My Project
programmer's documentation
Functions
cs_rad_transfer_bcs.h File Reference

Go to the source code of this file.

Functions

void cs_rad_transfer_bcs (int nvar, int bc_type[], int icodcl[], cs_real_t dt[], cs_real_t rcodcl[])
 Compute wall temperature for radiative transfer, and update BCs. More...
 
void cs_rad_transfer_bc_coeffs (int bc_type[], cs_real_t vect_s[3], cs_real_t coefap[], cs_real_t coefbp[], cs_real_t cofafp[], cs_real_t cofbfp[], cs_real_t ckmel[], cs_real_t w_gg[], int gg_id)
 Boundary conditions for DO and P-1 models. More...
 

Function Documentation

◆ cs_rad_transfer_bc_coeffs()

void cs_rad_transfer_bc_coeffs ( int  bc_type[],
cs_real_t  vect_s[3],
cs_real_t  coefap[],
cs_real_t  coefbp[],
cs_real_t  cofafp[],
cs_real_t  cofbfp[],
cs_real_t  ckmel[],
cs_real_t  w_gg[],
int  gg_id 
)

Boundary conditions for DO and P-1 models.

1. Boundary conditions for the radiative intensity (DO model)

The array coefap stores the intensity for each boundary faces, depending of the natur of the boundary (Dirichlet condition). The intensity of radiation is defined as the rate of emitted energy from unit surface area through unit solid angle.

1/ Gray wall: isotropic radiation field. 4 eps.sig.twall (1-eps).qincid coefap = -----------— + -----------— pi pi wall intensity wall emission reflecting flux. (eps=1: black wall; eps=0: reflecting wall) 2/ Free boundary: condition to mimic infinite domain

2. Boundary conditions for the P-1 model

Parameters
[in]bc_typeboundary face types
[in]vect_sdirection vector or NULL
[out]coefapboundary conditions for intensity or P-1 model
[out]coefbpboundary conditions for intensity or P-1 model
[out]cofafpboundary conditions for intensity or P-1 model
[out]cofbfpboundary conditions for intensity or P-1 model
[in]ckmelcoeff d'absorption du melange gaz-particules de charbon
[in]w_ggWeights of the i-th gray gas at boundaries
[in]gg_idnumber of the i-th grey gas

1. Boundary conditions for the radiative intensity (DO model)

The array coefap stores the intensity for each boundary faces, depending of the natur of the boundary (Dirichlet condition). The intensity of radiation is defined as the rate of emitted energy from unit surface area through unit solid angle.

1/ Gray wall: isotropic radiation field. 4 eps.sig.twall (1-eps).qincid coefap = -----------— + -----------— pi pi wall intensity wall emission reflecting flux. (eps=1: black wall; eps=0: reflecting wall) 2/ Free boundary: condition to mimic infinite domain

2. Boundary conditions for the P-1 model

Parameters
[in]bc_typeboundary face types
[in]vect_sdirection vector or NULL
[out]coefapboundary conditions for intensity or P-1 model
[out]coefbpboundary conditions for intensity or P-1 model
[out]cofafpboundary conditions for intensity or P-1 model
[out]cofbfpboundary conditions for intensity or P-1 model
[in]ckmelcoeff d'absorption du melange gaz-particules de charbon
[in]w_ggWeights of the i-th gray gas at boundaries
[in]gg_idnumber of the i-th grey gas

◆ cs_rad_transfer_bcs()

void cs_rad_transfer_bcs ( int  nvar,
int  bc_type[],
int  icodcl[],
cs_real_t  dt[],
cs_real_t  rcodcl[] 
)

Compute wall temperature for radiative transfer, and update BCs.

1) Compute wall temperature for radiative transfer

2) Update BCs for the energy computation

Parameters
[in]nvartotal number of variable BC's
[in,out]icodclface boundary condition code:
  • 1 Dirichlet
  • 2 Radiative outlet
  • 3 Neumann
  • 4 sliding and $ \vect{u} \cdot \vect{n} = 0 $
  • 5 smooth wall and $ \vect{u} \cdot \vect{n} = 0 $
  • 6 rough wall and $ \vect{u} \cdot \vect{n} = 0 $
  • 9 free inlet/outlet (input mass flux blocked to 0)
  • 13 Dirichlet for the advection operator and Neumann for the diffusion operator
[in]bc_typeface boundary condition type
[in]dttime step (per cell)
[in,out]rcodclboundary condition values:
  • rcodcl(1) value of the dirichlet
  • rcodcl(2) value of the exterior exchange coefficient (infinite if no exchange)
  • rcodcl(3) value flux density (negative if gain) in w/m2 or roughness in m if icodcl=6
    1. for the velocity $ (\mu+\mu_T) \gradv \vect{u} \cdot \vect{n} $
    2. for the pressure $ \Delta t \grad P \cdot \vect{n} $
    3. for a scalar $ cp \left( K + \dfrac{K_T}{\sigma_T} \right) \grad T \cdot \vect{n} $