, and Figure 24. The item “Profiles” allows to save,
with a frequency defined by the user, 1D profiles on a parametric curve define by its equation,
see Figure25.

With the GUI, the subroutine cs user parameters.f90 is only used to modify high-level parameters
which can not be managed by the interface. Without the GUI, this subroutine is compulsory and
some of the headings must be completed (see §3.2.1). cs user parameters.f90 is used to indicate the
value of different calculation basic parameters: constant and uniform physical values, parameters of
numerical schemes, input-output management...
It is called only during the calculation initialisation.

For more details about the different parameters, please refer to the key word list (§8).

cs user parameters.f90 is in fact constituted of 4 separate subroutines: usipph, usppmo, usipsu
and usipes. Each one controls various specific parameters. The keywords which are not featured
in the supplied example can be provided by the user in SRC/REFERENCE/base; in this case, under-
standing of the comments is required to add the keywords in the appropriate subroutine, it will
ensure that the value has been well defined. The modifiable parameters in each of the subroutines of
cs user parameters.f90 are:

• usipph: iturb, itherm and icavit (don’t modify these parameters anywhere else)

• usppmo: activation of specific physical models.

• usipsu: physical parameters of the calculation (thermal scalar, physical properties, ...), numerical
parameters (time steps, number of iterations, ...), definition of the time averages.

• usipes: post-processing output parameters (periodicity, variable names, probe positions, ...)

For more details on the different parameters, see the list of keywords (§ 8). The names of the keywords
can also be seen in the help sections of the interface.

• When using the interface, only the additional parameters (which can not be defined in the interface)
should appear in cs user parameters.f90. The user needs then only to activate examples which are
useful for his case (replacing if (.false.) with if (.true.), or removing such tests).

6.2 Selection of mesh inputs: cs user mesh input

Subroutine called only during the calculation initialisation.

This C function may be used to select which mesh input files are read, and apply optional coordinate
transformations or group renumberings to them. By default, the input read is a file or directory named
mesh input, but if this function is used, any file can be selected, and the same file can be read multiple
times (applying a different coordinate transformation each time). All inputs read through this function
are automatically concatenated, and may be later joined using the mesh joining options.

Geometric transformations are defined using a homogeneous coordinates transformation matrix. Such
a matrix has 3 lines and 4 columns, with the first 3 columns describing a rotation/scaling factor,
and the last column describing a translation. A 4th line is implicit, containing zeroes off-diagonal,
and 1 on the diagonal. The advantages of this representation is that any rotation/translation/scaling
combination may be expressed by matrix multiplication, while simple rotations or translations may
still be defined easily.

EDF R&D Code Saturne version practical user’s guide
Code Saturne

documentation
Page 54/139

6.3 Non-default variables initialisation

The non-default variables initialisation is performed in the subroutine cs user initialization (called
only during the calculation initialisation).
At the calculation beginning, the variables are initialised automatically by the code. Velocities and
scalars are set to 0 (or scamax or scamin if 0 is outside the acceptable scalar variation range), and the
turbulent variables are estimated from uref and almax.
For k (of variable index ik) in the k − ε, Rij − ε, v2f or k − ω models:

k = 1.5 (0.02 uref)
2

and in Rij − ε:
Rij =

2

3
kδij

For ε (of variable index iep) in the k − ε, Rij − ε or v2f models:

ε = k1.5 Cµ
almax

For ω (of variable index iomg) in the k − ω model:

ω = k0.5 1

almax

For ϕ and f (of variable indices iphi and ifb) in the v2f models:{
ϕ = 2

3

f = 0

For α (of variable index ial) in the EBRSM and BL-v2/k models:

α = 1

For ν̃t in the Spalart-Allmaras model:

ν̃t = 0.02

√
3

2
(uref)(almax)

The subroutine cs user initialization allows if necessary to initialise certain variables to values
closer to their estimated final values, in order to obtain a faster convergence.

This subroutine allows also the user to make a non-standard initialisation of physical parameters
(density, viscosity, ...), to impose a local value of the time step, or to modify some parameters (time
step, variable specific heat, ...) in the case of a calculation restart.

Note: value of the time step

- For calculations with constant and uniform time step (idtvar=0), the value of the time step is
dtref, given in the parametric file of the interface or in cs user parameters.f90.

- For calculations with a non-constant time step (idtvar=1 or 2), which is not a calculation restart,
the value of dtref given in the parametric file of the interface or in cs user parameters.f90 is
used to initialise the time step.

- For calculations with a non-constant time step (idtvar=1 or 2) which is a restart of a calculation
whose time step type was different (for instance, restart using a variable time step of a calculation
run using a constant time step), the value of dtref, given in the parametric file of the interface
or in cs user parameters.f90, is used to initialise the time step.

EDF R&D Code Saturne version practical user’s guide
Code Saturne

documentation
Page 55/139

- For calculations with non-constant time step (idtvar=1 or 2) which is a restart of a calculation
whose time step type was the same (for instance, restart with idtvar=1 of a calculation run
with idtvar=1), the time step is read from the restart file and the value of dtref given in the
parametric file of the interface, or in cs user parameters.f90, is not used.

It follows, that for a calculation with a non-constant time step (idtvar=1 or 2) which is a restart of a
calculation in which idtvar had the same value, dtref does not allow to modify the time step. The
user subroutine cs user initialization allows modifying the array dt which contains the value of
the time step read from the restart file (array whose size is ncelet, defined at the cell centres whatever
the chosen time step type is).

EDF R&D Code Saturne version practical user’s guide
Code Saturne

documentation
Page 56/139

duplicated and

translated faces

selected faces

relation (origin)
relation (origin)

periodic step

relation (periodicity)

based on their relation

with joined faces

faces subdivided

joined faces

stage 1

stage 2

stage 3

relation (origin)

duplicated and

non−joined faces

joined faces

Figure 8: Matching of periodic faces

Figure 9: Periodicity

EDF R&D Code Saturne version practical user’s guide
Code Saturne

documentation
Page 57/139

Figure 10: Calculation features options

Figure 11: Turbulence model selection

Figure 12: Thermal scalar selection

EDF R&D Code Saturne version practical user’s guide
Code Saturne

documentation
Page 58/139

Figure 13: Definition of the transported species/scalars

Figure 14: Setting of the gravity

Figure 15: Setting of the reference values for pressure, velocity and length

EDF R&D Code Saturne version practical user’s guide
Code Saturne

documentation
Page 59/139

Figure 16: Fluid properties

Figure 17: Initialisation of variables

EDF R&D Code Saturne version practical user’s guide
Code Saturne

documentation
Page 60/139

Figure 18: Global resolution parameters

Figure 19: Numerical parameters for the main variables resolution

Figure 20: Time step settings

EDF R&D Code Saturne version practical user’s guide
Code Saturne

documentation
Page 61/139

Figure 21: Management of time averaged variables

Figure 22: Parameters of chronological logging options

EDF R&D Code Saturne version practical user’s guide
Code Saturne

documentation
Page 62/139

Figure 23: Management of postprocessing writers

Figure 24: Management of postprocessing meshes

EDF R&D Code Saturne version practical user’s guide
Code Saturne

documentation
Page 63/139

Figure 25: Management of 1D profiles of the solution

EDF R&D Code Saturne version practical user’s guide
Code Saturne

documentation
Page 64/139

6.4 Manage boundary conditions

The boundary conditions can be specified in the Graphical User Interface (GUI) under the heading
“Boundary conditions” or in the user subroutine cs user boundary conditions called every time
step. With the GUI, each region and the type of boundary condition associated to it are defined in
Figure 26. Then, the parameters of the boundary condition are specified in Figure 27. The colors of
the boundary faces may be read directly from a “preprocessor.log” file created by the Preprocessor.
This file can be generated directly by the interface under the heading “Definition of boundary regions
→ Add from Preprocessor log → import groups and references from Preprocessor log”, see Figure 26.
cs user boundary conditions is the second compulsory subroutine for every calculation launched

Figure 26: Definition of the boundary conditions

without interface (except in the case of specific physics where the corresponding boundary condition
user subroutine must be used).

When using the interface, only complex boundary conditions (input profiles, conditions varying in
time, ...) need to be defined with cs user boundary conditions. In the case of a calculation launched
without the interface, all the boundary conditions must appear in cs user boundary conditions.

cs user boundary conditions is essentially constituted of loops on boundary face subsets. Several
sequences of call getfbr (’criterion’, nlelt, lstelt) (cf. §3.9.4) allow selecting the boundary
faces with respect to their group(s), their color(s) or geometric criteria. If needed, geometric and
physical variables are also available to the user. These allow him to select the boundary faces using
other criteria.

For more details about the treatment of boundary conditions, the user may refer to the theoretical and
computer documentation [11] of the subroutine condli (for wall conditions, see clptur) (to access
this document on a workstation, use code saturne info --guide theory).

From the user point of view, the boundary conditions are fully defined by three arrays20: itypfb(nfabor),
icodcl(nfabor,nvar) and rcodcl(nfabor,nvar,3).

- itypfb(ifac) defines the type of the face ifac (input, wall, ...).

- icodcl(ifac,ivar) defines the type of boundary condition for the variable ivar on the face
ifac (Dirichlet, flux ...).

- rcodcl(ifac,ivar,.) gives the numerical values associated with the type of boundary condition
(value of the Dirichlet condition, of the flux ...).

20Except with Lagrangian boundary condition

EDF R&D Code Saturne version practical user’s guide
Code Saturne

documentation
Page 65/139

Figure 27: Parameters of the boundary conditions

In the case of standard boundary conditions (see §6.4.1), it is sufficient to complete itypfb(ifac)

and parts of the array rcodcl; the array icodcl and most of rcodcl are filled automatically. For
non-standard boundary conditions (see §6.4.2), the arrays icodcl and rcodcl must be fully completed.

6.4.1 Coding of standard boundary conditions

The standard keywords used by the indicator itypfb are: ientre, iparoi, iparug, isymet, isolib,
ifrent, ifresf, i convective inlet and iindef.

• If itypfb=ientre: inlet face.

→ Zero-flux condition for pressure and Dirichlet condition for all other variables. The value
of the Dirichlet condition must be given in rcodcl(ifac,ivar,1) for every value of ivar,
except for ivar=ipr. The other values of rcodcl and icodcl are filled automatically.

• If itypfb=iparoi: smooth solid wall face, impermeable and with friction.

→ the eventual sliding wall velocity of the face is found in rcodcl(ifac,ivar,1) (ivar being
iu, iv or iw). The initial values of rcodcl(ifac,ivar,1) are zero for the three velocity

EDF R&D Code Saturne version practical user’s guide
Code Saturne

documentation
Page 66/139

components (and therefore are to be specified only if the velocity is not equal to zero).
WARNING: the wall sliding velocity must belong to the boundary face plane. For safety, the
code only uses the projection of this velocity on the face. As a consequence, if the velocity
specified by the user does not belong to the face plane, the wall sliding velocity really taken
into account will be different.

→ For scalars, two kinds of boundary conditions can be defined:

 Imposed value at the wall. The user must write
icodcl(ifac,ivar)=5
rcodcl(ifac,ivar,1)=imposed value

 Imposed flux at the wall. The user must write
icodcl(ifac,ivar)=3
rcodcl(ifac,ivar,3)=imposed flux value (depending on the variable, the user

may refer to the case icodcl=3 of § 6.4.2 for the flux definition).

 If the user does not fill these arrays, the default condition is zero flux.

• If itypfb=iparug: rough solid wall face, impermeable and with friction.

→ the eventual moving velocity of the wall tangent to the face is given by rcodcl(ifac,ivar,1)

(ivar being iu, iv or iw). The initial value of rcodcl(ifac,ivar,1) is zero for the three
velocity components (and therefore must be specified only in the case of the existence of a
slipping velocity).
WARNING: the wall moving velocity must be in the boundary face plane. By security, the
code uses only the projection of this velocity on the face. As a consequence, if the veloc-
ity specified by the user is not in the face plane, the wall moving velocity really taken into
account will be different.

→ The dynamic roughness must be specified in rcodcl(ifac,iu,3). The values of rcodcl(ifac,iv,3)
stores the thermal and scalar roughness. The values of rcodcl(ifac,iw,3) is not used.

→ For scalars, two kinds of boundary conditions can be defined:

 Imposed value at the wall. The user must write
icodcl(ifac,ivar)=6
rcodcl(ifac,ivar,1)=imposed value

 Imposed flux at the wall. The user must write
icodcl(ifac,ivar)=3
rcodcl(ifac,ivar,3)= imposed flux value (definition of the flux condition ac-

cording to the variable, the user can refer to the case icodcl=3 of the paragraph 6.4.2).

 If the user does not complete these arrays, the default condition is zero flux.

• If itypfb=isymet: symmetry face (or wall without friction).

→ Nothing to be writen in icodcl and rcodcl.

• If itypfb=isolib: free outlet face (or more precisely free inlet/outlet with forced pressure)

→ The pressure is always treated with a Dirichlet condition, calculated with the constraint
∂

∂n

(
∂P

∂τ

)
= 0. The pressure is set to P0 at the first isolib face met. The pressure

calibration is always done on a single face, even if there are several outlets.

→ If the mass flow is coming in, the velocity is set to zero and a Dirichlet condition for the
scalars and the turbulent quantities is used (or zero-flux condition if no Dirichlet value has
been specified).

→ If the mass flow is going out, zero-flux condition are set for the velocity, the scalars and the
turbulent quantities.

EDF R&D Code Saturne version practical user’s guide
Code Saturne

documentation
Page 67/139

→ Nothing is written in icodcl or rcodcl for the pressure or the velocity. An optional Dirichlet
condition can be specified for the scalars and turbulent quantities.

• If itypfb=ifrent: free outlet, free inlet (based on Bernoulli relationship) face.

→ if outlet, the equivalent to standard outlet. In case of ingoing flux, the Benoulli relationship
which links pressure and velocity is used (see the thory guide for more information). An
additional head loss modelling what is going on outward of the domain can be added by the
user.

• If itypfb=ifresf: free-surface boundary condition.

• If itypfb=i convective inlet: inlet with zero diffusive flux for all transported variables (species
and velocity). This allows to exactly impose the ingoing flux.

• If itypfb=iindef: undefined type face (non-standard case).

→ Coding is done in a non-standard way by filling both arrays rcodcl and icodcl (see § 6.4.2).

Notes
• Whatever is the value of the indicator itypfb(ifac), if the array icodcl(ifac,ivar) is modified by
the user (i.e. filled with a non-zero value), the code will not use the default conditions for the variable
ivar at the face ifac. It will take into account only the values of icodcl and rcodcl provided by the
user (these arrays must then be fully completed, like in the non-standard case).
For instance, for a normal symmetry face where scalar 1 is associated with a Dirichlet condition equal
to 23.8 (with an infinite exchange coefficient):

itypfb(ifac)=isymet

icodcl(ifac,isca(1))=1

rcodcl(ifac,isca(1),1)=23.8

(rcodcl(ifac,isca(1),2)=rinfin is the default value, therefore it is not necessary to specify a value)
The boundary conditions for the other variables are automatically defined.

• The user can define new types of boundary faces. He only must choose a value N and to fully specify
the boundary conditions (see §6.4.2). He must specify itypfb(ifac)=N where N range is 1 to ntypmx

(maximum number of boundary face types), and of course different from the values ientre, iparoi,
iparug, isymet, isolib and iindef (the values of these variables are given in the paramx module).
This allows to easily isolate some boundary faces, in order for instance to calculate balances.

6.4.2 Coding of non-standard boundary conditions

Ifa face does not correspond to a standard type, the user must completely fill the arrays itypfb,
icodcl and rcodcl. itypfb(ifac) is then equal to iindef or another value defined by the user (see
note at the end of § 6.4.1). The arrays icodcl and rcodcl must be filled as follows:

• If icodcl(ifac,ivar)=1: Dirichlet condition at the face ifac for the variable ivar.

→ rcodcl(ifac,ivar,1) is the value of the variable ivar at the face ifac.

→ rcodcl(ifac,ivar,2) is the value of the exchange coefficient between the outside and the
fluid for the variable ivar. An infinite value (rcodcl(ifac,ivar,2)=rinfin) indicates an
ideal transfer between the outside and the fluid (default case).

→ rcodcl(ifac,ivar,3) is not used.

→ rcodcl(ifac,ivar,1) has the units of the variable ivar, i.e.:

 m/s for the velocity

 m2/s2 for the Reynolds stress

EDF R&D Code Saturne version practical user’s guide
Code Saturne

documentation
Page 68/139

 m2/s3 for the dissipation

 Pa for the pressure

 ◦C for the temperature

 J.kg−1 for the enthalpy

 ◦C2 for temperature fluctuations

 J2.kg−2 for enthalpy fluctuations

→ rcodcl(ifac,ivar,2) has the following units (defined in such way that when multiplying
the exchange coefficient by the variable, the given flux has the same units as the flux defined
below when icodcl=3):

 kg.m−2.s−1 for the velocity

 kg.m−2.s−1 for the Reynolds stress

 s.m−1 for the pressure

 W.m−2.◦C−1 for the temperature

 kg.m−2.s−1 for the enthalpy

• If icodcl(ifac,ivar)=2: radiative outlet at the face ifac for the variable ivar. It reads
∂Y

∂t
+ C

∂Y

∂n
= 0, where C is a to be defined celerity of radiation.

→ rcodcl(ifac,ivar,3) is not used.

→ rcodcl(ifac,ivar,1) is the flux value of ivar at the cell center I ′, projection of the center
of the adjacent cell on the straight line perpendicular to the boundary face and crossing its
center, at the previous time step. It corresponds to:

→ rcodcl(ifac,ivar,2) is CFL number based on the parameter C, the distance to the bound-

ary I ′F and the time step: CFL =
Cdt

I ′F
,

• If icodcl(ifac,ivar)=3: flux condition at the face ifac for the variable ivar.

→ rcodcl(ifac,ivar,1) and rcodcl(ifac,ivar,2) are not used.

→ rcodcl(ifac,ivar,3) is the flux value of ivar at the wall. This flux is negative if it is a
source for the fluid. It corresponds to:

 −(λT + Cp
µt
σT

)∇T · n for a temperature (in W/m2)

−(
λT
Cp

+
µt
σh

)∇h · n for an enthalpy (in W/m2).

−(λϕ +
µt
σϕ

)∇ϕ ·n in the case of another scalar ϕ (in kg.m−2.s−1.[ϕ], where [ϕ] are the

units of ϕ).

 −∆t ∇P · n for the pressure (in kg.m−2.s−1).

 −(µ+ µt)∇Ui · n for a velocity component (in kg.m−1.s−2).

 −µ∇Rij · n for a Rij tensor component (in W/m2).

• If icodcl(ifac,ivar)=4: symmetry condition, for the symmetry faces or wall faces without
friction. This condition can only be used for velocity components (U · n = 0) and the Rij tensor
components (for other variables, a zero-flux condition type is usually used).

• If icodcl(ifac,ivar)=5: friction condition, for wall faces with friction. This condition can not
be applied to the pressure.

 For the velocity and (if necessary) the turbulent variables, the values at the wall are cal-
culated from theoretical profiles. In the case of a sliding wall, the three components of the
sliding velocity are given by (rcodcl(ifac,iu,1), rcodcl(ifac,iv,1), and

EDF R&D Code Saturne version practical user’s guide
Code Saturne

documentation
Page 69/139

rcodcl(ifac,iw,1)).
WARNING: the wall sliding velocity must belong to the boundary face plane. For safety, the
code uses only the projection of this velocity on the face. Therefore, if the velocity vector
specified by the user does not belong to the face plane, the wall sliding velocity really taken
into account will be different.

 For other scalars, the condition icodcl=5 is similar to icodcl=1, but with a wall exchange
coefficient calculated from a theoretical law. Therefore, the values of
rcodcl(ifac,ivar,1) and rcodcl(ifac,ivar,2) must be specified: see [11].

• If icodcl(ifac,ivar)=6: friction condition, for the rough-wall faces with friction. This condi-
tion can not be used with the pressure.

 For the velocity and (if necessary) the turbulent variables, the values at the wall are cal-
culated from theoretical profiles. In the case of a sliding wall, the three components of the
sliding velocity are given by (rcodcl(ifac,iu,1), rcodcl(ifac,iv,1), and
rcodcl(ifac,iw,1)).
WARNING: the wall sliding velocity must belong to the boundary face plane. For safety, the
code uses only the projection of this velocity on the face. Therefore, if the velocity vector
specified by the user does not belong to the face plane, the wall sliding velocity really taken
into account will be different.
The dynamic roughness height is given by rcodcl(ifac,iu,3) only.

 For the other scalars, the condition icodcl=6 is similar to icodcl=1, but with a wall
exchange coefficient calculated from a theoretical law. The values of rcodcl(ifac,ivar,1)
and rcodcl(ifac,ivar,2) must therefore be specified: see [11]. The thermal roughness
height is then given by rcodcl(ifac,ivar,3).

• If icodcl(ifac,ivar)=9: free outlet condition for the velocity. This condition is only applicable
to velocity components.
If the mass flow at the face is negative, this condition is equivalent to a zero-flux condition.
If the mass flow at the face is positive, the velocity at the face is set to zero (but not the mass
flow).
rcodcl is not used.

• If icodcl(ifac,ivar)=14: generalized symmetry boundary condition for vectors (Marangoni
effect for the velocity for instance). This condition is only applicable to vectors and set a Dirich-
let boundary condition on the normal component and a Neumann condition on the tangential
components.
If the three components are ivar1, ivar2, ivar3, the required values are:

→ rcodcl(ifac,ivar1,1): Dirichlet value in the x direction.

→ rcodcl(ifac,ivar2,1): Dirichlet value in the y direction.

→ rcodcl(ifac,ivar3,1): Dirichlet value in the z direction.

→ rcodcl(ifac,ivar1,3): flux value for the x direction.

→ rcodcl(ifac,ivar2,3): flux value for the y direction.

→ rcodcl(ifac,ivar3,3): flux value for the z direction.

Therefore, the code automatically computes the boundary condition to impose to the normal
and to the tangential components.

Note
• A standard isolib outlet face amounts to a Dirichlet condition (icodcl=1) for the pressure, a free
outlet condition (icodcl=9) for the velocity and a Dirichlet condition (icodcl=1) if the user has
specified a Dirichlet value or a zero-flux condition (icodcl=3) for the other variables.

EDF R&D Code Saturne version practical user’s guide
Code Saturne

documentation
Page 70/139

6.4.3 Checking of the boundary conditions

The code checks the main compatibilities between the boundary conditions. In particular, the following
rules must be respected:
• On each face, the boundary conditions of the three velocity components must belong to the same
type. The same is true for the components of the Rij tensor.
• If the boundary conditions for the velocity belong to the “sliding” type (icodcl=4), the conditions
for Rij must belong to the “symmetry” type (icodcl=4), and vice versa.
• If the boundary conditions for the velocity belong to the “friction” type (icodcl=5 or 6), the
boundary conditions for the turbulent variables must belong to the “friction” type, too.
• If the boundary condition of a scalar belongs to the “friction” type, the boundary condition of the
velocity must belong to the “friction” type, too.

In case of mistakes, if the post-processing output is activated (which is the default setting), a special
error output, similar to the mesh format, is produced in order to help correcting boundary condition
definitions.

6.4.4 Sorting of the boundary faces

In the code, it may be necessary to have access to all the boundary faces of a given type. To ease this
kind of search, an array made of sorted faces is automatically filled (and updated at each time step):
itrifb(nfabor).
ifac=itrifb(i) is the number of the ith face of type 1.
ifac=itrifb(i+n) is the number of the ith face of type 2, if there are n faces of type 1.
... etc.

Two auxiliary arrays of size ntypmx are also defined.
idebty(ityp) is the index corresponding to the first face of type ityp in the array itrifb.
ifinty(ityp) is the index corresponding to the last face of type ityp in the array itrifb.

Therefore, a value ifac0 found between idebty(ityp) and ifinty(ityp) is associated to each face
ifac of type ityp=itypfb(ifac), so that ifac=itrifb(ifac0).

If there is no face of type ityp, the code set
ifinty(ityp)=idebty(ityp)-1,
which enables to bypass, for all the missing ityp, the loops such as
do ii=idebty(ityp),ifinty(ityp).

The values of all these indicators are displayed at the beginning of the code execution log.

6.4.5 Boundary conditions with LES

6.4.5.1 Vortex method

The subroutine usvort allows generating the unsteady inlet boundary conditions for the LES by the
vortex method. The method is based on the generation of vortices in the 2D inlet plane with help
from the pre-defined functions. The fluctuation normal to the inlet plane is generated by a Langevin
equation. It is in the subroutine usvort where the parameters of this method are given.

Subroutine called at each time step

To allow the application of the vortex method, an indicator must be informed of the method in the
user subroutine cs user parameters.f90 (ivrtex=1)

The subroutine usvort contains 3 separate parts:

- The 1st part defines the number of inlets concerned with the vortex method (nnentt) and the
number of vortex for each inlet (nvort), where ient represents the number of inlets.

EDF R&D Code Saturne version practical user’s guide
Code Saturne

documentation
Page 71/139

- The 2nd part (iappel=1) defines the boundary faces at which the vortex method is applicable.
The irepvo array is informed by ient which defines the number of inlets concerned with the
vortex (essentially, the vortex method can be applied with many independent inlets).

- The 3rd section defines the main parameters of the method at each inlet. With the complexity
of any given geometry, 4 cases are distinguished (the first 3 use the data file ficvor and in the
final case only 1 initial velocity and energy are imposed.):

* icas=1, For the outlet of a rectangular pipe; 1 boundary condition is defined for each side
of the rectangle taking into account their interaction with the vortex.

* icas=2, For the outlet of a circular pipe; the entry face is considered as a wall (as far as
interaction with the vortex is concerned)

* icas=3, For inlets of any geometry; no boundary conditions are defined at the inlet face
(i.e no specific treatment on the interaction between the vortex and the boundary)

* icas=4, similar to icas=3 except the data file is not used (ficvor); the outflow parameters
are estimated by the code from the global data (initial velocity, level of turbulence and
dissipation), information which is supplied by the user.

When the geometry allows, cases 1 and 2 are used. Case 4 is only used if it is not possible to use
the other three.

In the first 3 cases, the 2 base vectors in the plane of each inlet must be defined (vectors dir1

and dir2). The 3rd vector is automatically calculated by the code, defined as a product of dir1
and dir2. dir1 and dir2 must be chosen imperatively to give (cen, dir1, dir2) an orthogonal
reference of the inlet plane and so dir3 is oriented in the entry domain. If icas=2, the cen

position must be the center of gravity of the rectangle or disc.

The reference points (cen, dir1, dir2, dir3) define the values of the variable in the ficvor file.
In the case where icas=4, the vectors dir1 and dir2 are generated by the code.

If icas=1, the boundary conditions at the rectangle’s edges must be defined. They are defined
in the array iclvor. iclvor(ii,ient) represents the standard boundary conditions at the edge
II (16II64) of the inlet ient. The code for the boundary conditions is as follows:

* iclvor=1 for a wall

* iclvor=2 for symmetry

* iclvor=3 for periodicity of translation (the face corresponding to periodicity will automat-
ically be taken as 3)

The 4 edges are numbered relative to the directions dir1 and dir2 as shown in Figure 28:

LLY

LLZ

3

1

4 2
CEN DIR2

DIR1

Figure 28: Numbering of the edges of a rectangular inlet(icas=1) treated by the vortex method

EDF R&D Code Saturne version practical user’s guide
Code Saturne

documentation
Page 72/139

If icas=1, the user must define llx and lly which give the lengths of the rectangular pipe in
the directions dir1 and dir2.
If icas=2, lld represents the diameter of the circular pipe. If icas=4, udebit, kdebit and
edebit are defined for each inlet, these give respectively, initial speed, turbulent energy level and
the dissipation level. These can be used to obtain their magnitude using the correlations in the
user routine cs user boundary conditions for fully developed flow in a pipe.

The independent parameters are defined as follows:

* itmpl represents the indicator of the advancement in time of the vortex. If itmpli=1, the
vortex will be regenerated after a fixed time of tmplim second (defined as itmpli=1). If
itmpli=2, following the data indicated in ficvor file, the vortex will have a variable life

span equal to 5Cµ
k

3
2

εU
, where Cµ = 0.09 and k, ε and U represent respectively, turbulent

energy, turbulent dissipation and the convective velocity in the direction normal to the inlet
plane.

* xsgmvo represents the support functions used in the vortex method. These are represen-
tative of the eddy sizes entered in the vortex method. isgmvo is used to define their size:
if isgmvo=1, xsgmvo will be constant across the inlet face and is defined in usvort, if
isgmvo=2, xsgmvo will be variable and equal to the mixing length of the standard k − ε

model (Cµ
3
4
k

3
2

ε
), if isgmvo=3, xsgmvo will be equal to the maximum of Lt et LK where Lt

and LK are the
∂U

∂y

∂U

∂y
Taylor and Kolmogrov coefficients (LT = (5ν

k

ε
)

1
2 , LK = 200(

ν3

ε
)

1
4).

* idepvo gives the vortex displacement method in the 2D inlet plane (the vortex method is a
Lagrangian method in which the eddy centres are replaced by a set velocity). If idepvo=1,
the velocity displacement referred to by ud which is the vortex following a random sampling
(a sample number r, is taken for each vortex, at each time step and for each direction and
the center of the vortex is replaced by the 2 principal directions, rud∆t where ∆t is the
time step of the calculation). If idepvo=2, the vortex will be convected by itself (with the
speed given by the time step before the vortex method)

A data file, ficvor, must be defined in the cases of icas=1,2,3, for each inlet. The data file must

contain the following data in order (x, y, U ,
∂U

∂y
, k, ε). The number of lines of the file is given by

the integer ndat. x and y are the co-ordinates in the inlet plane defined by the vectors dir1 and
dir2. U , k and ε are respectively, the average speed normal to the inlet, the turbulent energy

and the turbulent dissipation.
∂U

∂y
is the derivative in the direction normal to the inlet boundary

in the cases, icas=1, icas=2. Where icas=3 and icas=4 this variable is not applied (it is
given the value 0) so the Langevin equations, used to generate fluctuations normal to the inlet
plane, is de-activated (the fluctuations normal to the inlet is 0 on both these cases). Note that
the application of many different test of the Langevin equation doesn’t have a notable influence
on the results and that, by contrast it simply increases the computing time per iteration and
so it decreases the random sampling which slows down the pressure solver. The interpolation
used in the vortex method is defined by the function phidat. An example is given at the end
of the subroutine usvort where the user can define the interpolation required. In the phidat

function, xx and yy are the co-ordinates by which the value of phidat is calculated. xdat and
ydat are the co-ordinates in the ficvor file. vardat is the value of the phidat function with
the co-ordinates xdat and ydat (given in the ficvor file). Note that using an indicator iii

accelerates the calculations (the user need not modify or delete). The user must also define the
parameter isuivo which indicates if the vortex was started at 0 or if the file must be re-read
(ficmvo).

WARNING

EDF R&D Code Saturne version practical user’s guide
Code Saturne

documentation
Page 73/139

Uc

v′SEM
S

B

Figure 29: Illustration of the principle of the Synthetic Eddy Method, with S the inlet boundary, B
the virtual box and Uc the advection velocity of the eddies

• Be sure that the ficvor file and the interpolation in the user function phidat are compatible
(in particular that all the entry region is covered by ficvor)

• If the user wants to use a 1D profile in the dir2 direction, set x =0 in the ficvor file and define
the interpolation in phidat.

6.4.5.2 Synthetic Eddy Method

The user file cs user les inflow.f90 allows to generate the unsteady boundary conditions for the
LES by the Synthetic Eddy Method. The basic principle of this method is illustrated in figure 29:
the turbulent fluctuations at the inlet are generated by a set of synthetic eddies advected across the
inlet boundaries. The eddies evolve in a virtual “box” surrounding the inlet boudaries and each of
them contributes to the normalized velocity fluctuations, depending on its relative position with the
inlet faces and on a form function characterizing the shape of the eddies. By this way, the Synthetic
Eddy Method provides a coherent flow with a target mean velocity and target Reynolds stresses at
LES inlet.

WARNING: As for laminar or RANS inlets, the type of boundary for LES inlets is ientre. It has
to be specified in the GUI or in the cs user boundary conditions surboutine. On the contrary, if
Dirichlet values are given for these faces in the GUI or in the cs user boundary conditions subroutine
(rcodcl(ifac,ivar,1) array), they are erased by those provided by the Synthetic Eddy Method.

In the current version of Code Saturne, the Synthetic Eddy Method is not available through the GUI
but only through the cs user les inflow.f90 user file. The user file contains 3 subroutines:

� cs user les inflow init (mandatory): global definition of synthetic turbulence inlets

� cs user les inflow define (mandatory): specific definition of each synthetic turbulence inlet

� cs user les inflow advanced (not mandatory): advanced definition of each synthetic turbu-
lence inlet

cs user les inflow init: this subroutine defines some global parameters shared by all LES inlets.
These parameters are:

� nent: number of LES inlet boundaries

EDF R&D Code Saturne version practical user’s guide
Code Saturne

documentation
Page 74/139

� isuisy: in case of a restart calculation, it indicates if the synthetic turbulence is re-initialize (0)
or read from the previous calculation (1). In that case, the checkpoint folder must contain the
les inflow restart file. This file is generated during a computation with synthetic turbulence,
at the same physical times as the main and auxiliary restart files.

cs user les inflow define: this subroutine defines the specific parameters of each LES inlet. These
parameters are:

� typent: type of LES inflow method. The Synthetic Eddy Method corresponds to typent=3. For
the sake of comparision, other methods can be selected through this user file (see remark 2).

� nelent: number of synthetic eddies in the “box”. This parameter might be adjusted, depending
on the case (in particular the size of the inlet plane and the level of turbulence). As a general rule,
the greater is the better since an insufficient number can lead to an intermittent signal while some
numerical tests have shown that this parameter does not have a great influence beyond a threshold
value. Given the inlet of size h2 of a shear flow at a given Reynolds number Re = uτh/ν, an
appropriate number of eddies can be evaluated by (Re/50)3 (Re and 50 approximates respectively
the size, in wall unit, of the largest and the smallest synthetic eddy. Note the latter can depend
on the grid size, see remark 1).

� iverbo: level of verbosity in the log. iverbo=1 provides mainly informations about the size of
the eddies and the size of the “box” surrounding the inlet boundary.

� nfbent and lfbent: number and list of boundary faces composing the LES inlet boundary.

� vitent: reference mean velocity at inlet. This parameter imposes the target mean veloc-
ity at inlet. A finer (non homogeneous) definition of the mean velocity can be done in the
cs user les inflow advanced subroutine (see below).

� enrent: reference turbulence kinetic energy k at inlet. This parameter imposes the target
Reynolds stresses Rij at inlet, computed by Rij = 2

3kδij (isotropy). A finer (non isotropic and/or
non homogeneous) definition of the Reynolds stresses can be done in the cs user les inflow advanced

subroutine (see below).

� dspent: reference dissipation rate ε at inlet. This parameter is used to compute the size of the
synthetic eddies (see remark 1). A finer (non homogeneous) definition of the dissipation rate can
be done in the cs user les inflow advanced subroutine (see below).

cs user les inflow advanced: this optional subroutine enables to give an accurate (non homoge-
neous) specification of inflow statistics: mean velocity (uvwent array), Reynolds stresses (rijent
array) and dissipation rate (epsent array). In that case, this accurate specification replaces the one
given in cs user les inflow define subroutine (vitent, enrent and dspent variables).

REMARK 1: The specification of the dissipation rate ε at inlet is used to compute the size σi of the
synthetic eddies in the i cartesian direction. One has:

σi = max

{
C

(
3
2Rii

)3/2
ε

,∆

}
, C = 0.5.

∆ is a reference size of the grid, in order to assume that all synthetic eddies are discretized. In the
implementation of Code Saturne, it is computed at each inlet boundary face F as:

∆ = 2 max
i≤3,V ∈V

{∣∣xVi − xCi ∣∣}
with V the subset of the vertices of the boundary face F and C the cell adjacent to F .

REMARK 2: For the sake of comparison, others LES inflow methods are available through the
cs user les inflow.f90 user file, in addition to the Synthetic Eddy Method:

EDF R&D Code Saturne version practical user’s guide
Code Saturne

documentation
Page 75/139

� The Batten method corresponds to typent=2 in cs user les inflow define subroutine. With
this method, the inflow velocity signal is the superposition of several Fourier modes. The number
of modes is indicated through the nelent keyword. As for Synthetic Eddy Method, the mean
velocity, the turbulent kinetic energy and the dissipation rate have to be specified at inlet: either
giving their reference values (vitent, enrent and dspent) in the cs user les inflow define

subroutine, either providing an accurate local description in the cs user les inflow advanced

subroutine.

� typent=1: turbulent fluctuations are given by a Gaussian noise. The mean velocity and Reynolds
stresses have to be specified (in cs user les inflow define or in cs user les inflow advanced).
The other parameters of the user subroutines are useless. The turbulent fluctuations provided
by this method are much less realistic than those provided by the Synthetic Eddy Method or
the Batten method. Especially for low Reynolds number flows, this could lead to the rapid
dissipation of this fluctuations and the laminarization of the flow.

� typent=0: No fluctuation. This method does not require any parameter. It should be reserved
to regions where the flow is laminar.

6.5 Manage the variable physical properties

6.5.1 Basic variable physical properties

When the fluid properties are not constant, the user is offered the choice to define the variation laws in
the Graphical User Interface (GUI) or in the subroutine cs user physical properties which is called
at each time step. In the GUI, in the item “Fluid properties” under the heading “Physical properties”,
the variation laws are defined for the fluid density, viscosity, specific heat, thermal conductivity and
scalar diffusivity through the use of a formula editor, see Figure 30 and Figure 31.

If necessary, all the variation laws related to the fluid physical properties are written in the subroutine
cs user physical properties.

The validity of the variation laws must be checked, particularly when non-linear laws are defined (for
instance, a third-degree polynomial law may produce negative density values).

WARNING

• If the user wishes to impose a variable density or variable viscosity in usphyv, it must be flagged
either in the interface or in cs user parameters.f90(irovar=1, ivivar=1).

• In order to impose a physical property (ρ, µ, λ, Cp)
21, a reference value should be provided in

the interface or in cs user parameters.f90 (in particular for ρ, the pressure will be function of
ρ0gz)

• By default, the Cp coefficient and the diffusivity for the scalars iscal (λT for the temperature)
are considered as constant in time and uniform in space, with the values cp0 and visls0(iscal)

specified in the interface or in cs user parameters.f90.
To assign a variable value to Cp, the user must specify it in the interface (with a user law) or
assign the value 1 to icp in cs user parameters.f90, and fill for each cell iel the array cpro cp

which can be retrieved by calling field get val s(icp, cpro cp) in cs user physical properties.
NB: completing the array cpro cp while icp=0 induces array overwriting problems and produces
wrong results.

• In the same way, to have variable diffusivities for the scalars iscal, the user must specify it in
the interface (with a user law) or calling field set key int(ivarfl(isca(iscal)), kivisl,

0) in cs user parameters.f90 (in usipsu), and complete for each cell iel the values array
of the field id ifcvsl returned by calling field get key id(ivarfl(isca(iscal)), kivisl,

21Except for some specific physics

EDF R&D Code Saturne version practical user’s guide
Code Saturne

documentation
Page 76/139

Figure 30: Physical properties - Fluid properties

Figure 31: Definition of a user law for the density

ifcvsl) in cs user physical properties.

EDF R&D Code Saturne version practical user’s guide
Code Saturne

documentation
Page 77/139

Note: The scalar diffusivity id must not be defined for user scalars representing the average
of the square of the fluctuations of another scalar, because the diffusivity of a user scalar jj

representing the average of the square of the fluctuations of a user scalar kk comes directly from
the diffusivity of this last scalar. In particular, the diffusivity of the scalar jj is variable if the
diffusivity of kk is variable.

6.5.2 Modification of the turbulent viscosity

The subroutine usvist is used to modify the calculation of the turbulent viscosity, i.e. µt in kg.m−1.s−1

(this piece of information, at the mesh cell centres, is conveyed by the variable cpro visct which can be
retrieved by calling field get val s(ivisct, cpro cp)). The subroutine is called at the beginning
of every time step, after the calculation of the physical parameters of the flow and of the “conventional”
value of µt corresponding to the chosen turbulence model (indicator iturb).
WARNING: The calculation of the turbulent viscosity being a particularly sensible stage, a wrong use
of usvist may seriously distort the results.

6.5.3 Modification of the variable C of the dynamic LES model

Subroutine called every time step in the case of LES with the dynamic model.

The subroutine ussmag is used to modify the calculation of the variable C of the LES sub-grid scale
dynamic model.

It worth to recalling that the LES approach introduces the notion of filtering between large eddies and
small motions. The solved variables are said to be filtered in an “implicit” way. Sub-grid scale models
(“dynamic” models) introduce in addition an explicit filtering.

The notations used for the definition of the variable C used in the dynamic models of Code Saturne
are specified below. These notations are the ones assumed in the document [3], to which the user may
refer to for more details.

The value of a filtered by the explicit filter (of width ∆̃) is called ã and the value of a filtered by the
implicit filter (of width ∆) is called a. We define:

Sij = 1
2 (∂ui

∂xj
+

∂uj

∂xi
) ||S|| =

√
2SijSij

αij = −2∆̃
2

||S̃||S̃ij βij = −2∆
2||S||Sij

Lij = ũiuj − ũiũj Mij = αij − β̃ij

(4)

In the framework of LES, the total viscosity (molecular + sub-grid) in kg.m−1.s−1 may be written in
Code Saturne:

µtotal = µ+ µsub-grid if µsub-grid > 0
= µ otherwise

with µsub-grid = ρC∆
2||S||

(5)

∆ is the width of the implicit filter, defined at the cell Ωi by
∆ = XLESFL ∗ (ALES ∗ |Ωi|)BLES .

In the case of the Smagorinsky model (iturb=40), C is a constant which is worth C2
s . C2

s is the
so-called Smagorinsky constant and is stored in the variable csmago.

In the case of the dynamic model (iturb=41), C is variable in time and in space. It is determined by

C =
MijLij

MklMkl
.

In practice, in order to increase the stability, the code does not use the value of C obtained in each
cell, but an average with the values obtained in the neighbouring cells (this average uses the extended

EDF R&D Code Saturne version practical user’s guide
Code Saturne

documentation
Page 78/139

neighbourhood and corresponds to the explicit filter). By default, the value calculated by the code is

C =
M̃ijLij

M̃klMkl

The subroutine ussmag allows to modify this value. It is for example possible to calculate the local
average after having calculated the ratio

C =
˜[
MijLij

MklMkl

]
WARNING: The subroutine ussmag can be activated only when the dynamic model is used.

6.6 User source terms

Assume, for example, that the user source terms modify the equation of a variable ϕ in the following
way:

ρ
∂ϕ

∂t
+ . . . = . . .+ Simpl × ϕ+ Sexpl

The example is valid for a velocity component, for a turbulent variable (k, ε, Rij , ω, ϕ or f) and for
a scalar (or for the average of the square of the fluctuations of a scalar), because the syntax of all the
subroutines ustsnv, cs user turbulence source terms and ustssc in the cs user source terms

file is similar.

In the finite volume formulation, the solved system is then modified as follows:(
ρiΩi
∆ti

− ΩiSimpl,i

)(
ϕ

(n+1)
i − ϕ(n)

i

)
+ . . . = . . .+ ΩiSimpl,iϕ

(n)
i + ΩiSexpl,i

The user needs therefore to provide the following values:
crvimpi = ΩiSimpl,i
crvexpi = ΩiSexpl,i

In practice, it is essential for the term

(
ρiΩi
∆ti

− ΩiSimpl,i

)
to be positive. To ensure this property, the

equation really taken into account by the code is the following:(
ρiΩi
∆ti

−Min(ΩiSimpl,i; 0)

)(
ϕ

(n+1)
i − ϕ(n)

i

)
+ . . . = . . .+ ΩiSimpl,iϕ

(n)
i + ΩiSexpl,i

To make the “implicitation” effective, the source term decomposition between the implicit and explicit
parts will be done by the user who must ensure that crvimpi = ΩiSimpl,i is always negative (otherwise
the solved equation remains right, but there will not be “implicitation”).

WARNING: When the second-order in time is used along with the extrapolation of the source terms22,
it is no longer possible to test the sign of Simpl,i, because of coherence reasons (for more details, the
user may refer to the theoretical and computer documentation [11] of the subroutine preduv). The
user must therefore make sure it is always positive (or take the risk to affect the calculation stability).

Particular case of a linearised source term

In some cases, the added source term is not linear, but the user may want to linearise it using a
first-order Taylor development, in order to make it partially implicit.
Consider an equation of the type:

ρ
∂ϕ

∂t
= F (ϕ)

22indicator isno2t for the velocity, isto2t for the turbulence and isso2t for the scalars

EDF R&D Code Saturne version practical user’s guide
Code Saturne

documentation
Page 79/139

To make it implicit using the following method:

ρiΩi
∆t

(
ϕ

(n+1)
i − ϕ(n)

i

)
= Ωi

[
F (ϕ

(n)
i) +

(
ϕ

(n+1)
i − ϕ(n)

i

) dF
dϕ

(ϕ
(n)
i)

]
= Ωi

dF

dϕ
(ϕ

(n)
i)× ϕ(n+1)

i + Ωi

[
F (ϕ

(n)
i)− dF

dϕ
(ϕ

(n)
i)× ϕ(n)

i

]
The user must therefore specify:

crvimpi = Ωi
dF

dϕ
(ϕ

(n)
i)

crvexpi = Ωi

[
F (ϕ

(n)
i)− dF

dϕ
(ϕ

(n)
i)× ϕ(n)

i

]
Example:

If the equation is ρ
∂ϕ

∂t
= −Kϕ2, the user must set:

crvimpi = −2KΩiϕ
(n)
i

crvexpi = KΩi[ϕ
(n)
i]2

6.6.1 In Navier-Stokes

The source term in Navier-Stokes can be filled in thanks to the GUI or the cs user source terms user
file. Without the GUI, the subroutine ustsnv is used to add user source terms to the Navier-Stokes
equations (at each time step).

ustsnv is called only once per time step; for each cell iel, the vector crvexp(.,iel) (explicit part)
and the matrix crvimp(.,.,iel) (implicit part) must be filled in for the whole velocity vector.

6.6.2 For k and ε

Subroutine called every time step, for the k − ε and the v2f models.

The subroutine cs user turbulence source terms is used to add source terms to the transport equa-
tions related to the turbulent kinetics energy k and to the turbulent dissipation ε. This subroutine is
called every time step (the treatment of the two variables k and ε is made simultaneously). The user is
expected to provide the arrays crkimp and crkexp for k, and creimp and creexp for ε. These arrays
are similar to the arrays crvimp and crvexp given for the velocity in the user subroutine ustsnv. The
way of making implicit the resulting source terms is the same as the one presented in ustsnv. For ϕ
and f̄ in the v2f model, see cs user turbulence source terms, §6.6.4.

6.6.3 For Rij and ε

Subroutine called every time step, for the Rij − ε models.

The subroutine cs user turbulence source terms is used to add source terms to the transport equa-
tions related to the Reynolds stress variables Rij and to the turbulent dissipation ε. This subroutine is
called 7 times every time step (once for each Reynolds stress component and once for the dissipation).
The user must provide the arrays crvimp and crvexp for the field variable of index f id (referring
successively to ir11, ir22, ir33, ir12, ir13, ir23 and iep). These arrays are similar to the arrays
crvimp and crvexp given for the velocity in the user subroutine ustsnv. The method for impliciting
the resulting source terms is the same as that presented in ustsnv.

6.6.4 For ϕ and f

Subroutine called every time step, for the v2f models.

EDF R&D Code Saturne version practical user’s guide
Code Saturne

documentation
Page 80/139

The subroutine cs user turbulence source terms is used to add source terms to the transport equa-
tions related to the variables ϕ and f of the v2f ϕ-model. This subroutine is called twice every time
step (once for ϕ and once for f). The user is expected to provide the arrays crvimp and crvexp

for ivar referring successively to iphi and ifb. Concerning ϕ, these arrays are similar to the arrays
crvimp and crvexp given for the velocity in the user subroutine ustsnv. Concerning f , the equation
is slightly different:

L2div(∇(f)) = f + . . .+ Simpl × f + Sexpl

In the finite volume formulation, the solved system is written as:∫
∂Ωi

∇(f)(n+1)dS =
1

L2
i

(
Ωif

(n+1)

i + . . .+ ΩiSimpl,if
(n+1)

i + ΩiSexpl,i

)
The user must then specify:
crvimpi = ΩiSimpl,i
crvexpi = ΩiSexpl,i

The way of making implicit the resulting source terms is the same as the one presented in ustsnv.

6.6.5 For k and ω

Subroutine called every time step, for the k − ω SST model.

The subroutine cs user turbulence source terms is used to add source terms to the transport equa-
tions related to the turbulent kinetics energy k and to the specific dissipation rate ω. This subroutine
is called every time step (the treatment of the two variables k and ω is made simultaneously). The
user is expected to provide the arrays crkimp and crkexp for the variable k, and the arrays crwimp

and crwexp for the variable ω. These arrays are similar to the arrays crvimp and crvexp given for
the velocity in the user subroutine ustsnv. The way of making implicit the resulting source terms is
the same as the one presented in ustsnv.

6.6.6 For ν̃t

Subroutine called every time step, or the Spalart-Allmaras model.

The subroutine cs user turbulence source terms is used to add source terms to the transport equa-
tions related to the turbulent viscosity νt for the Spalart-Allmaras model. This subroutine is called
every time step. The user is expected to provide the arrays crkimp and crkexp for the variable ν̃t.
These arrays are similar to the arrays crvimp and crvexp given for the velocity in the user subroutine
ustsnv. The way of making implicit the resulting source terms is the same as the one presented in
ustsnv.

6.6.7 For user scalars

Subroutine called every time step.

The source terms in the transport equations related to the user scalars (passive or not, average of the
square of the fluctuations of a scalar, ...) can be filled in thanks to the GUI or the cs user source terms

user file. Without the GUI, the subroutine ustssc is used to add source terms to the transport equa-
tions related to the user scalars. In the same way as ustsnv, this subroutine is called every time step,
once for each user scalar. The user must provide the arrays crvimp and crvexp related to each scalar.
cvimp and crvexp must be set to 0 for the scalars on which it is not wished for the user source term
to be applied (the arrays are initially set to 0 at each inlet in the subroutine).

EDF R&D Code Saturne version practical user’s guide
Code Saturne

documentation
Page 81/139

6.7 Pressure drops (head losses) and porosity

6.7.1 Head losses

Pressure drops can be defined in the Graphical User Interface (GUI) or in the user sources. In the
GUI, the page “Volume zones” allows to define areas where pressure drops are applied, see an example
in fig 32. The item “Head losses” allows to specify the head loss coefficients, see Figure 33. The tensor
representing the pressure drops is supposed to be symmetric and positive.

Figure 32: Creation of head losses region

Figure 33: Head losses coefficients

In the user sources, two files can be of use: cs user zones.c (called at the computation start)
to define a volume zone and cs user head losses.c (called at each iteration) to specify the val-
ues of the head losses coefficients. Note that volume zones defined with the GUI are available in
cs user head losses.c.

See the associated doxygen documentation for examples.

6.7.2 Porosity

Porous zones can be set through the GUI in the “Volume zones” page. Alternatively, porous zones can
be defined in the user source cs user porosity.c and the porous model shall be chosen by setting the

EDF R&D Code Saturne version practical user’s guide
Code Saturne

documentation
Page 82/139

keyword iporos in cs user parameters file. See the associated doxygen documentation for examples.
Porous zones are defined at the beginning of the computation once and for all.

6.8 Management of the mass sources

The subroutine cs user mass source terms is used to add a density source term in some cells of the
domain (called at each time step). The mass conservation equation is then modified as follows:

∂ρ

∂t
+ div(ρu) = Γ

Γ is the mass source term expressed in kg.m−3.s−1.

The presence of a mass source term modifies the evolution equation of the other variables, too. Let
ϕ be any solved variable apart from the pressure (velocity component, turbulent energy, dissipation,
scalar, ...). Its evolution equation becomes:

ρ
∂ϕ

∂t
+ . . . = . . .+ Γ(ϕi − ϕ)

ϕi is the value of ϕ associated with the mass entering or leaving the domain. After discretisation, the
equation may be written:

ρ
ϕ(n+1) − ϕ(n)

∆t
+ . . . = . . .+ Γ(ϕi − ϕ(n+1))

For each variable ϕ, there are two possibilities:

• We can consider that the mass is added (or removed) with the ambient value of ϕ. In this case
ϕi = ϕ(n+1) and the equation of ϕ is not modified.

• Or we can consider that the mass is added with an imposed value ϕi (this solution is physically
correct only when the mass is effectively added, Γ > 0).

This subroutine is called three times every time step.

• During the first call, all the cells are checked to know the number of cells containing a mass
source term. This number is called ncesmp in cs user mass source terms (and corresponds to
ncetsm). It is used to lay out the arrays related to the mass sources. If there is no mass source,
ncesmp must be equal to zero (it is the default value, and the rest of the subroutine is then
useless).

• During the second call, all the cells are checked again to complete the array icetsm whose

dimension is ncesmp. icetsm(ieltsm) is the number of the ieltsmth cell containing a mass
source.

• During the third call, all the cells containing mass sources are checked in order to complete the
arrays itypsm(ncesmp,nvar) and smacel(ncesmp,nvar):

- itypsm(ieltsm,ivar) is the flow type associated with the variable ivar in the ielstmth cell
containing a mass source.

itypsm=0: ϕi = ϕ(n+1) condition
itypsm=1: imposed ϕi condition
itypsm is not used for ivar=ipr

- smacel(ieltsm,ipr) is the value of the mass source term Γ, in kg.m−3.s−1.

EDF R&D Code Saturne version practical user’s guide
Code Saturne

documentation
Page 83/139

- smacel(ieltsm,ivar), for ivar different from ipr, is the value of ϕi for the variable ivar in

the ielstmth cell containing a mass source.

Notes
• If itypsm(ieltsm,ivar)=0, smacel(ieltsm,ivar) is not used.
• If Γ=smacel(ieltsm,ipr)<0, mass is removed from the system, and Code Saturne considers
automatically a ϕi = ϕ(n+1) condition, whatever the values given to itypsm(ieltsm,ivar) and
smacel(ieltsm,ivar) (the extraction of a variable is done at ambient value).

The three calls are made every time step, so that variable mass source zones or values may be treated.

For the variance, do not take into account the scalar ϕi in the environment where ϕ 6= ϕi generates a
variance source.

6.9 User law editor of the GUI

A formula interpreter is embedded in Code Saturne, which can be used through the GUI. In order to
call the formula editor of the GUI, click on the button:

The formula editor is a window with three tabs:

• User expression

This tab is the formula editor. At the opening of the window only the required symbols are dis-
played. The syntax colorization shows to the user symbols which are required symbols, functions,
or user variables. Each expression must be closed by a semicolon (“;”). The required symbols
must be present in the final user law. A syntax checker is used when the user clicks on the OK
button.

Figure 34: Example of the user law editor

• Predefined symbols

EDF R&D Code Saturne version practical user’s guide
Code Saturne

documentation
Page 84/139

There are three types of symbols

Useful functions:

cos: cosine

sin: sine

tan: tangent

exp: exponential

sqrt: square root

log: Napierian logarithm

acos: arc cosine

asin: arc sine

atan(x): arc tangent (arc tangent of x in radians; the return value is in the range [-pi/2, pi/2])

atan2(y,x): arc tangent (arc tangent of y/x in radians; the return value is in the range [-pi, pi])

cosh: hyperbolic cosine

sinh: hyperbolic sine

tanh: hyperbolic tangent

abs: absolute value

mod: modulo

int: floor

min: minimum

max: maximum

Useful constants:

pi = 3.14159265358979323846

e = 2.718281828459045235

Operators and statements:

+ − ∗ / ∧
! < > <= >= == ! = && ||
while if else print

• Examples

This tab displays examples of formula, which could be copy and paste.

6.10 Modification of the variables at the end of a time step

The subroutine cs user extra operations is called at the end of every time step. It is used to print
of modify any variable at the end of every time step.

Several examples are given in the directory EXAMPLES:

- Calculation of a thermal balance at the boundaries and in the domain (including the mass source
terms)

- Modification of the temperature in a given area starting from a given time

- Extraction of a 1D profile (which is also possible with the GUI, see Figure 25)

- Printing of a moment

EDF R&D Code Saturne version practical user’s guide
Code Saturne

documentation
Page 85/139

- Usage of utility subroutines in the case of a parallel calculation (calculation of a sum on the
processors, of a maximum, ...)

WARNING: As all the variables (solved variables, physical properties, geometric parameters) can be
modified in this subroutine, a wrong use may distort totally the calculation.

The thermal balance example is particularly interesting.

- It can be easily adapted to another scalar (only three simple modifications to do, as indicated in
the subroutine).

- It shows how to make a sum on all the sub-domains in the framework of a parallel calculation
(see the calls to the subroutines par*).

- It shows the precautions to take before doing some operations in the framework of periodic or
parallel calculations (in particular when we want to calculate the gradient of a variable or to
have access to values at the neighbouring cells of a face).

- Finally it must not be forgotten that the resolution with temperature (and not enthalpy) as a
solved variable is questionable when the specific heat is not constant.

7 Advanced modelling setup

7.1 Use of a specific physics

Specific physics such as dispersed phase, atmospheric flows, gas combustion, pulverised fuel combustion,
electrical model and compressible model can be added by the user from the interface, or by using the
subroutine usppmo of the cs user parameters file (called only during the calculation initialisation).
With the interface, when a specific physics is activated in Figure 35, additional items or headings may
appear (see for instance Sections 7.6.4 and 7.2.0.1).

Figure 35: Specific physics models selection

When the interface is not used, usppmo is one of the three subroutines which must be obligatory
completed by the user in order to use a specific physics module (only heavy fuel combustion is not
available with the GUI). At the moment, Code Saturne allows to use two “pulverised coal” modules
(with Lagrangian coupling or not) and one “pulverised heavy fuel” module, two “gas combustion”
modules, two “electrical” modules, a “compressible” module and an “atmospheric” module. To activate
one of these modules, the user must complete one (and only one) of the indicators ippmod(i.....)

EDF R&D Code Saturne version practical user’s guide
Code Saturne

documentation
Page 86/139

in the subroutine usppmo. By default, all the indicators ippmod(i.....) are initialised at -1, which
means that no specific physics is activated.

• Diffusion flame in the framework of “3 points” rapid complete chemistry: indicator ippmod(icod3p)

→ ippmod(icod3p) = 0 adiabatic conditions

→ ippmod(icod3p) = 1 permeatic conditions (enthalpy transport)

→ ippmod(icod3p) =-1 module not activated

• Eddy Break Up pre-mixed flame: indicator ippmod(icoebu)

→ ippmod(icoebu) = 0 adiabatic conditions at constant richness

→ ippmod(icoebu) = 1 permeatic conditions at constant richness

→ ippmod(icoebu) = 2 adiabatic conditions at variable richness

→ ippmod(icoebu) = 3 permeatic conditions at variable richness

→ ippmod(icoebu) =-1 module not activated

• Libby-Williams pre-mixed flame: indicator ippmod(icolwc)

→ ippmod(icolwc)=0 two peak model with adiabiatic conditions.

→ ippmod(icolwc)=1 two peak model with permeatic conditions.

→ ippmod(icolwc)=2 three peak model with adiabiatic conditions.

→ ippmod(icolwc)=3 three peak model with permeatic conditions.

→ ippmod(icolwc)=4 four peak model with adiabiatic conditions.

→ ippmod(icolwc)=5 four peak model with permeatic conditions.

→ ippmod(icolwc)=-1 module not activated.

• Multi-coals and multi-classes pulverised coal combustion: indicator ippmod(iccoal) The number
of different coals must be less than or equal to ncharm = 3. The number of particle size classes
nclpch(icha) for the coal icha, must be less than or equal to ncpcmx = 10.

→ ippmod(iccoal) = 0 imbalance between the temperature of the continuous and the solid
phases

→ ippmod(iccoal) = 1 otherwise

→ ippmod(iccoal) =-1 module not activated

• Multi-classes pulverised heavy fuel combustion: indicator ippmod(icfuel)

→ ippmod(icfuel) = 0 module activated

→ ippmod(icfuel) =-1 module not activated

• Lagrangian modelling of multi-coals and multi-classes pulverised coal combustion: indicator
ippmod(icpl3c) The number of different coals must be less than or equal to ncharm = 3. The
number of particle size classes nclpch(icha) for the coal icha, must be less than or equal to
ncpcmx = 10.

→ ippmod(icpl3c) = 1 coupling with the Lagrangian module, with transport of H2

→ ippmod(icpl3c) =-1 module not activated

• Electric arcs module (Joule effect and Laplace forces): indicator ippmod(ielarc)

→ ippmod(ielarc) = 1 determination of the magnetic field by means of the Ampere’s theorem
(not available)

→ ippmod(ielarc) = 2 determination of the magnetic field by means of the vector potential

EDF R&D Code Saturne version practical user’s guide
Code Saturne

documentation
Page 87/139

→ ippmod(ielarc) =-1 module not activated

• Joule effect module (Laplace forces not taken into account): indicator ippmod(ieljou)

→ ippmod(ieljou) = 1 use of a real potential

→ ippmod(ieljou) = 2 use of a complex potential

→ ippmod(ieljou) = 3 use of real potential and specific boundary conditions for transformers.

→ ippmod(ieljou) = 4 use of complex potential and specific boundary conditions for trans-
formers.

→ ippmod(ieljou) =-1 module not activated

• Compressible module: indicator ippmod(icompf)

→ ippmod(icompf) = 0 module activated

→ ippmod(icompf) =-1 module not activated

• Atmospheric flow module: indicator ippmod(iatmos)

→ ippmod(iatmos) =-1 module not activated

→ ippmod(iatmos) = 0 standard modelling

→ ippmod(iatmos) = 1 dry atmosphere

→ ippmod(iatmos) = 2 humid atmosphere

WARNING: Only one specific physics module can be activated at the same time.

In the framework of the gas combustion modelling, the user may impose his own enthalpy-temperature
tabulation (conversion law). He needs then to give the value zero to the indicator indjon (the default
value being 1). For more details, the user may refer to the following note (thermochemical files).

Note: the thermo-chemical files
The user must not forget to place in the directory DATA the thermochemical file dp C3P, dp C3PSJ or
dp ELE (depending on the specific physics module he activated) Some example files are placed in the
directory DATA/REFERENCE at the creation of the study case. Their content is described below.

• Example of file for the gas combustion:

→ if the enthalpy-temperature conversion data base JANAF is used: dp C3P (see array 1).

→ if the user provides his own enthalpy-temperature tabulation (there must be three chemical
species and only one reaction): dp C3PSJ (see array 2). This file replaces dp C3P.

• Example of file for the electric arcs: dp ELE (see array 3).

EDF R&D Code Saturne version practical user’s guide
Code Saturne

documentation
Page 88/139

Lines Examples of values Variables Observations

1 5 ngaze Number of current species

2 10 npo Number of points for the
enthalpy-temperature table

3 300. tmin Lower temperature limit
for the table

4 3000. tmax Upper temperature limi t
for the tabulation

5 Empty line

6 CH4 O2 CO2 H2O N2 nomcoe(ngaze) List of the current species

7 .35 .35 .35 .35 .35 kabse(ngaze) Absorption coefficient
of the current species

8 4 nato Number of elemental species

9 .012 1 0 1 0 0 wmolat(nato), Molar mass of the elemental
10 .001 4 0 0 2 0 species (first column)
11 .016 0 2 2 1 0 atgaze(ngaze,nato) Composition of the current species
12 .014 0 0 0 0 2 as a function of the elemental species

(ngaze following columns)

13 3 ngazg Number of global species
Here, ngazg = 3 (Fuel, Oxidiser and Products)

14 1. 0. 0. 0. 0. Composition of the global species as a
15 0. 1. 0. 0. 3.76 compog(ngaze,ngazg) function of the current species of line 6
16 0. 0. 1. 2. 7.52 In the order: Fuel (line 15),

Oxidiser (line 16) and Product (line 17)

17 1 nrgaz Number of global reactions
Here nrgaz = 1 (always equal to 1

in this version)

18 igfuel(nrgaz), Numbers of the global species concerned by
1 2 -1 -9.52 10.52 igoxy(nrgaz), the stoichiometric ratio

(first 2 integers)
stoeg(ngazg,nrgaz) Stoichiometry in global species reaction.

Negative for the reactants (here
“Fuel” and “Oxidiser”) and positive for

the products (here “Products”)

Table 1: Example of file for the gas combustion when JANAF is used: dp C3P

EDF R&D Code Saturne version practical user’s guide
Code Saturne

documentation
Page 89/139

Lines Examples of values Variables Observations

1 6 npo Number of tabulation points

2 50. -0.32E+07 -0.22E+06 -0.13E+08
3 250. -0.68E+06 -0.44E+05 -0.13E+08 th(npo), Temperature(first column),
4 450. 0.21E+07 0.14E+06 -0.13E+08 ehgazg(1,npo), mass enthalpies of fuel, oxidiser
5 650. 0.50E+07 0.33E+06 -0.12E+08 ehgazg(2,npo), and products (columns 2,3 and 4)
6 850. 0.80E+07 0.54E+06 -0.12E+08 ehgazg(3,npo) from line 2 to line npo+1
7 1050. 0.11E+08 0.76E+06 -0.11E+08

8 .00219 .1387 .159 wmolg(1), Molar masses of fuel,
wmolg(2), oxidiser
wmolg(3) and products

9 .11111 fs(1) Mixing rate at the stoichiometry
(relating to Fuel and Oxidiser)

10 0.4 0.5 0.87 ckabsg(1), Absorption coefficients of the fuel,
ckabsg(2), oxidiser
ckabsg(3) and products

11 1. 2. xco2, xh2o Molar coefficients of CO2

and H2O in the products
(using Modak radiation)

Table 2: Example of file for the gas combustion when the user provides his own enthalpy-temperature
table (there must be three species and only one reaction): dp C3PSJ (this file replaces dp C3P)

Lines Examples of values Variables Observations

1 # Free format ASCII file ... Free comment

2 # Comment lines ... Free comment

3 # ... Free comment

4 # Argon propoerties ... Free comment

5 # ... Free comment

6 # No of NGAZG and No ... Free comment

7 # NGAZG NPO ... Free comment

8 1 238 ngazg Number of species
npo Number of given temperature points for

the tabulated physical properties
(npo 6 npot set in ppthch)

So there will be ngazg blocks of npo lines each

9 # ... Free comment

14 0 ixkabe Radiation options for xkabe

15 # ... Free comment

16 # Propreties ... Free comment

17 # T H ... Free comment

18 # Temperature Enthalpy ... Free comment

19 # ... Free comment

20 # K J/kg ... Free comment

21 # ... Free comment

22 300. 14000. ... In line tabulation of the physical properties
as a function of the temperature in Kelvin

for each of the ngazg species
h Enthalpy in J/kg

roel Density in kg/m3
cpel Specific heat in J/(kg K)
sigel Electric conductivity in Ohm/m
visel Dynamic viscosity in kg/(m s)
xlabel Thermal conductivity in W/(m K)
xkabel Absorption coefficient (radiation)

Table 3: Example of file for the electric arcs module: dp ELE

EDF R&D Code Saturne version practical user’s guide
Code Saturne

documentation
Page 90/139

7.2 Pulverised coal and gas combustion module (needs update)

7.2.0.1 Initialisation of the variables

For coal combustion, it is possible to initialise the specific variables in the Graphical User Interface
(GUI) or in the subroutine cs user initialization. In the GUI, when a coal combustion physics
is selected in the item “Calculation features” under the heading “Thermophysical models”, an addi-
tional item appears: “Pulverized coal combustion”. In this item the user can define coal types, their
composition, the oxidant and reactions parameters, see Figure 36 to Figure 39.

Figure 36: Thermophysical models - Pulverized coal combustion, coal classes

If the user deals with gas combustion or if he (or she) does not want to use the GUI for coal combustion,
the subroutine cs user initialization must be used (only during the calculation initialisation).
In this section, “specific physics” will refer to gas combustion or to pulverised coal combustion.

These subroutines allow the user to initialise some variables specific to the specific physics activated
via usppmo. As usual, the user may have access to several geometric variables to discriminate between
different initialisation zones if needed.

It should be recalled again that the user can access the array of values of the variables as described
in the the doxygen documentation dedicated to the fields management. In the following description,
only variables indices ivar are given, but field indices can be retrieved easily by using ivarfl(ivar).

WARNING: in the case of a specific physics modelling, all the variables will be initialised here, even
the potential user scalars: cs user initialization is no longer used.

• in the case of the EBU pre-mixed flame module, the user can initialise in every cell iel: the
mixing rate isca(ifm) in variable richness, the fresh gas mass fraction
isca(iygfm) and the mixture enthalpy isca(iscalt) in permeatic conditions

• in the case of the rapid complete chemistry diffusion flame module, the user can initialise in every
cell iel: the mixing rate isca(ifm), its variance isca(ifp2m) and the mixture mass enthalpy
isca(iscalt) in permeatic conditions

• in the case of the pulverised coal combustion module, the user can initialise in every cell iel:

→ the transport variables related to the solid phase

isca(ixch(icla)) the reactive coal mass fraction related to the class icla (icla from
1 to nclacp which is the total number of classes, i.e. for all the coal type)

EDF R&D Code Saturne version practical user’s guide
Code Saturne

documentation
Page 91/139

Figure 37: Pulverized coal combustion, coal composition

Figure 38: Pulverized coal combustion, reaction parameters

EDF R&D Code Saturne version practical user’s guide
Code Saturne

documentation
Page 92/139

Figure 39: Pulverized coal combustion, oxydant

isca(ixck(icla)) the coke mass fraction related to the class icla

isca(inp(icla)) the number of particles related to class icla per kg of air-coal mix-
ture

isca(ih2(icla)) the mass enthalpy related to the class icla in permeatic conditions

→ isca(iscalt) the mixture enthalpy

→ the transport variables related to the gas phase

isca(if1m(icha)) the mean value of the tracer 1 representing the light volatile matters
released by the coal icha

isca(if2m(icha)) the mean value of the tracer 2 representing the heavy volatile mat-
ters released by the coal icha

isca(if3m) the mean value of the tracer 3 representing the carbon released as CO
during coke burnout

isca(if4p2m) the variance associated with the tracer 4 representing the air (the mean
value of this tracer is not transported, it can be deduced directly from the three others)

isca(ifp3m) the variance associated with the tracer 3

7.2.1 Boundary conditions

In this section, “specific physics” refers to gas combustion or to pulverised coal combustion.
For coal combustion, it is possible to manage the boundary conditions in the Graphical User Interface
(GUI). When the coal combustion physics is selected in the heading “Thermophysical models”, specific
boundary conditions are activated for inlets, see Figure 40. The user fills for each type of coal previously
defined (see § 7.2.0.1) the initial temperature and initial composition of the inlet flow, as well as the
mass flow rate.

For gas combustion or if the GUI is not used for coal combustion, the use of cs user boundary conditions

(called at every time step) is as mandatory as cs user parameters.f90 and usppmo to run a calcu-
lation involving specific physics. The way of using them is the same as using in the framework of
standard calculations, that is, run several loops on the boundary faces lists (cf. §3.9.4) marked out by
their colors, groups, or geometrical criterion, where the type of face, the type of boundary condition
for each variable and eventually the value of each variable are defined.

EDF R&D Code Saturne version practical user’s guide
Code Saturne

documentation
Page 93/139

Figure 40: Boundary conditions for the combustion of coal

WARNING: In the case of a specific physics modelling, all the boundary conditions for every variable
must be defined here, even for the eventual user scalars: cs user boundary conditions is not used
at all.

In the case of a specific physics modelling, a zone number izone 23 (for instance the color icoul) is
associated with every boundary face, in order to gather together all the boundary faces of the same
type. In comparison to cs user boundary conditions, the main change from the user point of view
concerns the faces whose boundary conditions belong to the type itypfb=ientre:

• for the EBU pre-mixed flame module:

→ the user can choose between the “burned gas inlet” type (marked out by the burned gas
indicator ientgb(izone)=1) and the “fresh gas inlet” type (marked out by the fresh gas

23izone must be less than the maximum number of boundary zone allowable by the code, nozppm. This is fixed at
2000 in pppvar;not to be modified

EDF R&D Code Saturne version practical user’s guide
Code Saturne

documentation
Page 94/139

indicator ientgf(izone)=1)

→ for each inlet type (fresh or burned gas), a mass flow or a velocity must be imposed:

- to impose the mass flow,

- the user gives to the indicator iqimp(izone) the value 1,

- the mass flow value is set in qimp(izone) (positive value, in kgs−1)

- finally he imposes the velocity vector direction by giving the components of a di-
rection vector in rcodcl(ifac,iu), rcodcl(ifac,iv) and rcodcl(ifac,iw)

WARNING:

- the variable qimp(izone) refers to the mass flow across the whole zone izone and
not across a boundary face (specifically for the axi-symmetric calculations, the inlet
surface of the mesh must be broken up)

- the variable qimp(izone) deals with the inflow across the area izoz and only across
this zone; it is recommended to pay attention to the boundary conditions.

- the velocity direction vector is neither necessarily normed, nor necessarily incoming.

- to impose a velocity, the user must give to the indicator iqimp(izone) the value 0 and
set the three velocity components (in m.s−1) in rcodcl(ifac,iu), rcodcl(ifac,iv)
and rcodcl(ifac,iw)

→ finally he specifies for each gas inlet type the mixing rate fment(izone) and the temperature
tkent(izone) in Kelvin

• for the “3 points” diffusion flame module:

→ the user can choose between the “oxidiser inlet” type marked out by ientox(izone)=1 and
the “fuel inlet” type marked out by ientfu(izone)=1

→ concerning the input mass flow or the input velocity, the method is the same as for the EBU
pre-mixed flame module

→ finally, the user sets the temperatures tinoxy for each oxidiser inlet and tinfue, for each
fuel inlet

Note: In the standard version, only the cases with only one oxidising inlet type and one fuel
inlet type can be treated. In particular, there must be only one input temperature for the
oxidiser (tinoxy) and one input temperature for the fuel (tinfuel).

• for the pulverised coal module:

→ the inlet faces can belong to the “primary air and pulverised coal inlet” type, marked
out by ientcp(izone)=1, or to the “secondary or tertiary air inlet” type, marked out by
ientat(izone)=1

→ in a way which is similar to the process described in the framework of the EBU module,
the user chooses for every inlet face to impose the mass flow or not (iqimp(izone)=1 or
0). If the mass flow is imposed, the user must set the air mass flow value qimpat(izone),
its direction in rcodcl(ifac,iu), rcodcl(ifac,iv) and
rcodcl(ifac,iw) and if

→ incoming air temperature timpat(izone) in Kelvin. If the velocity is imposed, he must set
rcodcl(ifac,iu),
rcodcl(ifac,iv) and rcodcl(ifac,iw).

→ if the inlet belongs to the “primary air and pluverised coal” type (ientcp(izone) = 1)

the user must also define for each coal type icha: the mass flow qimpcp(izone,icha), the
granulometric distribution distch(izone,icha,iclapc) related to each class iclacp, and
the injection temperature timpcp(izone,icha)

EDF R&D Code Saturne version practical user’s guide
Code Saturne

documentation
Page 95/139

7.2.2 Initialisation of the options of the variables

In the case of coal combustion, time averages, chronological records and logss follow-ups can be set
in the Graphical User Interface (GUI) or in the subroutines cs user combustion. In the GUI, under
the heading “Calculation control”, additional variables appear in the list in the items “Time averages”
and “Profiles”, as well as in the item Volume solution control”, see Figure 41 and Figure 42.

Figure 41: Calculation control - Time averages

Figure 42: Calculation control - Volume solution control

In this section, “specific physics” refers to gas combustion or pulverised coal combustion.

For gas combustion or if the GUI is not used for coal combustion, the 3 subroutines cs user combustion

can be used to complete cs user parameters.f90 for the considered specific physics. These subrou-

EDF R&D Code Saturne version practical user’s guide
Code Saturne

documentation
Page 96/139

tines are called at the calculation start. They allow to:

• activate, for the variables which are specific to the activated specific physics module, chronolog-
ical records at the probes defined in cs user parameters.f90.
Concerning the main variables (velocity, pressure, etc ...) the user must still complete cs user parameters.f90

if he wants to get chronological records, printings in the log or chronological outputs. The vari-
ables which can be activated by the user for each specific physics are listed below. The solved
variables (of variable indices ivar) and the properties of indices iprop (defined at the cell iel by
cpro prop(iel) which is obtained by calling field get val s(iprop, cpro prop)) are listed
below:

→ EBU pre-mixed flame modelling:

- Solved variables

ivar = isca(iygfm) fresh gas mass fraction

ivar = isca(ifm) mixing rate

ivar = isca(ihm) enthalpy, if transported

- Properties cpro prop(iel)

iprop = itemp temperature

iprop = iym(1) fuel mass fraction

iprop = iym(2) oxidiser mass fraction

iprop = iym(3) product mass fraction

iprop = ickabs absorption coefficient, when the radiation modelling is activated

iprop = it3m and it4m “T 3” and “T 4” terms, when the radiation modelling is acti-
vated

→ rapid complete chemistry diffusion flame modelling:

everything is identical to the “EBU” case, except the fresh gas mass fraction which is
replaced by the variance of the mixing rate ivar=isca(ifp2m)

→ pulverised coal modelling with 3 combustibles:

variables shared by the two phases:

- Solved variables

ivar = isca(ihm): gas-coal mixture enthalpy

ivar = isca(immel): molar mass of the gas mixture

variables specific to the dispersed phase:

- Solved variables

ivar = isca(ixck(icla)): coke mass fraction related to the class icla

ivar = isca(ixch(icla)): reactive coal mass fraction related to the class icla

ivar = isca(inp(icla)): number of particles of the class icla per kg of air-coal
mixture

ivar = isca(ih2(icla)): mass enthalpy of the coal of class icla, if we are in
permeatic conditions

- Properties cpro prop(iel)

iprop = immel: molar mass of the gas mixture

iprop = itemp2(icla): temperature of the particles of the class icla

iprop = irom2(icla): density of the particles of the class icla

iprop = idiam2(icla): diameter of the particles of the class icla

iprop = igmdch(icla): disappearance rate of the reactive coal of the class icla

iprop = igmdv1(icla): mass transfer caused by the release of light volatiles from
the class icla

iprop = igmdv2(icla): mass transfer caused by the release of heavy volatiles
from the class icla

EDF R&D Code Saturne version practical user’s guide
Code Saturne

documentation
Page 97/139

iprop = igmhet(icla): coke disappearance rate during the coke burnout of the
class icla

iprop = ix2(icla): solid mass fraction of the class icla

variables specific to the continuous phase:

- Solved variables

ivar = isca(if1m(icha)): mean value of the tracer 1 representing the light
volatiles released by the coal icha

ivar = isca(if2m(icha)): mean value of the tracer 2 representing the heavy
volatiles released by the coal icha

ivar = isca(if3m): mean value of the tracer 3 representing the carbon released
as CO during coke burnout

ivar = isca(if4pm): variance of the tracer 4 representing the air

ivar = isca(if3p2m): variance of the tracer 3

- Properties cpro prop(iel)

iprop = itemp1: temperature of the gas mixture

iprop = iym1(1): mass fraction of CHX1m (light volatiles) in the gas mixture

iprop = iym1(2): mass fraction of CHX2m (heavy volatiles) in the gas mixture

iprop = iym1(3): mass fraction of CO in the gas mixture

iprop = iym1(4): mass fraction of O2 in the gas mixture

iprop = iym1(5): mass fraction of CO2 in the gas mixture

iprop = iym1(6): mass fraction of H2O in the gas mixture

iprop = iym1(7): mass fraction of N2 in the gas mixture

• set the relaxation coefficient of the density srrom, with
ρn+1 = srrom ∗ ρn + (1− srrom)ρn+1

(the default value is srrom = 0.8. At the beginning of a calculation, a sub-relaxation of 0.95 may
reduce the numerical “shocks”).

• set the dynamic viscosity diftl0. By default diftl0= 4.25 kgm−1s−1 (the dynamic diffusivity
being the ratio between the thermal conductivity λ and the mixture specific heat Cp in the
equation of enthalpy).

• set the value of the constant cebu of the Eddy Break Up model (only in cs user combustion.
By default cebu=2.5)

7.3 Heavy fuel oil combustion module

7.3.1 Initialisation of transported variables

To initialise or modify (in case of a continuation) values of transported variables and of the time step,
the standard subroutine cs user initialization is used.

Physical properties are stored using the cs field API (cell center). For instance, to obtain rom(iel),
the mean density (in kg.m−3), one must declare a ncelet array cpro rom and then call call field get val s(icrom,

cpro rom).
Physical properties (rom, viscl, cp, ...) are computed in ppphyv and are not to be modified here.

The cs user initialization-fuel.f90 example illustrates how the user may initialise quantities
related to gaseous species and droplets compositions in addition to the chosen turbulent model.

7.3.2 Boundary conditions

Boundary conditions are defined as usual on a per-face basis in cs user boundary conditions. They
may be assigned in two ways:

EDF R&D Code Saturne version practical user’s guide
Code Saturne

documentation
Page 98/139

. for “standard” boundary conditions (inlet, free outlet, wall, symmetry): a code is defined in the
array itypfb (of dimensions equal to the number of boundary faces). This code will then be
used by a non-user subroutine to assign the conditions.

. for “non-standard” conditions: see details given in cs user boundary conditions-fuel.f90

example.

7.4 Radiative thermal transfers in semi-transparent gray media

7.4.1 Initialisation of the radiation main parameters

The main radiation parameters can be initialise in the Graphical User Interface (GUI) or in the user
subroutine cs user radiative transfer param. In the GUI, under the heading “Thermophysical
models”, when one of the two thermal radiative transfers models is selected, see Figure ??, additional
items appear. The user is asked to choose the number of directions for angular discretisation, to define
the absorption coefficient and select if the radiative calculation are restarted or not, see Figure 43 and
Figure 45. When “Advanced options” is selected for both models Figure 44 or Figure 46 appear, the
user must fill the resolution frequency and verbosity levels. In addition, the activation of the radiative
transfer leads to the creation of an item “Surface solution control” under the heading “Calculation
control”, see Figure 47, where radiative transfer variables can be selected to appear in the output log.

Figure 43: Radiative transfers - parameters of the DO method

Figure 44: Radiative transfers - advanced parameters of the DO method

If the GUI is not used, cs user radiative transfer param is one of the two subroutine which must
be completed by the user for all calculations including radiative thermal transfers. It is called only
during the calculation initialisation. It is composed of three headings. The first one is dedicated to
the activation of the radiation module, only in the case of classic physics.

EDF R&D Code Saturne version practical user’s guide
Code Saturne

documentation
Page 99/139

Figure 45: Radiative transfers - parameters of the P-1 model

Figure 46: Radiative transfers - advanced parameters of the P-1 model

WARNING: when a calculation is ran using a specific physics module, this first heading must not be
completed. The radiation module is then activated or not, according to the parameter file related to the
considered specific physics.

In the second heading the basic parameters of the radiation module are indicated.
Finally, the third heading deals with the selection of the post-processing graphic outputs. The variables
to treat are splitted into two categories: the volumetric variables and those related to the boundary
faces.

For more details about the different parameters, the user may refer to the keyword list (§ 8).

7.4.2 Radiative transfers boundary conditions

These informations can be filled by the user through the Graphical User Interface (GUI) or by using
the subroutine cs user radiative transfer bcs.c (called every time step). If the interface is used,
when one of the “Radiative transfers” options is selected in Figure 12, it activates specific boundary
conditions each time a “Wall” is defined, see Figure 48. The user can then choose between 3 cases.
The parameters the user must specify are displayed for one of them in Figure 49.

When the GUI is not used, cs user radiative transfer bcs.f90 is the second subroutine necessary
for every calculation which includes radiative thermal transfers. It is used to give all the necessary
parameters concerning, in the one case, the wall temperature calculation, and in the other, the coupling
between the thermal scalar (temperature or enthalpy), and the radiation module at the calculation
domain boundaries. It must be noted that the boundary conditions concerning the thermal scalar
which may have been defined in the subroutine cs user boundary conditions will be modified by the
radiation module according to the data given in cs user radiative transfer bcs.f90 (cf. §3.9.4).

EDF R&D Code Saturne version practical user’s guide
Code Saturne

documentation
Page 100/139

Figure 47: Calculation control - Radiative transfers post-processing output

Figure 48: Boundary conditions - choice of wall thermal radiative transfers

A zone number must be given to each boundary face 24 and, specifically for the walls, a boundary
condition type and an initialisation temperature (in Kelvin). The initialisation temperature is only
used to make the solving implicit at the first time step. The zone number allows assigning an arbitrary
integer to a set of boundary faces having the same radiation boundary condition type. This gathering is
used by the calculation, and in the log to print some physical values (mean temperature, net radiative
flux ...). An independent graphic output in EnSight format is associated with each zone and allows
the display on the boundary faces of the variables selected in the third heading of the subroutine
cs user radiative transfer param.
A boundary condition type stored in the array ISOTHP is associated with each boundary face. There
are five different types:

• itpimp: wall face with imposed temperature,

• ipgrno: for a grey or black wall face, calculation of the temperature by means of a flux balance,

• iprefl: for a reflecting wall face, calculation of the temperature by means of a flux balance.
This is fixed at 2000 in radiat and cannot be modified.

• ifgrno: grey or black wall face to which a conduction flux is imposed,

• ifrefl: reflecting wall face to which a conduction flux is imposed, which is equivalent to impose
this flux directly to the fluid.

• ifinfe: for an open boundary (inlet or outlet) or symmetry face, simulate an infinite extrusion
by applying a Neumann condition to the radiation equations,

24This must be less than the maximum allowable by the code, nozrdm. This is fixed at 2000 in radiat and cannot be
modified.

EDF R&D Code Saturne version practical user’s guide
Code Saturne

documentation
Page 101/139

Figure 49: Boundary conditions - example of wall thermal radiative transfer

Depending on the selected boundary condition type at every wall face, the code needs to be given some
additional information:

• itpimp: the array tintp must be completed with the imposed temperature value and the array
epsp must be completed with the emissivity value (strictly positive).

• ipgrno: must be given: an initialisation temperature in the array tintp, the wall emissivity
(strictly positive, in epsp), thickness (in epap), thermal conductivity (in xlamp) and an external
temperature (in textp) in order to calculate a conduction flux across the wall.

• iprefl: must be given: an initialisation temperature (in tintp), the wall thickness (in epap)
and thermal conductivity (in xlamp) and an external temperature (in textp).

• ifgrno: must be given: an initialisation temperature (in tintp), the wall emissivity (in epsp)
and the conduction flux (in W/m2 whatever the thermal scalar, enthalpy or temperature) in the
array rcodcl. The value of rcodcl is positive when the conduction flux is directed from the
inside of the fluid domain to the outside (for instance, when the fluid heats the walls). If the
conduction flux is null, the wall is adiabatic.

• ifrefl: must be given: an initialisation temperature (in tintp) and the conduction flux (in
W/m2 whatever the thermal scalar) in the array rcodcl. The value of rcodcl is positive when
the conduction flux is directed from the inside of the fluid domain to the outside (for instance,
when the fluid heats the walls). If the conduction flux is null, the wall is adiabatic. The flux
received by rcodcl is directly imposed as boundary condition for the fluid.

WARNING: it is mandatory to set a zone number to every boundary face, even those which are not
wall faces. These zones will be used during the printing in the log. It is recommended to gather together
the boundary faces of the same type, in order to ease the reading of run solver.log.

7.4.3 Absorption coefficient of the medium, boundary conditions for the lu-
minance and calculation of the net radiative flux

When the absorption coefficient is not constant, the subroutine cs user rad transfer absorption is
called instead at each time step. It is composed of three parts. In the first one, the user must provide
the absorption coefficient of the medium in the array CK, for each cell of the fluid mesh. By default,
the absorption coefficient of the medium is 0, which corresponds to a transparent medium.

WARNING: when a specific physics is activated, it is forbidden to give a value to the absorption coef-
ficient in this subroutine. In this case, the coefficient is either calculated automatically, or provided by
the user via a thermo-chemical parameter file (dp C3P or dp C3PSJ for gas combustion, and dp FCP
for pulverised coal combustion).

EDF R&D Code Saturne version practical user’s guide
Code Saturne

documentation
Page 102/139

The two following parts of this subroutine concern a more advanced use of the radiation module. It
is about imposing boundary conditions to the equation of radiative transfer and net radiative flux
calculation, in coherence with the luminance at the boundary faces, when the user wants to give it a
particular value. In most cases, the given examples do not need to be modified.

7.5 Conjugate heat transfer

7.5.1 Thermal module in a 1D wall

subroutine called at every time step

This subroutine takes into account the wall-affected thermal inertia. Some boundary faces are treated
as a solid wall with a given thickness, on which the code resolves a one-dimensional equation for the
heat conduction. The coupling between the 1D module and the fluid works in a similar way to the
coupling with the SYRTHES. By construction, the user is not able to account for the heat transfer
between different parts of the wall. A physical analysis of each problem, case by case is required in
order to evaluate the relevance of its usage by way of a report of the simple conditions (temperature,
zero-flux) or a coupling with SYRTHES.

The use of this code requires that the thermal scalar is defined as (iscalt> 0).

WARNING: The 1D thermal module is developed assuming the thermal scalar as a temperature. If the
thermal scalar is an enthalpy, the code calls the subroutine usthht for each transfer of data between
the fluid and the wall in order to convert the enthalpy to temperature and vice-versa. This function
has not been tested and is firmly discouraged. If the thermal variable is the total (compressible) energy,
the thermal module will not work.

7.5.2 Fluid-Thermal coupling with SYRTHES

When the user wishes to couple Code Saturne with SYRTHES to include heat transfers, he can do so
with using with the Graphical User Interface (GUI) or the cs syrthes coupling user function. To
set such a coupling in the Graphic User Interfacee (GUI), a thermal scalar must be selected first in
the item “Thermal scalar” under the heading “Thermophysical models”. Then the item “Conjugate
heat transfer” will appear, see Figure50. The zones where the coupling occurs must be defined and a
projection axis can be specified in case of 2D coupling.

Figure 50: Thermophysical models - coupling with SYRTHES

If the function cs user syrthes coupling is used, the user must specify the arguments passed to the

EDF R&D Code Saturne version practical user’s guide
Code Saturne

documentation
Page 103/139

’cs syr coupling define’ function. These arguments are:

- syrthes name is the matching SYRTHES application name (useful only when more than one
SYRTHES and one Code Saturne domain are present),

- boundary criteria is the surface selection criteria,

- volume criteria is the volume selection criteria,

- projection axis: ’ ’ if the user wishes to use a 3D standard coupling, or specify ’x’, ’y’, or ’z’
as the projection axis if a 2D coupling with SYRTHES is used,

- verbosity is the verbosity level.

- visualization is the visualization level.

Examples are provided in cs user coupling.c.

The user may also define global coupling options relative to the handling of time-stepping, by adapting
the example cs user coupling in the cs user coupling.c file. In the case of multiple couplings, these
options are global to all SYRTHES and Code Saturne couplings.

7.6 Particle-tracking (Lagrangian) Module

7.6.1 General information

- The particle-tracking (or Lagrangian) module enables the simulation of poly-dispersed particu-
late flows, by calculating the trajectories of individual particles, mainly characterized by their
diameter and density (if no heat nor mass transfer between particle and fluid are activated).

- The standard use of the particle-tracking module follows the Moments/PDF approach: the
instantaneous properties of the underlying flow needed to calculate the particle motion are re-
constructed from the averaged values (obtained by Reynolds-Averaged Navier-Stokes simulation)
by using stochastic processes. The statistics of interest are then obtained through Monte-Carlo
simulation.

- As a consequence, is is important to emphasize that the most important (and physically meaning-
ful) results of a particle-tracking calculation following the Moments/PDF approach are statistics.
Volume and surface statistics, steady or unsteady, can be calculated. Individual particle trajec-
tories (as 1D, EnSight-readable cases) and displacements (as EnSight-readable animations) can
also be provided, but only for illustrative purposes.

7.6.2 Activating the particle-tracking module

The activation of the particle-tracking module is performed either:

• in the Graphical User Interface (GUI): Calculation features → Thermophysical models →
Eulerian-Lagrangian multi-phase treatment → particles and droplets tracking

• or in the user function cs user lagr model.

7.6.3 Basic guidelines for standard simulations

Except for cases in which the flow conditions depend on time, it is generally recommended to perform
a first Lagrangian calculation whose aim is to reach a steady-state (i.e. to reach a time starting from
which the relevant statistics do not depend on time anymore). In a second step, a calculation restart is

EDF R&D Code Saturne version practical user’s guide
Code Saturne

documentation
Page 104/139

done to calculate the statistics. When the single-phase flow is steady and the particle volume fraction
is low enough to neglect the particles influence on the continuous phase behaviour, it is recommended
to perform a Lagrangian calculation on a frozen field.

It is then possible to calculate steady-state volumetric statistics and to give a statistical weight higher
than 1 to the particles, in order to reduce the number of simulated (“numerical”) particles to treat
while keeping the right concentrations. Otherwise, when the continuous phase flow is steady, but the
two-coupling coupling must be taken into consideration, it is still possible to activate steady statistics.
When the continuous phase flow is unsteady, it is no longer possible to use steady statistics. To have
correct statistics at every moment in the whole calculation domain, it is imperative to have an estab-
lished particle seeding and it is recommended (when it is possible) not to impose statistical weights
different from the unity.

Finally, when the so-called complete model is used for turbulent dispersion modelling, the user must
make sure that the volumetric statistics are directly used for the calculation of the locally undisturbed
fluid flow field.

When the thermal evolution of the particles is activated, the associated particulate scalars are always
the inclusion temperature and the locally undisturbed fluid flow temperature expressed in degrees
Celsius, whatever the thermal scalar associated with the continuous phase is (i.e. temperature or
enthalpy). If the thermal scalar associated with the continuous phase is the temperature in Kelvin,
the unit is converted automatically into Celsius. If the thermal scalar associated with the continuous
phase is the enthalpy, the enthalpy-temperature conversion subroutine usthht must be completed for
mode=1, and must express temperatures in degrees Celsius. In all cases, the thermal backward coupling
of the dispersed phase on the continuous phase is adapted to the thermal scalar transported by the
fluid.

7.6.4 Prescribing the main modelling parameters (GUI and/or cs user lagr model)

Use of the GUI

In the GUI, the selection of the Lagrangian module activates the heading Particle and droplets

tracking in the tree menu. The initialization is performed in the three items included in this heading:

• Global settings. The user defines in this item the kind of Euler/Lagrange multi-phase treat-
ment, the main parameters, the specific physics associated with the particles and advanced
numerical options, see Figure 51 to Figure52.

• Statistics. The user can select the volume and boundary statistics to be post-processed.

• Output. The user defines the output frequency and post-processing options for particles and
select the variables that will appear in the log.

Use of the subroutine cs user lagr model

When the GUI is not used, cs user lagr model must be completed. This function gathers in different
headings all the keywords which are necessary to configure the Lagrangian module. The different
headings refer to:

• the global configuration parameters

EDF R&D Code Saturne version practical user’s guide
Code Saturne

documentation
Page 105/139

Figure 51: Lagrangian module - View of the Global Settings page

Figure 52: Lagrangian module - Global Settings, advanced numerical options

• the specific physical models describing the particle behaviour

• the backward coupling (influence of the dispersed phase on the continuous phase)

• the numerical parameters

• the volumetric statistics

• the boundary statistics

For more details about the different parameters, the user may refer to the keyword list (§ ??).

7.6.5 Prescribing particle boundary conditions (GUI and/or cs user lagr boundary conditions.c)

In the framework of the multiphase Lagrangian modelling, the management of the boundary conditions
concerns the particle behaviour when there is an interaction between its trajectory and a boundary
face. These boundary conditions may be imposed independently of those concerning the Eulerian

EDF R&D Code Saturne version practical user’s guide
Code Saturne

documentation
Page 106/139

fluid phase (but they are of course generally consistent). The boundary condition zones are actually
redefined by the Lagrangian module (cf. §3.9.4), and a type of particle behaviour is associated with
each one. The boundary conditions related to particles can be defined in the Graphical User Interface
(GUI) or in the cs user lagr boundary conditions.c file. More advanced user-defined boundary
conditions can be prescribed in the cs user lagr in function from cs user lagr particle.c.

Use of the GUI

In the GUI, selecting the Lagrangian module in the activates the item Particle boundary conditions

under the heading Boundary conditions in the tree menu. Different options are available depending
on the type of standard boundary conditions selected (wall, inlet/outlet, etc...), see Figure 53.

Figure 53: Lagrangian module - boundary conditions

7.6.6 Advanced particle-tracking set-up

In this section, some information is provided for a more advanced numerical set-up of a particle-tracking
simulation.

User-defined stochastic differential equations

An adaptation in the cs user lagr sde function is required if supplementary user variables are added
to the particle state vector. This function is called at each Lagrangian sub-step.

The integration of the stochastic differential equations associated with supplementary particulate vari-
ables is done in this function.
When the integration scheme of the stochastic differential equations is a first-order (nordre = 1), this
subroutine is called once every Lagrangian iteration, if it is a second-order (nordre = 2), it is called
twice.

The solved stochastic differential equations must be written in the form:

dΦp
dt

= −Φp −Π

τφ

where Φp is the Ith supplementary user variable, τφ is a quantity homogeneous to a characteristic time,

EDF R&D Code Saturne version practical user’s guide
Code Saturne

documentation
Page 107/139

and Π is a coefficient which may be expressed as a function of the other particulate variables.
In order to do the integration of this equation, the following parameters must be provided:

- τφ, equation characteristic time every particle,

- Π , equation coefficient. If the integration scheme is a first-order, then Π is expressed as a
function of the particulate variables at the previous iteration, stored in the array eptpa. If the
chosen scheme is a second-order, then Π is expressed at the first call of the function (prediction
step) as a function of the variables at the previous iteration, then at the second call (correction
step) as a function of the predicted variables.

If necessary, the thermal characteristic time τc, whose calculation can be modified by the user in the
function cs user lagr rt.

User-defined particle relaxation time

The particle relaxation time may be modified in the cs user lagr rt function according to the chosen
formulation of the drag coefficient. The particle relaxation time, modified or not by the user, is
available in the array taup.

User-defined particle thermal characteristic time

The particle thermal characteristic time may be modified in the cs user lagr rt t function according
to the chosen correlation for the calculation of the Nusselt number. This function is called at each
Lagrangian sub-step.

7.7 Compressible module

When the compressible module25 is activated, it is recommended to:

- use the option “time step variable in time and uniform in space” (idtvar=1) with a maximum
Courant number of 0.4 (coumax=0.4): these choices must be written in cs user parameters.f90

or specified with the GUI.

- keep the convective numerical schemes proposed by default (i.e.: upwind scheme).

With the compressible algorithm, the specific total energy is a new solved variable isca(ienerg)).
The temperature variable deduced from the specific total energy variable is isca(itempk) for the
compressible module.
Initialisation of the options of the variables, boundary conditions, initialisation of the variables and
management of variable physical properties can be done with the GUI. We describe below the subrou-
tines the user has to fill in without the GUI.

7.7.1 Initialisation of the options of the variables

Subroutines called at each time step.

When the GUI is not being used, the subroutines uscfx1 and uscfx2 in cs user parameters.f90

must be completed by the user.

uscfx1 allows to specify:

25For more details concerning the compressible version, the user may refer to the theory guide [11] and the document
“Implantation d’un algorithme compressible dans Code Saturne”, Rapport EDF 2003, HI-83/03/016/A, P. Mathon, F.
Archambeau et J.-M. Hérard.

EDF R&D Code Saturne version practical user’s guide
Code Saturne

documentation
Page 108/139

- ieos: equation of state (only perfect gas with a constant adiabatic coefficient, ieos=1 is available,
but the user can complete the subroutine cfther, which is not a user subroutine, to add new
equations of state).

- call field set key int(ivarfl(isca(itempk)), kivisl, ...): molecular thermal conduc-
tivity, constant (-1) or variable (0).

- iviscv: volumetric molecular viscosity, constant (0) or variable (1).

uscfx2 allows to specify:

- ivivar: molecular viscosity, constant (0) or variable (1).

- visls0(itempk): reference molecular thermal conductivity.

- viscv0: reference volumetric molecular viscosity.

- xmasmr: molar mass of the perfect gas (ieos=1).

- icfgrp: specify if the hydrostatic equilibrium must be accounted for in the boundary conditions.

7.7.2 Management of the boundary conditions

Subroutine called at each time step.

When running the compressible module without a GUI, the cs user boundary conditions subroutine
can be used to define specific boundary conditions (see the cs user boundary conditions-compressible

file in the directory EXAMPLES for examples of boundary conditions with the compressible module).

With the compressible module, the following types of boundary condition are avaliable:

- Inlet/outlet for which velocity and two thermodynamics variables are known.

- Subsonic inlet with imposed total pressure and total energy.

- Subsonic outlet with imposed static pressure.

- Supersonic outlet.

- Wall (adiabatic or not).

- Symmetry.

It is advised to only use these predefined boundary conditions type for the compressible module.

7.7.3 Initialisation of the variables

Subroutine called only at the initialisation of the calculation

When the GUI is not used, the subroutine cs user initialization is used initialize the velocity,
turbulence and passive scalars (see the cs user initialization-compressible file in the directory
EXAMPLES for examples of initialisations with the compressible module). Concerning pressure, density,
temperature and specific total energy, only 2 variables out of these 4 are independent. The user may
then initialise the desired variable pair (apart from temperature-energy) and the two other variables
will be calculated automatically by giving the right value to the variable ithvar used for the call to
the subroutine cfther.

EDF R&D Code Saturne version practical user’s guide
Code Saturne

documentation
Page 109/139

7.7.4 Management of variable physical properties

Subroutine called at each time step.

Without the GUI, all of the laws governing the physical properties of the fluid (molecular viscosity,
molecular volumetric viscosity, molecular thermal conductivity and molecular diffusivity of the user-
defined scalars) can be specified in the subroutine usphyv of the cs user physical properties file,
which is then called at each time step. This subroutine replaces and is similar to usphyv.

The user should check that the defined laws are valid for the whole variation range of the variables.
Moreover, as only the perfect gas with a constant adiabatic coefficient equation of state is available,
it is not advised to give a law for the isobaric specific heat without modifying the equation of state in
the subroutine cfther which is not a user subroutine.

7.8 Management of the electric arcs module

7.8.1 Activating the electric arcs module

The electric arcs module is activated either:

• in the Graphical User Interface (GUI): Calculation features → Electrical models

• or in the user subroutine usppmo, by setting the ielarc or ieljou parameter to a non-null value.

7.8.2 Initialisation of the variables

Subroutine called only at initialisation of the calculation

The subroutine cs user initialization allows the user to initialise some of the specific physics
variables prompted via usppmo. It is called only during the initialisation of the calculation. As
usual,the user has access to many geometric variables so that the zones can be treated separately if
needed.

The values of potential and its constituents are initialised if required.

It should be noted that the enthalpy is relevant.

- For the electric arcs module, the enthalpy value is taken from the temperature of reference t0

(given in cs user parameters.f90) from the temperature-enthalpy tables supplied in the data
file dp ELE. The user must not intervene here.

- For the Joule effect module, the value of enthalpy must be specified by the user . An ex-
ample is given of how to obtain the enthalpy from the temperature of reference t0(given in
cs user parameters.f90), the temperature-enthalpy law must be supplied. A code is suggested
in the usthht subroutine (provided for the determination of physical properties).

7.8.3 Variable physical properties

All the laws of the variation of physical data of the fluid are written (when necessary) in the subroutine
cs user physical properties. It is called at each time step.

WARNING: For the electric module, it is here that all the physical variables are defined (including the
relative cells and the eventual user scalars): cs user physical properties is not used.

The user should ensure that the defined variation laws are valid for the whole range of variables.
Particular care should be taken with non-linear laws (for example, a 3rd degree polynomial law giving
negative values of density)

EDF R&D Code Saturne version practical user’s guide
Code Saturne

documentation
Page 110/139

WARNING: In the electric module, all of the physical properties are considered as variables and are
therefore stored using the cs field API. cp0, viscls0 and viscl0 are not used

For the Joule effect, the user is required to supply the physical properties in the subroutine. Ex-
amples are given which are to be adapted by the user. If the temperature is to be determined
to calculate the physical properties, the solved variable, enthalpy must be deduced. The preferred
temperature-enthalpy law can be selected in the subroutine usthht (an example of the interpola-
tion is given from the law table. This subroutine can be re-used for the initialisation of the vari-
ables(cs user initialization)) For the electric arcs module, the physical properties are interpolated
from the data file dp ELE supplied by the user. Modifications are generally not necessary.

7.8.4 Boundary conditions

For the electric module,each boundary face in cs user boundary conditions should be associated
with a izone number 26(the color icoul for example) in order to group together all the boundary
faces of the same type. In the cs user boundary conditions report, the main change from the
users point of view concerns the specification of the boundary conditions of the potential, which isn’t
implied by default. The Dirichlet and Neumann conditions must be imposed explicitly using icodcl

and rcodcl (as would be done for the classical scalar).

Furthermore, if one wishes to slow down the power dissipation (Joule effect module) or the current
(electric arcs module) from the imposed values (puismp and couimp respectively), they can be changed
by the potential scalar as shown below:

- For the electric arcs, the imposed potential difference can be a fixed variable: for example, the
cathode can be fixed at 0 and the potential at the anode contains the variable dpot. This variable
is initialised in in cs user parameters.c by an estimated potential difference. If ielcor=1 (see
cs user parameters.c), dpot is updated automatically during the calculation to obtain the
required current.

- For the Joule effect module, dpot is again used with the same signification as in the electric arcs
module. If dpot is not wanted in the setting of the boundary conditions, the variable coejou can
be used. coejou is the coefficient by which the potential difference is multiplied to obtain the
desired power dissipation. By default this begins at 1 and is updated automatically. If ielcor=1
(see cs user parameters.c), multiply the imposed potentials in cs user boundary conditions

by coejou at each time step to achieve the desired power dissipation.

WARNING: In the case of alternating current, attention should be paid to the values of potential
imposed at the limits: the variable named ”real potential” represents an affective value if the current
is in single phase, and a ”real part” if not.

- For the Joule studies, a complex potential is sometimes needed (ippmod(ieljou)=2): this is
the case in particular where the current has three phases. To have access to the phase of the
potential, and not just to its amplitude, the two variables must be deleted: in Code Saturne, there
are two arrays specified for this role, the real part and the imaginary part of the potential. For
use in the code, these variables are named “real potential” and “imaginary potential”. For an
alternative sinusoidal potential Pp, the maximum value is noted as Ppmax, the phase is noted as
φ, the real potential and the imaginary potential are respectively Ppmax cosφ and Ppmax sinφ.

- For the Joule studies in which one does not have access to the phases, the real potential (imaginary
part =0) will suffice (ippmod(ieljou)=1): this is obviously the case with continuous current,
but also with single phase alternative current. In Code Saturne there is only 1 variable for the
potential, called ”real potential”. Pay attention to the fact that in alternate current, the ”real

26izone must be less than the maximum value allowed by the code, nozzppm. This is fixed at 2000 in ppvar and cannot
be modified.

EDF R&D Code Saturne version practical user’s guide
Code Saturne

documentation
Page 111/139

potential” represents a effective value of potential , 1√
2
Ppmax (in continuous current there is no

such ambiguity).

Additions for transformers

The following additional boundary conditions must be defined for tansformers:

• the intensity at each electrode

• the voltage on each terminal of transformers. To achieve it, the intensity, the rvoltage at each
termin, the Rvoltage, and the total intensity of the transformer are calculated.

Finally, a test is performed to check if the offset is zero or if a boundary face is in contact with the
ground.

7.8.5 Initialisation of the variable options

The subroutine cs user parameters (in cs user parameters.c) is called at each time step. It allows:

• to give the coefficient of relaxation of the density srrom:
ρn+1 = srrom ∗ ρn + (1− srrom)ρn

(for the electric arcs, the sub-relaxation is taken into account during the 2nd time step;)

• to indicate if the data will be fixed in the power dissipation or in the current, done in ielcor.

• target either the current fixed as couimp (electric arcs module) or the power dissipation puism

(Joule module effect).

• to fix the initial value of potential difference dpot, the for the calculations with a single fixed
parameter as couimp or puism.

• to define type of scaling model for electric arcs modrec. If scaling by a resetting plane is choosen
then idreca defines the current density component and crit reca the plane used for resetting
of electromagnetic variables.

7.8.6 Post-processing output

The algebraic variables related to the electric module are provided by default:

- gradient of real potential in V m−1 (∇PotR = −E)

- density of real current in Am−2 (j = σE)

specifically for the Joule module effect with ippmod(ieljou)=2 :

- gradient of imaginary potential in V m−1

- density of real current in Am−2

specifically for the electric arcs module with ippmod(ielarc)=2 :

- magnetic field in T (B = rot A)

The post-processing output will be created automatically (on all output volume meshes for which the
automatic output of main variables is active).

EDF R&D Code Saturne version practical user’s guide
Code Saturne

documentation
Page 112/139

7.9 Code Saturne-Code Saturne coupling

Subroutine called once during the calculation initialisation.

The user function cs user saturne coupling (in cs user coupling.c is used to couple Code Saturne
with itself. It is used for turbo-machine applications for instance, the first Code Saturne managing the
fluid around the rotor and the other the fluid around the stator. In the case of a coupling between
two Code Saturne instances, first argument saturne name of the function ’cs sat coupling define’ is
ignored. In case of multiple couplings, a coupling will be matched with available Code Saturne instances
based on that argument, which should match the directory name for the given coupled domain..
The arguments of ’cs sat coupling define’ are:

- saturne name: the matching Code Saturne application name,

- volume sup criteria: the cell selection criteria for support,

- boundary sup criteria: the boundary face selection criteria for support (not functional),

- volume cpl criteria: the cell selection criteria for coupled cells,

- boundary cpl criteria: the boundary face selection criteria for coupled faces,

- verbosity: the verbosity level.

7.10 Fluid-Structure external coupling

Subroutine called only once

The subroutine usaste belongs to the module dedicated to external Fluid-Structure coupling with
Code Aster. Here one defines the boundary faces coupled with Code Aster and the fluid forces com-
ponents which are given to structural calculation. When using external coupling with Code Aster,
structure numbers necessarily need to be negative; the references of coupled faces being i.e. -1, -2, etc.
The subroutine performs the following operations:

- ’getfbr’ is called to get a list of elements matching a geometrical criterion or reference number
then a structure number (negative value) is associated to these elements.

- the value passed to asddlf, for user-chosen component, for every negative structure number,
defines the movement imposed to the external structure.

EDF R&D Code Saturne version practical user’s guide
Code Saturne

documentation
Page 113/139

7.11 ALE module

7.11.1 Initialisation of the options

This initialisation can be performed in the Graphical User Interface (GUI) or in the subroutines
usipph and usstr1. Firstly, when the “Mobile mesh” is selected in GUI under the “Calculation
features” heading, additional options are displayed. The user must choose the type of mesh viscosity
and describe its spatial distribution, see Figure 54. The following paragraphs are relevant if the GUI

Figure 54: Thermophysical models - mobile mesh (ALE method)

is not used.

Subroutine usipph

Subroutine called at the beginning. This subroutine completes cs user parameters.f90.

usipph allows setting options for the ALE module, and in particular to activate the ALE module
(iale=1).

Subroutine usstr1

This subroutine reads in cs user fluid structure interaction.f90. It allows to specify the follow-
ing pieces of information for the structure module:

- the index of the structure, (idfstr(ifac) where ifac is the index of the face). Then the total
number of structures nbstru is automatically computed by the code. Be careful, the value must
belong to 1, ..., nbstru.

- the initial value of displacement, velocity and acceleration (xstr0, xstreq and vstr0).

Below is a list of the different variables that might be modified:

EDF R&D Code Saturne version practical user’s guide
Code Saturne

documentation
Page 114/139

• idfstr(ifac)

the index of the structure, (idfstr(ifac) where ifac is the index of the face), 0 if the face is
not coupled to any structure.

• xstr0(i,k)

initial position of a structure, where i is the dimension of space and k the index of the structure

• xstreq(i,k)

equilibrum position of a structure, where i is the dimension of space and k the index of the
structure

• vstr0(i,k)

initial velicity of a structure, where i is the dimension of space and k the index of the structure

7.11.2 Mesh velocity boundary conditions

These boundary conditions can be managed through the Graphical User Interface (GUI) or using the
subroutine usalcl (called at each time step). With the GUI, when the item “Mobile mesh” is activated
the item “Fluid structure interaction” appears under the heading “Boundary conditions”. Two types
of fluid-structure coupling are offered. The first one is internal, using a simplified structure model and
the second is external with Code Aster, see Figure 55 and Figure 56.

Subroutine usalcl

When the GUI is not used, the use of usalcl is mandatory to run a calculation using the ale module
just as it is in cs user parameters.f90. It is used the same way as cs user boundary conditions

in the framework of standard calculations, that is to say a loop on the boundary faces marked out
by their colour (or more generally by a property of their family), where the type of mesh velocity
boundary condition is definied for each variable.

The main numerical variables are described below.

ialtyb(nfabor) [ia]: In the ale module, the user defines the mesh velocity from the colour of the
boundary faces, or more generally from their properties (colours, groups, ...), from the bound-
ary conditions defined in cs user boundary conditions, or even from their coordinates. To
do so, the array ialtyb(nfabor) gives for each face ifac the mesh velocity boundary con-
dition types marked out by the key words ivimpo, igliss, ibfixe or ifresf..

• If ialtyb(ifac) = ivimpo: imposed velocity.

→ In the cases where all the nodes of a face have a imposed displacement, it is not necessary
to fill the tables with mesh velocity boundary conditions for this face, these will be erased.
In the other case, the value of the Dirichlet must be given in rcodcl(ifac,ivar,1) for
every value of ivar (iuma, ivma and iwma). The other boxes of rcodcl and icodcl are
completed automatically.

The tangential mesh velocity is taken like a tape speed under the boundary conditions of
wall for the fluid, except if wall fluid velocity was specified by the user in the interface or
cs user boundary conditions (in which case it is this speed which is considered).

• if ialtyb(ifac) = ibfixe: fixed wall

→ the velocity is null.

• if ialtyb(ifac) = igliss: sliding wall

→ symmetry boundary condition on the mesh velocity vector, which means a homogeneous
Neumann on the tangential mesh velocity and a zero Dirichlet on the normal mesh velocity.

• if ialtyb(ifac) = ifresf: free-surface

EDF R&D Code Saturne version practical user’s guide
Code Saturne

documentation
Page 115/139

→ an imposed mesh velocity such that the fluid mass flux is equal to the mesh displacement
in order to mimic the free-surface automatically. Note that the boundary condition on the
fluid velocity must be set separately (homogeneous Neumann conditionfor instance).

7.11.3 Modification of the mesh viscosity

The user subroutine usvima is used along the ALE (Arbitrary Lagrangian Eulerian Method) module,
and allows modifying the mesh viscosity. It is called before the time loop, and before reading restart
files (so the mesh is always in its initial position at this stage). The user can modify mesh viscosity
values to prevent cells and nodes from huge displacements in awkward areas, such as boundary layer
for example. If iortvm = 0, the mesh viscosity modelling is considered as isotropic and therefore the
ivisma field is scalar. If iortvm = 1, mesh viscosity modelling is orthotropic therefore that field is a
vector field.

Note that for more complex settings, the mesh viscosity could be modified in cs user initialization

or cs user extra operations. The matching field’s name is mesh viscosity.

7.11.4 Fluid - Structure internal coupling

In the subroutine cs user fluid structure interaction the user provides the parameters of two
other subroutines. usstr1 is called at the beginning of the calculation. It is used to define and
initialise the internal structures where fluid-Structure coupling occurs. For each boundary face ifac,
idfstr(ifac) is the index of the structure the face belongs to (if idfstr(ifac) = 0, the face ifac

doesn’t belong to any structure). When using internal coupling, structure index necessarily must be
strictly positive and smaller than the number of structures. The number of ”internal” structures is
automatically defined with the maximum value of the idfstr table, meaning that internal structure
numbers must be defined sequentially with positive values, beginning with integer value ’1’.

For each internal structure the user can define:

- an initial velocity vstr0

- an initial displacement xstr0 (i.e. xstr0 is the value of the displacement xstr compared to the
initial mesh at time t = 0)

- a displacement compared to equilibrium xstreq (i.e. xstreq is the initial displacement of the
internal structure compared to its position at equilibrium; at each time step t and for a displace-
ment xstr(t), the associated internal structure will undergo a force −k ∗ (t+XSTREQ) due to
the spring).

xstr0 and vstr0 are initialised with the value 0. When starting a calculation using ALE, or re-starting a
calculation with ALE, based on a first calculation without ALE, an initial iteration 0 is automatically
performed in order to take initial arrays xstr0, vstr0 and xstreq into account. In any other case, add
the following expression ’italin=1’ in subroutine usipsu, so that the code can deal with the arrays xstr0,
vstr0 and xstreq.

When ihistr is set to 1, the code writes in the output the history of the displacement, of the structural
velocity, of the structural acceleration and of the fluid force. The value of structural history output
step is the same as the one for standard variables nthist.

The second subroutine, usstr2, is called at each iteration. One defines in this subroutine structural pa-
rameters (considered as potentially time dependent): i.e., mass m xmstru, friction coefficients c xcstru,
and stiffness k xkstru. forstr array gives fluid stresses acting on each internal structure. Moreover it is
also possible to take external forces (gravity for example) into account.

. the xstr array indicates the displacement of the structure compared to its position in the initial
mesh,

EDF R&D Code Saturne version practical user’s guide
Code Saturne

documentation
Page 116/139

. the xstr0 array gives the displacement of the structures in the initial mesh compared to structural
equilibrium,

. the vstr array stands for structural velocity.

xstr, xstr0 and vstr are DATA tables that can be used to define the Mass, Friction and Stiffness arays.
These are not to be modified.

The 3D structural equation that is solved is the following one:

m.∂ttx+ c.∂tx+ k.
(
x+ x0

)
= f, (6)

where x stands for the structural displacement compared to initial mesh position xstr, x0 represents
the displacement of the structure in initial mesh compared to equilibrium. Note that m,c, and k are
3x3 matrices. Equation (6) is solved using a Newmark HHT algorithm. Note that the time step used
to solve this equation, dtstr, can be different from the one of fluid calculations. The user is free to
define dtstr array. At the beginning of the calculation dtstr is initialised to the value of dtcel (fluid
time step).

7.12 Management of the structure property

The use of usstr2 is mandatory to run a calculation using the ALE module with a structure module.
It is called at each time step.

For each structure, the system that will be solved is:

M.x
′′

+ C.x
′′

+K.(x− x0 = 0 (7)

where

- M is the mass structure (xmstru).

- C is the damping coefficient of the structure (xcstru).

- K is the spring constant or force constant of the structure (xkstru).

- x0 is the initial position.

Below is a list of the different variables that might be modified:

• xmstru(i,j,k)
mass matrix of the structure, where i,j is the array of mass structure and k the index of the
structure.

• xcstru(i,j,k)
damping matrix coefficient of the structure, where i,j is the array of damping coefficient and k

the index of the structure.

• xkstru(i,j,k)

spring matrix constant of the structure, where i,j is the array of spring constant and k the index
of the structure.

• forstr(i,k)

force vector of the structure, where i is the force vector and k the index of the structure.

EDF R&D Code Saturne version practical user’s guide
Code Saturne

documentation
Page 117/139

7.13 Management of the atmospheric module

This section describes how to set a calculation using the atmospheric module of Code Saturne. Each
paragraph describes a step of the data setting process.

7.13.1 Directory structure

The flowchart (Figure 57) recalls the directory structure of a study generated by Code Saturne (see also
3.1.3). When using the atmospheric module, the structure is identical but a file called meteo may be
added to the data settings in order to provide vertical profiles of the main variables. This file should
be put in the DATA directory. For more details about the meteo file, see § 7.13.5).

7.13.2 The atmospheric mesh features

An atmospheric mesh has the following specific features:

� The boundary located at the top of the domain should be a plane. So, horizontal wind speed at
a given altitude can be prescribed at the top face as an inlet boundary.

� Cells may have very different sizes, from very small (near ground or buildings) to very large (near
the top of domain or far from zone of interest).

� Vertical resolution: from tiny cells (e.g. ∆z = 1 m) near the ground to a few hundreds of meters
at the top.

� Horizontal resolution: from a few meters to hundreds of meters.

� The length ratio between two adjacent cells (in each direction) should preferably be between 0.7
and 1.3.

� The z axis represents the vertical axis.

A topography map can be used to generate a mesh. In this case, the preprocessor mode is particularly
useful to check the quality of the mesh (run type Mesh quality criteria).

7.13.3 Atmospheric flow model and steady/unsteady algorithm

The Graphical User Interface (GUI) may be used to enable the atmospheric flow module and set
up the following calculation parameters in the Thermophysical models-Calculation features page
(see Figure 58):

7.13.3.1 The atmospheric flow model

The user can choose one of the following atmospheric flow models:

� Constant density: To simulate neutral atmosphere.

� Dry atmosphere: To simulate dry, thermally-stratified atmospheric flows (enables Potential

temperature as thermal model).

� Humid atmosphere: To simulate thermally stratified atmospheric flows (air-water mixture)
with phase changes (enables Liquid potential temperature as thermal model). The model is
described in Bouzereau [15].

EDF R&D Code Saturne version practical user’s guide
Code Saturne

documentation
Page 118/139

7.13.3.2 The time algorithm

� Steady flow algorithm: is the one usually set. It sets a time step variable in space and time. It
has to be selected if constant boundary conditions are used.

� Unsteady flow algorithm has to be selected for time varying boundary conditions (the time step
can then be variable in time or constant).

Table Table 7.13.4 can help to choose the right parameters depending on the type of atmospheric flow.

7.13.3.3 Warnings

The following points have to be considered when setting the parameters described above:

� The potential temperature thermal model and the liquid potential temperature one (see the
paragraph “Atmospheric main variables” for the definition) requires that the vertical component
of the gravity is set to gz = −9.81m.s−2 (gx = gy = 0m.s−2), otherwise pressure and density
won’t be correctly computed.

� As well, the use of scalar with drift for atmospheric dispersion requires the gravity to be set to
gz = −9.81 (gx = gy = 0m.s−2), even if the density is constant.

7.13.4 Physical properties

The specific heat value has to be set to the atmospheric value Cp = 1005J/kg/K.

7.13.5 Boundary and initial conditions

The meteo file can be used to define initial conditions for the different fields and to set up the inlet
boundary conditions. For the velocity field, Code Saturne can automatically detect if the boundary
is an inlet boundary or an outflow boundary, according to the wind speed components given in the
meteo file with respect to the boundary face orientation. This is often used for the lateral boundaries
of the atmospheric domain, especially if the profile is evolving in time. In the case of inlet flow, the
data given in the meteo file will be used as the input data (Dirichlet boundary condition) for velocity,
temperature, humidity and turbulent variables. In the case of outflow, a Neumann boundary condition
is automatically imposed (except for the pressure). The unit of temperature in the meteo file is the
degree Celsius whereas the unit in the GUI is the kelvin.

To be taken into account, the meteo file has to be selected in the GUI (Atmospheric flows page, see
Figure 60) and the check box on the side ticked. This file gives the profiles of prognostic atmospheric
variables containing one or a list of time stamps. The file has to be put in the DATA directory.
An example of file meteo is given in the directory DATA/REFERENCE/. The file format has to be
strictly respected. The horizontal coordinates are not used at the present time (except when boundary
conditions are based on several meteorological vertical profiles) and the vertical profiles are defined
with the altitude above sea level. The highest altitude of the profile should be above the top of the
simulation domain and the lowest altitude of the profile should be below or equal to the lowest level
of the simulation domain. The line at the end of the meteo file should not be empty.

If the boundary conditions are variable in time, the vertical profiles for the different time stamps have
to be written sequentially in the meteo file.

You can also set the profiles of atmospheric variables directly in the GUI. The following boundary
conditions can be selected in the GUI:

� Inlet/Outlet is automatically calculated for lateral boundaries (e.g. North, West. . .) of the
computational domain (see Figure 61).

EDF R&D Code Saturne version practical user’s guide
Code Saturne

documentation
Page 119/139

Parameters Constant
density

Dry atmo-
sphere

Humid atmo-
sphere

Explanation

pressure boundary
condition

Neumann first
order

Extrapolation Extrapolation In case of Extrapola-
tion, the pressure gra-
dient is assumed (and
set) constant, whereas
in case of Neumann
first order, the pres-
sure gradient is as-
sumed (and set) to
zero.

Improved pressure
interpolation in
stratified flows

no yes yes If yes, exact balance
between the hydro-
static part of the
pressure gradient and
the gravity term ρg is
numerically ensured.

Gravity (gravity
is assumed aligned
with the z-axis)

gz = 0 or gz =
−9.81m.s−2

(the latter is
useful for scalar
with drift)

gz =
−9.81m.s−2

gz = −9.81m.s−2

Thermal variable no potential tem-
perature

liquid potential
temperature

Others variables no no total water con-
tent, droplets
number

Table 4: List of parameters

� Inlet for the top of the domain (see Figure 62).

� Rough wall for building walls (see Figure 63) or for the ground (see Figure 64). The user has
to enter the roughness length. In case of variable roughness length, the user has to provide the
land use data and the association between the roughness length values and land use categories.

Remark: If a meteorological file is given, it is used by default to initialize the variables. If a
meteorological file is not given, the user can use the standard Code Saturne initial and boundary
conditions set up but has to be aware that even small inconsistencies can create very large buoyancy
forces and spurious circulations.

7.13.5.1 Boundary conditions based on several meteorological vertical pro-
files

In some cases, especially when outputs of a mesoscale model are used, you need to build input boundary
conditions from several meteorological vertical wind profiles. Cressman interpolation is then used to
create the boundary conditions. The following files need to be put in the DATA directory:

� All meteo files giving the different vertical profiles of prognostic variables (wind, temperature,
turbulent kinetic energy and dissipation).

� A file called imbrication files list.txt which is a list of the meteo files used.

EDF R&D Code Saturne version practical user’s guide
Code Saturne

documentation
Page 120/139

� A separate meteo file which is used for the initial conditions and to impose inlet boundary condi-
tions for the variables for which Cressman interpolation is not used (for example: temperature,
turbulent kinetic energy). This file must follow the rules indicated previously.

The following files should be put in the SRC directory:

� The user source file cs user parameters.f90. In this file, set the cressman flag of each variable,
for which the Cressman interpolation should be enabled, to .true..

7.13.6 User subroutines

The user subroutines are used when the graphical user interface is not sufficient to set up the calculation.
We give some examples of user file for atmospheric application:

� cs user source terms.f90: to add a source term in the prognostic equations for forest canopy
modelling, wind turbine wake modelling... See the associated doxygen documentation for exam-
ples of use of cs user source terms.f90.

� cs user parameters.f90: to activate the Cressman interpolation. For example, it is used to
impose inhomogeneous boundary conditions. See the associated doxygen documentation for
examples of use of cs user parameters.f90.

� cs user extra operations-extract.f90: to generate vertical profiles for post processing. See
the associated doxygen documentation for examples of use of cs user extra operations.f90.

� cs user boundary conditions-atmospheric.f90: show how to set up the boundary conditions
and to put a heterogeneous roughness length... See the associated doxygen documentation for
examples of use of cs user boundary conditions.f90.

Remark: If the computation is set without the GUI, other user subroutines such as the following
have to be used:

� cs user initialization-atmospheric.f90: allows to initialize or modify (in case of a restarted
calculation) the calculation variables and the values of the time step. See the associated doxygen

documentation for examples of use of cs user initialization.f90.

� cs user boundary conditions-atmospheric.f90: allows to define all the boundary conditions.
For each type of boundary condition, faces should be grouped as physical zones characterized
by an arbitrary number izone chosen by the user. If a boundary condition is retrieved from a
meteorological profile, the variable iprofm(izone) of the zone has to be set to 1. The vertical
profiles of atmospheric variables can be described in this file.

Examples are available in the directory SRC/EXAMPLE.

7.13.7 Physical models

7.13.7.1 Atmospheric dispersion of pollutants

To simulate the atmospheric dispersion of pollutant, one first need to define the source(s) term(s). That
is to say the location i.e. the list of cells or boundary faces, the total air flow, the emitted mass fraction
of pollutant, the emission temperature and the speed with the associated turbulent parameters. The
mass fraction of pollutant is simulated through a user added scalar that could be a ‘scalar with drift’
if wanted (aerosols for example).

The simulations can be done using 3 different methods:

EDF R&D Code Saturne version practical user’s guide
Code Saturne

documentation
Page 121/139

1. Using a mass source term, that is added in the Navier-Stokes equations using the cs user mass source terms.f90

user subroutine.

2. Prescribing a boundary condition code “total imposed mass flux“ for some boundary faces using
the cs user boundary conditions.f90 user subroutine.

3. Using a scalar source term. In this case, the air inflow is not taken into account. The user has to
add an explicit part to the equations for the scalar through the cs user source terms.f90 file.
This is done by selecting the cells and adding the source term crvexp (cells) which equals to
the air flux multiplied by the mass fraction, while the implicit part crvimp is set to zero.

The first method is recommended, but one must take care that each source influences the dispersion
of the others, which is physically realistic. So if the impact of several sources has to be analyzed
independently it has first to be verified that these influences are negligible or as many simulations as
there are sources have to be run.

With the second method, the same problem of sources interactions appears, and moreover standard
Dirichlet conditions should not be used (use itypfb=i convective inlet and icodcl=13 instead) as
the exact emission rate cannot be prescribed because the diffusive part (usually negligible) cannot be
quantified. Additionally, it requires that the boundary faces of the emission are explicitly represented
in the mesh.

Finally the third method does not take into account the jet effect of the emission and so must be used
only if it is sure that the emission does not modify the flow.

Whatever solution is chosen, the mass conservation should be verified by using for example the
cs user extra operations-scalar balance by zone.f90 file.

7.13.7.2 Soil/atmosphere interaction model

This model is based on the force restore model (Deardorff [17]). It takes into account heat and
humidity exchanges between the ground and the atmosphere at daily scale and the time evolution
of ground surface temperature and humidity. Surface temperature is calculated with a prognostic
equation whereas a 2-layers model is used to compute surface humidity.

The parameter iatsoil in the file atini0.f90 needs to be equal to one to activate the model. Then,
the source file solvar.f90 is used.

Three variables need to be initialized in the file atini0.f90: deep soil temperature, surface tempera-
ture and humidity.

The user needs to give the values of the model constants in the file solcat.f90: roughness length,
albedo, emissivity...

In case of a 3D simulation domain, land use data has to be provided for the domain. Values of model
constants for the land use categories have also to be provided.

7.13.7.3 Radiative model (1D)

The 1D-radiative model calculates the radiative exchange between different atmospheric layers and the
surface radiative fluxes.

The radiative exchange is computed separately for two wave lengths intervals

� Calculation in the infrared spectral domain (file rayir.f90)

� Calculation in the spectral range of solar radiation (file rayso.f90)

This 1D-radiative model is needed if the soil/atmosphere interaction model is activated.

EDF R&D Code Saturne version practical user’s guide
Code Saturne

documentation
Page 122/139

This model is activated if the parameter iatra1 is equal to one in the file cs users parameters.f90.

7.13.8 Atmospheric main variables

For more details on the topic of atmospheric boundary layers, see Stull [16].

� Definition of the potential temperature:

θ = T

(
P

Pr

)−Rd
Cp

� Definition of liquid potential temperature:

θl = θ

(
1− L

CpT
ql

)
� Definition of virtual temperature:

Tv = (1 + 0.61q)T

� Gas law:

P = ρ
R

Md
(1 + 0, 61q)T

with R = RdMd.

� Hydrostatic state:
∂P

∂z
= −ρg

Constant name Symbol Values Unit
Gravity acceleration at sea level g 9.81 m.s−2

Effective Molecular Mass for dry air Md 28.97 kg.kmol−1

Standard reference pressure Pr 105 Pa
Universal gas constant R 8.3143 J.K−1.mol
Gas constant for dry air Rd 287 J.kg−1.K−1

Table 5: Constant name

Variable name Symbol
Specific heat capacity of dry air Cp
Atmospheric pressure P
Specific humidity q
Specific content for liquid water ql
Temperature T
Virtual temperature Tv
Potential temperature θ
Liquid potential temperature θl
Latent heat of vaporization L
Density ρ
Altitude z

Table 6: Variable name

EDF R&D Code Saturne version practical user’s guide
Code Saturne

documentation
Page 123/139

7.13.9 Recommendations

This part is a list of recommendations for atmospheric numerical simulations.

� Enough probes at different vertical levels in the domain should be used to check the convergence
of the calculation.

� An inflow boundary condition at the top level of the domain should be set (symmetry and
automatic inlet/outlet are not appropriate).

� A Courant number too small or too big has to be avoided (see Code Saturne Best Practice
Guidelines). That is the reason why the option variable time step in space and in time

is recommended for steady simulations when there are large differences of cell size inside the
domain (which is generally the case for atmospheric simulations). With this option, it can be
necessary to change the reference time step and the time step maximal increase (by default, the
time step increase rate is 10%).

In some cases, results can be improved with the following modifications:

� In some case, the turbulent eddy viscosity can drop to unrealistically low values (especially with
k − ε model in stable atmospheric condition). In those cases, it is suggested to put an artificial
molecular viscosity around 0.1m2.s−1.

� If the main direction of wind is parallel to the boundary of your computing domain, try to set
symmetry boundary conditions for the lateral boundaries to avoid inflow and outflow on the
same boundary zone (side of your domain). Another possibility is to use a cylindrical mesh.

� To avoid inflow and outflow on the same boundary zone (side of your domain), avoid the case
of vertical profile in the input data meteo file with changes of the sign of velocity of wind (Vx
or/and Vy).

7.14 Cavitation module

The cavitation module is based on an homogeneous mixture model. The physical properties (density
and dynamic viscosity) of the mixture depends on a resolved void fraction and constant reference
properties of the liquid phase and the gas phase.

For a description of the user management of the cavitation module, please refer to the dedicated
doxygen documentation.

EDF R&D Code Saturne version practical user’s guide
Code Saturne

documentation
Page 124/139

Figure 55: Boundary conditions - internal coupling

EDF R&D Code Saturne version practical user’s guide
Code Saturne

documentation
Page 125/139

Figure 56: Boundary conditions - external coupling

Figure 57: Organization of a study (specific files of atmospheric version in bold type)

Figure 58: Selection of atmospheric model

EDF R&D Code Saturne version practical user’s guide
Code Saturne

documentation
Page 126/139

Figure 59: Selection of steady/unsteady flow algorithm

Figure 60: Selection of the meteo file

Figure 61: Selection of automatic inlet/ outlet for boundary conditions

Figure 62: Selection of the boundary condition for the top of the domain

EDF R&D Code Saturne version practical user’s guide
Code Saturne

documentation
Page 127/139

Figure 63: Selection of the boundary condition for building walls

Figure 64: Selection of the boundary condition for the ground

EDF R&D Code Saturne version practical user’s guide
Code Saturne

documentation
Page 128/139

8 Keyword list
The keywords are classified under relevant headings. For each keyword of Code Saturne Kernel, the
following informations are given:

Variable name Type Allowed values [Default] O/C Level
Description
Potential dependences

• Variable name: Name of the variable containing the keyword.

• Type: a (Array), i (Integer), r (Real number), c (Character string).

• Allowed values: list or range of allowed values.

• Default: value defined by the code before any user modification (every keyword has one). In
some cases, a non-allowed value is given (generally −999 or −1012), forcing the user to specify a
value. If he does not do it, the code may:

- automatically use a recommended value (for example, automatic choice of the variables for
which chronological records will be generated).

- stop, if the keyword is essential.

• O/C: Optional/Compulsory

- O: optional keyword, whose default value may be enough.

- C: keyword which must imperatively be specified.

• Level: L1, L2 or L3

- L1 (level 1): the users will have to modify it in the framework of standard applications.
The L1 keywords are written in bold.

- L2 (level 2): the users may have to modify it in the framework of advanced applications.
The L2 keywords are all optional.

- L3 (level 3): the developers may have to modify it; it keeps its default value in any other
case. The L3 keywords are all optional.

• Description: keyword description, with its potential dependences.

The L1 keywords can be modified through the Graphical Use Interface or in the cs user parameters.f90

file. L2 and L3 keywords can only be modified through the cs user parameters.f90 file, even if they
do not appear in the version proposed as example it the SRC/REFERENCE/base directory.
It is however recommended not to modify the keywords which do not belong to the L1 level.

The alphabetical keyword list is displayed in the index, in the end of this report.

Notes
• The notation “d” refers to a double precision real. For instance, 1.8d-2 means 0.018.
• The notation “grand” (which can be used in the code) corresponds to 1012.

8.1 Input-output

Notes

• Two different files can have neither the same unit number nor the same name.

EDF R&D Code Saturne version practical user’s guide
Code Saturne

documentation
Page 129/139

8.1.1 ”Calculation” files

General

Vortex method for LES

For calculation files related to the vortex method for LES, please refer to the dedicated Doxygen

documentation.

Thermochemistry

For the calculation file related to the thermochemistry, please refer to the dedicated Doxygen docu-
mentation.

8.1.2 Post-processing for EnSight or other tools

Notes
• The format depends on the user choices, and most options are defined using the GUI or
cs user postprocess.c.
• The post-processing files can be of the following formats: Ensight Gold, MED or CGNS. The use
of the two latter formats depends on the installation of the corresponding external libraries.
• For each quantity (problem unknown, preselected numerical variable or preselected physical pa-
rameter), the user specifies if a post-processing output is wanted. The output frequency can be set.

See the dedicated Doxygen documentation about keyvis.

8.1.3 Chronological records of the variables on specific points

Standard use through Interface or cs user parameters.f90

For each quantity (problem unknown, preselected numerical variable or preselected physical parame-
ter), the user indicates whether chronological records should be generated, the output period and the
position of the probes. The code generates chronological records at the cell centers located closest to
the geometric points defined by the user by means of their coordinates. For each quantity, the number
of probes and their index-numbers must be specified (it is not mandatory to generate all the variables
at all the probes).

Please refer to the dedicated Doxygen documentation.

8.1.4 Time averages

See the dedicated Doxygen documentation.

8.1.5 Others

For user calculation file, see the following Doxygen documentation. For other printing options, please
refer to the Doxygen documentation dealing with input/output options.

./doxygen/src/group__entsor.html#keyvis

EDF R&D Code Saturne version practical user’s guide
Code Saturne

documentation
Page 130/139

8.2 Numerical options

8.2.1 Calculation management

The following Doxygen documentation provides information about the various calculation management
options available in Code Saturne such as ntmabs, ntcabs, etc.

8.2.2 Scalar unknowns

Several keywords refering to the scalar unknowns are detailed in the following Doxygen documentation.
The Doxygen page of the Stokes model structure also contains some keywords such as icpsyr, iclvfl
or itbrrb. For other keywords, please refer to the following Doxygen pages refering to nscaus and
iscacp.

8.2.3 Definition of the equations

For informations about istat, iconv, idiff or idifft, please refer to the following Doxygen docu-
mentation.

Moreover, one can find details about the idircl keyword here and about the ivisse keyword there.

8.2.4 Definition of the time advancement

idilat i 1, 2, 3, 4 [1] O L1
Algorithm to take into account the density variation in time

= 1: steady dilatable flow algorithm (default)
= 2: unsteady dilatable flow algorithm
= 3: low-Mach number algorithm
= 4: non conservative algorithm for fire simulation

always useful

cdtvar ra strictly positive real number [1] O L1
multiplicative factor applied to the time step for each scalar
Hence, the time step used when solving the evolution equation for the variable is the
time step used for the dynamic equations (velocity/pressure) multiplied by cdtvar.
The size of the array cdtvar is nvar. For instance, the multiplicative coefficient
applied to the scalar 2 is cdtvar(isca(2))). Yet, the value of cdtvar for the velocity
components and the pressure is not used. Also, although it is possible to change the
value of cdtvar for the turbulent variables, it is highly not recommended
useful if and only if nscal > 1

varrdt r strictly positive real number [0.1] O L3
maximum allowed relative increase in the calculated time step value between two
successive time steps (to ensure stability, any decrease in the time step is immediate
and without limit)
useful if idtvar 6= 0

For details about time stepping options, please refer to the dedicated Doxygen documentation.

Non-constant time step
The calculation of the time step uses a reference time step dtref (at the calculation beginning). Later,
every time step, the time step value is calculated by taking into account the different existing limits,

./doxygen/src/group__main__variables.html#nscaus
./doxygen/src/group__scalar__params.html#iscacp
./doxygen/src/group__linear__solver.html#idircl
./doxygen/src/structcs__stokes__model__t.html#ivisse

EDF R&D Code Saturne version practical user’s guide
Code Saturne

documentation
Page 131/139

in the following order:
• coumax, foumax: the more restrictive limit between both is used (in the compressible module,

the acoustic limitation is added),
• varrdt: progressive increase and immediate decrease in the time step,
• iptlro: limitation by the thermal time step,
• dtmax and dtmin: clipping of the time step to the maximum, then to the minimum limit.

8.2.5 Turbulence

The k− ε (standard and linearized production) and Rij − ε (LRR and SSG) turbulence models imple-
mented in Code Saturne are “High-Reynolds” models. It is therefore necessary to make sure that the
thickness of the first cell neighboring the wall is larger than the thickness of the viscous sub-layer (at
the wall, y+ > 2.5 is required as a minimum, and preferably between 30 and 100)27. If the mesh does
not respect this condition, the results may be biased (particularly if thermal processes are involved).
Using scalable wall-functions (cf. keyword iwallf) may help avoiding this problem.
The v2-f model is a “Low-Reynolds” model, it is therefore necessary to make sure that the thickness
of the first cell neighboring the wall is smaller than the thickness of the viscous sub-layer (y+ < 1).
The k − ω SST model provides correct results whatever the thickness of the first cell. Yet, it requires
the knowledge of the distance to the wall in every cell of the calculation domain. The user may refer
to the keyword icdpar for more details about the potential limitations.
The k − ε model with linear production allows to correct the known flaw of the standard k − ε model
which overestimates the turbulence level in case of strong velocity gradients (stopping point).
With LES, the wall functions are usually not greatly adapted. It is generally more advisable (if pos-
sible) to refine the mesh towards the wall so that the first cell is in the viscous sub-layer, where the
boundary conditions are simple natural no-slip conditions.
Concerning the LES model, the user may refer to the subroutine ussmag for complements about the
dynamic model. Its usage and the interpretation of its results require particular attention. In addi-
tion, the user must pay further attention when using the dynamic model with the least squares method
based on a partial extended neighbourhood (imrgra=3). Indeed, the results may be degraded if the
user does not implement his own way of averaging the dynamic constant in ussmag (i.e. if the user
keeps the local average based on the extended neighbourhood).

For further details, please refer to the following Doxygen documentation dealing with turbulence options
and turbulence constants.

8.2.6 Time scheme

By default, the standard time scheme is a first-order. A second-order scheme is activated automatically
with LES modelling. On the other hand, when “specific physics” (gas combustion, pulverised coal,
compressible module) are activated, the second-order scheme is not allowed.

In the current version, the second-order time scheme is not compatible with the estimators (iescal),
the velocity-pressure coupling (ipucou), the modelling of hydrostatic pressure (icalhy and iphydr)
and the time- or space-variable time step (idtvar).

Also, in the case of a rotation periodicity, a proper second-order is not ensured for the velocity, but
calculations remain possible.

It is recommended to keep the default values of the variables listed below. Hence, in standard cases,
the user does not need to specify these options.

Please refer to the dedicated Doxygen documentation for detailed informations about the time stepping

27While creating the mesh, y+ = yu∗
ν

is generally unknown. It can be roughly estimated as yU
10ν

, where U is the
characteristic velocity, ν is the kinematic viscosity of the fluid and y is the mid-height of the first cell near the wall.

EDF R&D Code Saturne version practical user’s guide
Code Saturne

documentation
Page 132/139

parameters.

8.2.7 Gradient reconstruction

The gradient reconstruction keywords such as imrgra, nswrgr, epsrgr, imligr, climgr or extrag

are members of the cs var cal opt t structure for which informations can be found in the following
Doxygen documentation.

Details on the anomax keyword can be found here as well.

8.2.8 Solution of the linear systems

See the dedicated Doxygen documentation for most settings related to linear solver options.

More informations on these settings can also be found here.

8.2.9 Convective scheme

For informations on the keywords related to the convective scheme (i.e. blencv, ischcv, isstpc)
please refer to the following Doxygen documentation.

8.2.10 Pressure-continuity step

Several options related to the pressure-continuity step are available and can be modified by the user.
These options can be found in the following Doxygen documentation. For details about the porosity
keyword iporos, please refer to the dedicated Doxygen documentation.

8.2.11 Error estimators for Navier-Stokes

There are currently nestmx=4 types of local estimators provided at every time step, with two possible
definitions for each28. These scalars indicate the areas (cells) in which some error types may be impor-
tant. They are stored using the cs field API (see field get val s(iestim(iestim), c estim)).
For each estimator, the code writes the minimum and maximum values in the log and generates post-
processing outputs along with the other variables.

The additional memory cost is about one real number per cell and per estimator. The additional
calculation cost is variable. For instance, on a simple test case, the total estimator iestot generates
an additional cost of 15 to 20 % on the CPU time29; the cost of the three others may be neglected. If
the user wants to avoid the calculation of the estimators during the computation, it is possible to run
a calculation without estimators first, and then activate them on a restart of one or two time steps.

It is recommended to use the estimators only for visual and qualitative analysis. Also, their use is
compatible neither with a second-order time scheme nor with a calculation with a frozen velocity field.

iest = iespre: prediction (default name: EsPre). After the velocity prediction step (yielding ũ),

the estimator η predi,k (ũ), local variable calculated at every cell Ωi, is created from R pred(ũ), which
represents the residual of the equation solved during this step:

R pred(ũ) = ρn
ũ− un

∆t
+∇ (ũ) · (ρu)

n − div
(
(µ+ µt)

n∇(ũ)
)

+∇(Pn)

− rest of the right-hand side(un, Pn, other variablesn)

By definition:

η predi,k (ũ) = |Ωi| (k−2)/2 ||R pred(ũ)||L2(Ωi)

28Choice made by the user
29Indeed, all the first-order in space differential terms have to be recalculated at the time tn+1

./doxygen/src/structcs__space__disc__t.html#anomax
./doxygen/src/structcs__var__cal__opt__t.html#epsilo
./doxygen/src/group__additional__source__terms.html#iporos

EDF R&D Code Saturne version practical user’s guide
Code Saturne

documentation
Page 133/139

� The first family, k = 1, suppresses the volume |Ωi| which intrinsically appears with the norm
L2(Ωi).

� The second family, k = 2, exactly represents the norm L2(Ωi). The size of the cell therefore
appears in its calculation and induces a weighting effect.

η predi,k (ũ) is ideally equal to zero when the reconstruction methods are perfect and the associated system
is solved exactly.

iest = iesder: drift (default name: EsDer). The estimator η deri,k (un+1) is based on the following
quantity (intrinsic to the code):

ηderi,k (un+1) = |Ωi| (k−2)/2||div (corrected mass flow after the pressure step)− Γ||L2(Ωi)

= |Ωi| (1−k)/2|div(corrected mass flow after the pressure step)− Γ|
(8)

Ideally, it is equal to zero when the Poisson equation related to the pressure is solved exactly.

iest = iescor: correction (default name: EsCor). The estimator η corri,k (un+1) comes directly from
the mass flow calculated with the updated velocity field:

η corri,k (un+1) = |Ωi| δ 2,k |div(ρnun+1)− Γ|

The velocities un+1 are taken at the cell centers, the divergence is calculated after projection on the
faces.
δ 2,k represents the Kronecker symbol.
• The first family, k = 1, is the absolute raw value of the divergence of the mass flow minus the

mass source term.
• The second family, k = 2, represents a physical property and allows to evaluate the difference in

kg.s−1.
Ideally, it is equal to zero when the Poisson equation is solved exactly and the projection from the mass
flux at the faces to the velocity at the cell centers is made in a set of functions with null divergence.

iest = iestot: total (default name: EsTot). The estimator ηtoti,k(un+1), local variable calculated at

every cell Ωi, is based on the quantity Rtot(un+1), which represents the residual of the equation using
the updated values of u and P :

Rtot(un+1) = ρn
un+1 − un

∆t
+∇

(
un+1

)
· (ρu)

n+1 − div
(
(µ+ µt)

n∇(un+1)
)

+∇(Pn+1)

− rest of the right-hand side(un+1, Pn+1, other variablesn)

By definition:

ηtoti,k (un+1) = |Ωi| (k−2)/2 ||Rtot(un+1)||L2(Ωi)

The mass flux in the convective term is recalculated from un+1 expressed at the cell centres (and not
taken from the updated mass flow at the faces).

As for the prediction estimator:

� The first family, k = 1, suppresses the volume |Ωi| which intrinsicly appears with the norm
L2(Ωi).

� The second family, k = 2, exactly represents the norm L2(Ωi). The size of the cell therefore
appears in its calculation and induces a weighting effect.

The estimators are evaluated depending on the values of iescal.

EDF R&D Code Saturne version practical user’s guide
Code Saturne

documentation
Page 134/139

8.2.12 Calculation of the distance to the wall

The options related to the calculation of the distance to the wall are described in the following Doxygen

documentation. Some options are used only in the case of the calculation of the non-dimensional dis-
tance to the wall y+ (LES model with van Driest damping). Most of the keywords are simple copies
of the keywords for the numerical options of the general equations, with a potentially specific value in
the case of the calculation of the distance to the wall.

8.2.13 Others

Informations concerning the remaining keywords can be reached through the following Doxygen pages:

� iccvfg and ipucou

� nterup and epsup

� imvisf

� irclu, nswrsm and epsrsm

� isuit1

8.3 Numerical, physical and modelling parameters

8.3.1 Numeric parameters

These parameters correspond to numeric reference values in the code. They can be used but shall not
be modified (they are defined as parameter).

For a list of these physical parameters, please refer to the following Doxygen documentation.

8.3.2 Physical parameters

These parameters correspond to physical reference values in the code. They can be used but shall not
be modified (they are defined as parameter).

For a list of these physical parameters, please refer to the following Doxygen documentation.

8.3.3 Physical variables

Most physical variables are listed in the following Doxygen documentation.

Other physical variables such as diftl0, srrom, visls0, sigmas or rvarfl are described in the
following Doxygen pages :

� diftl0,

� srrom,

� visls0, sigmas, rvarfl.

8.3.4 Modelling parameters

Please refer to the following Doxygen documentation for more informations about modelling parameters
such as xlomlg, almax or uref.

./doxygen/src/structcs__space__disc__t.html#imvisf
./doxygen/src/group__optcal.html#isuit1
./doxygen/src/group__thermophysical.html#diftl0
./doxygen/src/group__enthalpy.html#srrom

EDF R&D Code Saturne version practical user’s guide
Code Saturne

documentation
Page 135/139

8.4 ALE

For further details about the ALE calculation options, please refer to the dedicated Doxygen pages
here and there. The following Doxygen documentation might be useful as well.

8.5 Thermal radiative transfers: global settings

Most of radiative module keywords may be modified in the user subroutines cs user radiative * (or,
for some of them, through the thermochemical data files).

For a detailed list of these keywords, please refer to the following Doxygen documentation.

8.6 Electric module (Joule effect and electric arcs): specificities

The electric module is composed of a Joule effect module (ippmod(ieljou)) and an electric arcs
module (ippmod(ielarc)).

The Joule effect module is designed to take into account the Joule effect (for instance in glass furnaces)
with real or complex potential in the enthalpy equation. The Laplace forces are not taken into account
in the impulse momentum equation. Specific boundary conditions can be applied to account for the
coupled effect of transformers (offset) in glass furnaces.

The electric arcs module is designed to take into account the Joule effect (only with real potential) in
the enthalpy equation. The Laplace forces are taken into account in the impulse momentum equation.

The different keywords used in the electric module are detailed in the following Doxygen documentation.

8.7 Compressible module: specificities

The keywords used in the global settings are quite few. They are found in the subroutines uscfx1 and
uscfx2, in the cs user parameters.f90 file (see the description of these user subroutines, §7.7.1).

Detailed informations can be found here for the keywords igrdpp, viscv0 and icfgrp.

For iviscv, ieos and xmasmr, please refer to the dedicated Doxygen documentation.

./doxygen/src/group__conv__scheme.html#iflxmw

EDF R&D Code Saturne version practical user’s guide
Code Saturne

documentation
Page 136/139

9 Bibliography
[1] F. Archambeau, N. Méchitoua, M. Sakiz,

Code Saturne: a Finite Volume Code for the Computation of Turbulent Incompressible Flows,
Industrial Applications, International Journal on Finite Volumes, Vol. 1, 2004.

[2] F. Archambeau, et al.,
Note de validation de Code Saturne version 1.1.0,
EDF Report HI-83/04/003/A, 2004 (in French).

[3] S. Benhamadouche,
Modélisation de sous-maille pour la LES - Validation avec la Turbulence Homogène Isotrope (THI)
dans une version de développement de Code Saturne,
EDF Report HI-83/01/033/A, 2001 (in French).

[4] M. Boucker, F. Archambeau, N. Méchitoua,
Quelques éléments concernant la structure informatique du Solveur Commun - Version 1.0 init0,
Compte-rendu express EDF I81-00-8, 2000 (in French).

[5] M. Boucker, J.D. Mattéi,
Proposition de modification des conditions aux limites de paroi turbulente pour le Solveur Commun
dans le cadre du modèle k − ε standard,
EDF Report HI-81/00/019/A, 2000 (in French).

[6] A. Douce, N. Méchitoua,
Mise en œuvre dans Code Saturne des physiques particulières. Tome3 : Transfert thermique radiatif
en milieu gris semi-transparent,
EDF Report HI-81/02/019/A, 2002 (in French).

[7] A. Douce,
Physiques particulières dans Code Saturne 1.1, Tome 5 : modélisation stochastique lagrangienne
d’écoulements turbulents diphasiques polydispersés,
EDF Report, HI-81/04/03/A, 2005 (in French).

[8] A. Escaich, P. Plion, Mise en œuvre dans Code Saturne des modélisations physiques particulières.
Tome 1 : Combustion en phase gaz,
EDF Report, HI-81/02/03/A, 2002 (in French).

[9] A. Escaich, Mise en œuvre dans Code Saturne des modélisations physiques particulières. Tome 2 :
Combustion du charbon pulvérisé,
EDF Report, HI-81/02/09/A, 2002 (in French).

[10] N. Méchitoua, F. Archambeau,
Prototype de solveur volumes finis co-localisé sur maillage non-structuré pour les équations de
Navier-Stokes 3D incompressibles et dilatables avec turbulence et scalaire passif,
EDF Report HE-41/98/010/B, 1998 (in French).

[11] Code Saturne documentation,
Code Saturne Theory and Programmer’s guide,
on line with the release of Code Saturne (code saturne info --guide theory).

[12] M. Sakiz, Validation team,
Validation de Code Saturne version 1.2 : note de synthèse,
EDF Report H-I83-2006-00818-FR, 2006 (in French).

[13] M. Tagorti., S. Dal-Secco, A. Douce, N. Méchitoua,
Physiques particulières dans Code Saturne, tome 4 : le modèle P-1 pour la modélisation des trans-
ferts thermiques radiatifs en milieu gris semi-transparent,
EDF Report HI-81/03/017/A, 2003 (in French).

EDF R&D Code Saturne version practical user’s guide
Code Saturne

documentation
Page 137/139

[14] Code Saturne documentation,
Code Saturne tutorial, in line on main Code Saturne website (http://www.paraview.org).

[15] E. Bouzereau,
Représentation des nuages chauds dans le modèle météorologique “Mercure”: Application aux
panaches d’aéroréfrigérants et aux précipitations orographiques,
EDF,Universite Pierre et Marie Curie-Paris VI, PHD, 2004 (in French).

[16] R. Stull,
An introduction to boundary layer meteorology ,
Springer, 1988.

[17] J.W. Deardorff,
Efficient prediction of ground surface temperature and moisture with inclusion of a layer of vege-
tation,
Journal of Geophysical Research,83:1889-1903 , 1978.

http://www.paraview.org

Index of the main variables and keywords
– Symbols –

isvhb . 33
isvtb . 33
coejou .40
dpot . 40
icdpar .39
icodcl .64
iscapp .32
itypfb .64
rcodcl .64

– A –
ales . 77
atgaze . 88

– B –
bles . 77

– C –
cdtvar . 130
cebu . 97
ckabsg . 89
compog . 88
couimp . 110
csmago .77

– D –
diftl0 .97
distch . 94
divukw .35
dt .34

– E –
ehgazg . 89
eppt1d . 34

– F –
fment . 94
fs(1) . 89

– H –
hbord . 33

– I –
i convective inlet . 65
ialtyb . 114
ibfixe . 114
iccoal . 86
icdpar . 131
icetsm . 82
icfuel .86
ickabs . 96
iclvor . 71
icod3p . 86

icoebu . 86
icolwc . 86
icompf . 87
icpl3c . 86
idebty .70
idiam2 . 96
idilat . 130
iecaux .39
ielarc . 86, 135
ieljou .87, 135
ientat . 94
ientcp . 94
ientfu . 94
ientgb .93
ientgf . 94
ientox . 94
ientre . 65, 93
iescor . 133
iesder . 133
iespre . 132
iestot . 133
if1m . 92, 97
if2m . 92, 97
if3m . 92, 97
if3p2m . 97
if4p2m . 92
if4pm . 97
ifinty .70
ifm . 90, 96
ifmcel . 34
ifp2m . 90, 96
ifp3m . 92
ifpt1d . 34
ifrent . 65
ifresf . 65, 114
igfuel . 88
igliss . 114
igmdch .96
igmdv1 .96
igmdv2 .96
igmhet . 97
igoxy .88
ih2 . 92, 96
ihm . 96
iindef . 65
ileaux . 39
immel . 96
indjon .87
inp . 92, 96
iparoi . 65
iparug . 65
ippmod . 85

138

EDF R&D Code Saturne version practical user’s guide
Code Saturne

documentation
Page 139/139

iqimp . 94
irepvo . 71
irom2 . 96
iscalt .32
isolib .65
isymet . 65
it3m . 96
it4m . 96
itemp . 96
itemp1 . 97
itemp2 . 96
itrifb . 70
itypsm . 82
iu . 94
iv . 94
ivimpo . 114
ivrtex . 39
iw . 94
ix2 . 97
ixch . 90, 96
ixck . 92, 96
ixkabe . 89
iygfm .90, 96
iym(1) . 96
iym(2) . 96
iym(3) . 96
iym1(1) . 97
iym1(2) . 97
iym1(3) . 97
iym1(4) . 97
iym1(5) . 97
iym1(6) . 97
iym1(7) . 97
izone . 93

– K –
kabse . 88

– N –
nato . 88
ncesmp . 82
ncetsm . 82
ncharm . 86
nclpch . 86
ncpcmx . 86
nestmx . 132
nfpt1d . 34
ngaze . 88
ngazg . 88, 89
nnent . 70
nomcoe . 88
npo . 88, 89
nppt1d . 34
nrgaz . 88
ntypmx . 67

nvort .70

– P –
puismp . 110

– Q –
qimp . 94
qimpat . 94
qimpcp . 94

– R –
rcodcl . 94

– S –
s2kw . 35
smacel . 82
srrom . 97
stoeg .88

– T –
tbord . 33
th .89
timpat . 94
timpcp . 94
tinfue . 94
tinoxy .94
tkent .94
tmax .88
tmin . 88

– V –
varrdt . 130

– W –
wmolat . 88
wmolg . 89

– X –
xco2 . 89
xh2o . 89
xkabe . 89
xkabel . 89
xlesfl . 77

	Flyleaf
	Abstract
	Table of contents
	Introduction
	Quick start
	How to use the Doxygen documentation?
	Running a calculation
	Troubleshooting

	Practical information about Code_Saturne
	System Environment for Code_Saturne
	Preliminary settings
	Configuration file
	Standard directory hierarchy
	Code_Saturne Solver library files

	Setting up and running a calculation
	Step by step calculation
	Temporary execution directory
	Execution modes
	Environment variables
	Interactive modification of selected parameters

	Case preparer
	Supported mesh and post-processing output formats
	Formats supported for input
	Formats supported for input or output
	Formats supported for output only
	Meshing tools and associated formats
	Meshing remarks

	Preprocessor command line options
	Solver command line options
	Launch scripts
	Graphical User Interface
	User subroutines
	Preliminary comments
	Example routines
	Main variables
	Using selection criteria in user subroutines

	Face and cell mesh-defined properties and selection

	Importing and preprocessing meshes
	Preprocessor options
	Mesh selection
	Post-processing output
	Element orientation correction

	Environment variables
	System environment variables

	Optional functionality
	General remarks
	Files passed to the Solver
	Mesh preprocessing
	Joining of non-conforming meshes
	Periodicity
	Parameters for conforming or non-conforming mesh joinings
	Parameters for periodicity
	Modification of the mesh geometry

	Mesh smoothing utilities
	Fix by feature
	Warped faces smoother

	Partitioning for parallel runs
	Partitioning stages
	Partitioner choice
	Effect of periodicity

	Basic modelling setup
	Initialisation of the main parameters
	Selection of mesh inputs: cs_user_mesh_input
	Non-default variables initialisation
	Manage boundary conditions
	Coding of standard boundary conditions
	Coding of non-standard boundary conditions
	Checking of the boundary conditions
	Sorting of the boundary faces
	Boundary conditions with LES

	Manage the variable physical properties
	Basic variable physical properties
	Modification of the turbulent viscosity
	Modification of the variable C of the dynamic LES model

	User source terms
	In Navier-Stokes
	For k and
	For Rij and
	For and f
	For k and
	For t
	For user scalars

	Pressure drops (head losses) and porosity
	Head losses
	Porosity

	Management of the mass sources
	User law editor of the GUI
	Modification of the variables at the end of a time step

	Advanced modelling setup
	Use of a specific physics
	Pulverised coal and gas combustion module
	Boundary conditions
	Initialisation of the options of the variables

	Heavy fuel oil combustion module
	Initialisation of transported variables
	Boundary conditions

	Radiative thermal transfers in semi-transparent gray media
	Initialisation of the radiation main parameters
	Radiative transfers boundary conditions
	Absorption coefficient of the medium, boundary conditions for the luminance and calculation of the net radiative flux

	Conjugate heat transfer
	Thermal module in a 1D wall
	Fluid-Thermal coupling with SYRTHES

	Particle-tracking (Lagrangian) Module
	General information
	Activating the particle-tracking module
	Basic guidelines for standard simulations
	Prescribing the main modelling parameters (GUI and/or cs_user_lagr_model)
	Prescribing particle boundary conditions (GUI and/or cs_user_lagr_boundary_conditions.c)
	Advanced particle-tracking set-up

	Compressible module
	 Initialisation of the options of the variables
	Management of the boundary conditions
	Initialisation of the variables
	Management of variable physical properties

	Management of the electric arcs module
	Activating the electric arcs module
	Initialisation of the variables
	Variable physical properties
	Boundary conditions
	Initialisation of the variable options
	EnSight output

	Code_Saturne-Code_Saturne coupling
	Fluid-Structure external coupling
	ALE module
	Initialisation of the options
	Mesh velocity boundary conditions
	Modification of the mesh viscosity
	Fluid - Structure internal coupling

	Management of the structure property
	Management of the atmospheric module
	Directory structure
	The atmospheric mesh features
	Atmospheric flow model and steady/unsteady algorithm
	Physical properties
	Boundary and initial conditions
	User subroutines
	Physical models
	Atmospheric main variables
	Recommendations

	Cavitation module

	Keyword list
	Input-output
	''Calculation'' files
	Post-processing for EnSight or other tools
	Chronological records of the variables on specific points
	Time averages
	Others

	Numerical options
	Calculation management
	Scalar unknowns
	Definition of the equations
	Definition of the time advancement
	Turbulence
	Time scheme
	Gradient reconstruction
	Solution of the linear systems
	Convective scheme
	Pressure-continuity step
	Error estimators for Navier-Stokes
	Calculation of the distance to the wall
	Others

	Numerical, physical and modelling parameters
	Numeric parameters
	Physical parameters
	Physical variables
	Modelling parameters

	ALE
	Thermal radiative transfers: global settings
	Electric module (Joule effect and electric arcs): specificities
	Compressible module: specificities

	Bibliography
	Index of the main variables and keywords

