My Project
programmer's documentation
Functions | Variables
cs_prototypes.h File Reference
#include "cs_base.h"
#include "cs_domain.h"
#include "cs_mesh.h"
#include "cs_mesh_quantities.h"
#include "cs_mesh_bad_cells.h"
#include "cs_probe.h"
#include "cs_volume_zone.h"
Include dependency graph for cs_prototypes.h:

Go to the source code of this file.

Functions

void CS_PROCF (caltri, CALTRI)(void)
 
void CS_PROCF (cpthp1, CPTHP1)(const cs_int_t *mode
 
void CS_PROCF (csinit, CSINIT)(const cs_int_t *irgpar
 
void CS_PROCF (distpr, DISTPR)(const cs_int_t *itypfb
 
void CS_PROCF (dvvpst, DVVPST)(const cs_int_t *nummai
 
void CS_PROCF (findpt, FINDPT)(const cs_int_t *ncelet
 
void CS_PROCF (haltyp, HALTYP)(const cs_int_t *ivoset)
 
void CS_PROCF (initi1, INITI1)(void)
 
void CS_PROCF (set_cdo_mode, SET_CDO_MODE)(const cs_int_t *mode)
 
void CS_PROCF (usthht, USTHHT)(const cs_int_t *mode
 
void cs_user_head_losses (const cs_zone_t *zone, cs_real_t cku[][6])
 Compute GUI-defined head losses for a given volume zone. More...
 
void cs_user_rad_transfer_absorption (const int bc_type[], const cs_real_t dt[], cs_real_t ck[])
 Absorption coefficient for radiative module. More...
 
void cs_user_rad_transfer_net_flux (const int itypfb[], const cs_real_t dt[], const cs_real_t coefap[], const cs_real_t coefbp[], const cs_real_t cofafp[], const cs_real_t cofbfp[], const cs_real_t twall[], const cs_real_t qincid[], const cs_real_t xlam[], const cs_real_t epa[], const cs_real_t eps[], const cs_real_t ck[], cs_real_t net_flux[])
 Compute the net radiation flux. More...
 
void CS_PROCF (b_t_to_h, b_t_to_h)(const cs_lnum_t *nlst
 
void CS_PROCF (c_h_to_t, c_h_to_t)(const cs_real_t *h
 
int cs_add_model_field_indexes (int f_id)
 
void cs_lagr_status (int *model_flag, int *restart_flag, int *frozen_flag)
 
void cs_user_1d_wall_thermal (int iappel, int isuit1)
 
void cs_user_coupling (void)
 Define global options for couplings. More...
 
void cs_user_boundary_conditions (int nvar, int icodcl[], int bc_type[], cs_real_t rcodcl[])
 User definition of boundary conditions. More...
 
void cs_user_extra_operations_initialize (cs_domain_t *domain)
 Initialize variables. More...
 
void cs_user_extra_operations (cs_domain_t *domain)
 This function is called at the end of each time step. More...
 
void cs_user_extra_operations_finalize (cs_domain_t *domain)
 This function is called at the end of the calculation. More...
 
void cs_user_initialization (cs_domain_t *domain)
 This function is called one time step to initialize problem. More...
 
void cs_user_internal_coupling (void)
 Define internal coupling options. More...
 
void cs_user_internal_coupling_add_volumes (cs_mesh_t *mesh)
 Define volumes as internal coupling zones. More...
 
void cs_user_internal_coupling_from_disjoint_meshes (cs_mesh_t *mesh)
 Define volumesi from separated meshes as internal coupling zones. More...
 
void cs_user_physical_properties (cs_domain_t *domain)
 This function is called each time step to define physical properties. More...
 
void cs_user_source_terms (cs_domain_t *domain, int f_id, cs_real_t *st_exp, cs_real_t *st_imp)
 Additional user-defined source terms for variable equations (momentum, scalars, turbulence...). More...
 
void cs_user_porosity (void)
 Compute the porosity (volume factor $ \epsilon $ when the porosity model is activated. (cs_glob_porous_model > 0). More...
 
void cs_user_join (void)
 Define mesh joinings. More...
 
void cs_user_linear_solvers (void)
 Define linear solver options. More...
 
void cs_user_finalize_setup (cs_domain_t *domain)
 Define or modify output user parameters. For CDO schemes, specify the elements such as properties, advection fields, user-defined equations and modules which have been previously added. More...
 
void cs_user_mesh_bad_cells_tag (cs_mesh_t *mesh, cs_mesh_quantities_t *mesh_quantities)
 Tag bad cells within the mesh based on user-defined geometric criteria. More...
 
void cs_user_mesh_input (void)
 Define mesh files to read and optional associated transformations. More...
 
void cs_user_mesh_modify (cs_mesh_t *mesh)
 Modify geometry and mesh. More...
 
void cs_user_mesh_boundary (cs_mesh_t *mesh)
 Insert boundaries into a mesh. More...
 
void cs_user_mesh_smoothe (cs_mesh_t *mesh)
 Mesh smoothing. More...
 
void cs_user_mesh_save (cs_mesh_t *mesh)
 Enable or disable mesh saving. More...
 
void cs_user_mesh_warping (void)
 Set options for cutting of warped faces. More...
 
void cs_user_model (void)
 Select physical model options, including user fields. More...
 
void cs_user_numbering (void)
 Define advanced mesh numbering options. More...
 
void cs_user_parallel_io (void)
 Define parallel IO settings. More...
 
void cs_user_partition (void)
 Define advanced partitioning options. More...
 
void cs_user_matrix_tuning (void)
 Define sparse matrix tuning options. More...
 
void cs_user_parameters (cs_domain_t *domain)
 Define or modify general numerical and physical user parameters. More...
 
void cs_user_radiative_transfer_parameters (void)
 User function for input of radiative transfer module options. More...
 
void cs_user_radiative_transfer_bcs (int nvar, const int bc_type[], int icodcl[], int isothp[], cs_real_t *tmin, cs_real_t *tmax, cs_real_t *tx, const cs_real_t dt[], cs_real_t rcodcl[], const cs_real_t thwall[], const cs_real_t qincid[], cs_real_t hfcnvp[], cs_real_t flcnvp[], cs_real_t xlamp[], cs_real_t epap[], cs_real_t epsp[], cs_real_t textp[], cs_real_t tintp[])
 User definition of radiative transfer boundary conditions. More...
 
void cs_user_periodicity (void)
 Define periodic faces. More...
 
void cs_user_postprocess_writers (void)
 Define post-processing writers. More...
 
void cs_user_postprocess_probes (void)
 Define monitoring probes and profiles. More...
 
void cs_user_postprocess_meshes (void)
 Define post-processing meshes. More...
 
void cs_user_postprocess_values (const char *mesh_name, int mesh_id, int cat_id, cs_probe_set_t *probes, cs_lnum_t n_cells, cs_lnum_t n_i_faces, cs_lnum_t n_b_faces, cs_lnum_t n_vertices, const cs_lnum_t cell_list[], const cs_lnum_t i_face_list[], const cs_lnum_t b_face_list[], const cs_lnum_t vertex_list[], const cs_time_step_t *ts)
 User function for output of values on a post-processing mesh. More...
 
void cs_user_postprocess_activate (int nt_max_abs, int nt_cur_abs, double t_cur_abs)
 
void cs_user_saturne_coupling (void)
 Define couplings with other instances of Code_Saturne. More...
 
int cs_user_solver_set (void)
 Set user solver. More...
 
void cs_user_solver (const cs_mesh_t *mesh, const cs_mesh_quantities_t *mesh_quantities)
 Main call to user solver. More...
 
void cs_user_syrthes_coupling (void)
 Define couplings with SYRTHES code. More...
 
void cs_user_time_moments (void)
 Define time moments. More...
 
void cs_user_turbomachinery (void)
 Define rotor/stator model. More...
 
void cs_user_turbomachinery_rotor (void)
 Define rotor axes, associated cells, and rotor/stator faces. More...
 
void cs_user_turbomachinery_set_rotation_velocity (void)
 Define rotation velocity of rotor. More...
 
void cs_user_zones (void)
 Define volume and surface zones. More...
 
void cs_user_scaling_elec (const cs_mesh_t *mesh, const cs_mesh_quantities_t *mesh_quantities, cs_real_t *dt)
 Define scaling parameter for electric model. More...
 
void cs_user_hgn_thermo_relax_time (const cs_mesh_t *mesh, const cs_real_t *alpha_eq, const cs_real_t *y_eq, const cs_real_t *z_eq, const cs_real_t *ei, const cs_real_t *v, cs_real_t *relax_tau)
 Computation of the relaxation time-scale. More...
 
void cs_user_gwf_setup (cs_domain_t *domain)
 Specify for each soil and tracer how is defined each term of the the tracer equation. Soils and tracer equations have to be added previously. More...
 
cs_real_tcs_meg_boundary_function (const cs_zone_t *zone, const char *field_name, const char *condition)
 
void cs_meg_volume_function (const cs_zone_t *zone, cs_field_t *f[])
 This function is used to compute user defined values for fields over a given volume zone. More...
 
cs_real_tcs_meg_initialization (const cs_zone_t *zone, const char *field_name)
 Evaluate GUI defined mathematical expressions over volume zones for initialization. More...
 
cs_real_tcs_meg_source_terms (const cs_zone_t *zone, const char *name, const char *source_type)
 

Variables

void cs_real_teh
 
void cs_real_t cs_real_txesp
 
void cs_real_t cs_real_t cs_real_tf1mc
 
void cs_real_t cs_real_t cs_real_t cs_real_tf2mc
 
void cs_real_t cs_real_t cs_real_t cs_real_t cs_real_ttp
 
void const cs_int_tnrgpar
 
void cs_real_tdistpa
 
void const cs_int_tnumtyp
 
void const cs_int_t const cs_int_tnvar
 
void const cs_int_t const cs_int_t const cs_int_tncelps
 
void const cs_int_t const cs_int_t const cs_int_t const cs_int_tnfbrps
 
void const cs_int_t const cs_int_t const cs_int_t const cs_int_t const cs_int_t lstcel []
 
void const cs_int_t const cs_int_t const cs_int_t const cs_int_t const cs_int_t const cs_int_t lstfbr []
 
void const cs_int_t const cs_int_t const cs_int_t const cs_int_t const cs_int_t const cs_int_t cs_real_t tracel []
 
void const cs_int_t const cs_int_t const cs_int_t const cs_int_t const cs_int_t const cs_int_t cs_real_t cs_real_t trafbr []
 
void const cs_int_tncel
 
void const cs_int_t const cs_real_txyzcen
 
void const cs_int_t const cs_real_t const cs_real_txx
 
void const cs_int_t const cs_real_t const cs_real_t const cs_real_tyy
 
void const cs_int_t const cs_real_t const cs_real_t const cs_real_t const cs_real_tzz
 
void const cs_int_t const cs_real_t const cs_real_t const cs_real_t const cs_real_t cs_int_tnode
 
void const cs_int_t const cs_real_t const cs_real_t const cs_real_t const cs_real_t cs_int_t cs_int_tndrang
 
void cs_real_tenthal
 
void cs_real_t cs_real_ttemper
 
void const cs_lnum_tlstfac
 
void const cs_lnum_t const cs_real_tt_b
 
void const cs_lnum_t const cs_real_t cs_real_th_b
 
void cs_real_tt
 

Function Documentation

◆ cs_add_model_field_indexes()

int cs_add_model_field_indexes ( int  f_id)

◆ cs_lagr_status()

void cs_lagr_status ( int *  model_flag,
int *  restart_flag,
int *  frozen_flag 
)

◆ cs_meg_boundary_function()

cs_real_t* cs_meg_boundary_function ( const cs_zone_t zone,
const char *  field_name,
const char *  condition 
)

◆ cs_meg_initialization()

cs_real_t* cs_meg_initialization ( const cs_zone_t zone,
const char *  field_name 
)

Evaluate GUI defined mathematical expressions over volume zones for initialization.

Parameters
[in]zonepointer to a cs_volume_zone_t structure
[in]fchar pointer: variable name

◆ cs_meg_source_terms()

cs_real_t* cs_meg_source_terms ( const cs_zone_t zone,
const char *  name,
const char *  source_type 
)

◆ cs_meg_volume_function()

void cs_meg_volume_function ( const cs_zone_t zone,
cs_field_t f[] 
)

This function is used to compute user defined values for fields over a given volume zone.

Parameters
[in]zonepointer to cs_zone_t structure related to a volume
[in,out]f[]array of pointers to cs_field_t

◆ CS_PROCF() [1/12]

void CS_PROCF ( b_t_to_h  ,
b_t_to_h   
) const

◆ CS_PROCF() [2/12]

void CS_PROCF ( c_h_to_t  ,
c_h_to_t   
) const

◆ CS_PROCF() [3/12]

void CS_PROCF ( caltri  ,
CALTRI   
)

◆ CS_PROCF() [4/12]

void CS_PROCF ( cpthp1  ,
CPTHP1   
) const

◆ CS_PROCF() [5/12]

void CS_PROCF ( csinit  ,
CSINIT   
) const

◆ CS_PROCF() [6/12]

void CS_PROCF ( distpr  ,
DISTPR   
) const

◆ CS_PROCF() [7/12]

void CS_PROCF ( dvvpst  ,
DVVPST   
) const

◆ CS_PROCF() [8/12]

void CS_PROCF ( findpt  ,
FINDPT   
) const

◆ CS_PROCF() [9/12]

void CS_PROCF ( haltyp  ,
HALTYP   
) const

◆ CS_PROCF() [10/12]

void CS_PROCF ( initi1  ,
INITI1   
)

◆ CS_PROCF() [11/12]

void CS_PROCF ( set_cdo_mode  ,
SET_CDO_MODE   
) const

◆ CS_PROCF() [12/12]

void CS_PROCF ( usthht  ,
USTHHT   
) const

◆ cs_user_1d_wall_thermal()

void cs_user_1d_wall_thermal ( int  iappel,
int  isuit1 
)

◆ cs_user_boundary_conditions()

void cs_user_boundary_conditions ( int  nvar,
int  bc_type[],
int  icodcl[],
cs_real_t  rcodcl[] 
)

User definition of boundary conditions.

Parameters
[in]nvartotal number of variable BC's
[in]bc_typeboundary face types
[in]icodclboundary face code
  • 1 -> Dirichlet
  • 2 -> convective outlet
  • 3 -> flux density
  • 4 -> sliding wall and u.n=0 (velocity)
  • 5 -> friction and u.n=0 (velocity)
  • 6 -> roughness and u.n=0 (velocity)
  • 9 -> free inlet/outlet (velocity) inflowing possibly blocked
[in]rcodclboundary condition values rcodcl(3) = flux density value (negative for gain) in W/m2

◆ cs_user_coupling()

void cs_user_coupling ( void  )

Define global options for couplings.

These options allow defining the time step synchronization policy, as well as a time step multiplier.

◆ cs_user_extra_operations()

void cs_user_extra_operations ( cs_domain_t domain)

This function is called at the end of each time step.

It has a very general purpose, although it is recommended to handle mainly postprocessing or data-extraction type operations.

Parameters
[in,out]domainpointer to a cs_domain_t structure

◆ cs_user_extra_operations_finalize()

void cs_user_extra_operations_finalize ( cs_domain_t domain)

This function is called at the end of the calculation.

It has a very general purpose, although it is recommended to handle mainly postprocessing or data-extraction type operations.

Parameters
[in,out]domainpointer to a cs_domain_t structure

◆ cs_user_extra_operations_initialize()

void cs_user_extra_operations_initialize ( cs_domain_t domain)

Initialize variables.

This function is called at beginning of the computation (restart or not) before the time step loop.

This is intended to initialize or modify (when restarted) variable and time step values.

Parameters
[in,out]domainpointer to a cs_domain_t structure

◆ cs_user_finalize_setup()

void cs_user_finalize_setup ( cs_domain_t domain)

Define or modify output user parameters. For CDO schemes, specify the elements such as properties, advection fields, user-defined equations and modules which have been previously added.

Define or modify output user parameters. For CDO schemes, specify the elements such as properties, advection fields, user-defined equations and modules which have been previously added.

For CDO schemes, this function concludes the setup of properties, equations, source terms...

Parameters
[in,out]domainpointer to a cs_domain_t structure

◆ cs_user_gwf_setup()

void cs_user_gwf_setup ( cs_domain_t domain)

Specify for each soil and tracer how is defined each term of the the tracer equation. Soils and tracer equations have to be added previously.

Parameters
[in,out]domainpointer to a cs_domain_t structure

◆ cs_user_head_losses()

void cs_user_head_losses ( const cs_zone_t zone,
cs_real_t  cku[][6] 
)

Compute GUI-defined head losses for a given volume zone.

Head loss tensor coefficients for each cell are organized as follows: cku11, cku22, cku33, cku12, cku13, cku23.

Parameters
[in]zonepointer to zone structure
[in,out]ckuhead loss coefficients

Compute GUI-defined head losses for a given volume zone.

Head loss tensor coefficients for each cell are organized as follows: ck11, ck22, ck33, ck12, ck13, ck23.

Coefficients are set to zero (then computed based on definitions provided through the GUI if this is the case) before calling this function, so setting values to zero is usually not necessary, unless we want to fully overwrite a GUI-based definition.

Diagonal coefficients must be positive; the calculation may diverge if this is not the case.

Parameters
[in]zonepointer to zone structure
[in,out]ckuhead loss coefficients

◆ cs_user_hgn_thermo_relax_time()

void cs_user_hgn_thermo_relax_time ( const cs_mesh_t mesh,
const cs_real_t alpha_eq,
const cs_real_t y_eq,
const cs_real_t z_eq,
const cs_real_t ei,
const cs_real_t v,
cs_real_t relax_tau 
)

Computation of the relaxation time-scale.

This function computes the value of the relaxation time-scale (for the return to equilibrium).

Parameters
[in]meshpointer to mesh
[in]alpha_eqequilibrium volume fraction
[in]y_eqequilibrium mass fraction
[in]z_eqequilibrium energy fraction
[in]eispecific internal energy
[in]vspecific volume
[in]relax_taurelaxation time scale towards equilibrium

◆ cs_user_initialization()

void cs_user_initialization ( cs_domain_t domain)

This function is called one time step to initialize problem.

Parameters
[in,out]domainpointer to a cs_domain_t structure

◆ cs_user_internal_coupling()

void cs_user_internal_coupling ( void  )

Define internal coupling options.

Options are usually defined using cs_internal_coupling_add_entity.

◆ cs_user_internal_coupling_add_volumes()

void cs_user_internal_coupling_add_volumes ( cs_mesh_t mesh)

Define volumes as internal coupling zones.

These zones will be separated from the rest of the domain using automatically defined thin walls.

Parameters
[in,out]meshpointer to a cs_mesh_t structure

These zones will be separated from the rest of the domain using automatically defined thin walls.

Deprecated:
move contents tocs_user_internal_coupling instead.
Parameters
[in,out]meshpointer to a cs_mesh_t structure

◆ cs_user_internal_coupling_from_disjoint_meshes()

void cs_user_internal_coupling_from_disjoint_meshes ( cs_mesh_t mesh)

Define volumesi from separated meshes as internal coupling zones.

These zones must be disjoint and the face selection criteria must be specified.

Parameters
[in,out]meshpointer to a cs_mesh_t structure

Define volumesi from separated meshes as internal coupling zones.

These zones must be disjoint and the face selection criteria must be specified.

Deprecated:
move contents tocs_user_internal_coupling instead.
Parameters
[in,out]meshpointer to a cs_mesh_t structure

◆ cs_user_join()

void cs_user_join ( void  )

Define mesh joinings.

◆ cs_user_linear_solvers()

void cs_user_linear_solvers ( void  )

Define linear solver options.

This function is called at the setup stage, once user and most model-based fields are defined.

Available native iterative linear solvers include conjugate gradient, Jacobi, BiCGStab, BiCGStab2, and GMRES. For symmetric linear systems, an algebraic multigrid solver is available (and recommended).

External solvers may also be setup using this function, the cs_sles_t mechanism alowing such through user-define functions.

◆ cs_user_matrix_tuning()

void cs_user_matrix_tuning ( void  )

Define sparse matrix tuning options.

◆ cs_user_mesh_bad_cells_tag()

void cs_user_mesh_bad_cells_tag ( cs_mesh_t mesh,
cs_mesh_quantities_t mesh_quantities 
)

Tag bad cells within the mesh based on user-defined geometric criteria.

Parameters
[in,out]meshpointer to a cs_mesh_t structure
[in,out]mesh_quantitiespointer to a cs_mesh_quantities_t structure

◆ cs_user_mesh_boundary()

void cs_user_mesh_boundary ( cs_mesh_t mesh)

Insert boundaries into a mesh.

Parameters
[in,out]meshpointer to a cs_mesh_t structure

◆ cs_user_mesh_input()

void cs_user_mesh_input ( void  )

Define mesh files to read and optional associated transformations.

◆ cs_user_mesh_modify()

void cs_user_mesh_modify ( cs_mesh_t mesh)

Modify geometry and mesh.

Parameters
[in,out]meshpointer to a cs_mesh_t structure

◆ cs_user_mesh_save()

void cs_user_mesh_save ( cs_mesh_t mesh)

Enable or disable mesh saving.

By default, mesh is saved when modified.

Parameters
[in,out]meshpointer to a cs_mesh_t structure

◆ cs_user_mesh_smoothe()

void cs_user_mesh_smoothe ( cs_mesh_t mesh)

Mesh smoothing.

Parameters
[in,out]meshpointer to a cs_mesh_t structure

◆ cs_user_mesh_warping()

void cs_user_mesh_warping ( void  )

Set options for cutting of warped faces.

◆ cs_user_model()

void cs_user_model ( void  )

Select physical model options, including user fields.

This function is called at the earliest stages of the data setup, so field ids are not available yet.

◆ cs_user_numbering()

void cs_user_numbering ( void  )

Define advanced mesh numbering options.

◆ cs_user_parallel_io()

void cs_user_parallel_io ( void  )

Define parallel IO settings.

◆ cs_user_parameters()

void cs_user_parameters ( cs_domain_t domain)

Define or modify general numerical and physical user parameters.

At the calling point of this function, most model-related most variables and other fields have been defined, so specific settings related to those fields may be set here.

At this stage, the mesh is not built or read yet, so associated data such as field values are not accessible yet, though pending mesh operations and some fields may have been defined.

Parameters
[in,out]domainpointer to a cs_domain_t structure

◆ cs_user_partition()

void cs_user_partition ( void  )

Define advanced partitioning options.

◆ cs_user_periodicity()

void cs_user_periodicity ( void  )

Define periodic faces.

◆ cs_user_physical_properties()

void cs_user_physical_properties ( cs_domain_t domain)

This function is called each time step to define physical properties.

Parameters
[in,out]domainpointer to a cs_domain_t structure

This function is called each time step to define physical properties.

Parameters
[in,out]domainpointer to a cs_domain_t structure

◆ cs_user_porosity()

void cs_user_porosity ( void  )

Compute the porosity (volume factor $ \epsilon $ when the porosity model is activated. (cs_glob_porous_model > 0).

This function is called at the begin of the simulation only.

This function is called at the beginning of the simulation only.

◆ cs_user_postprocess_activate()

void cs_user_postprocess_activate ( int  nt_max_abs,
int  nt_cur_abs,
double  t_cur_abs 
)

Override default frequency or calculation end based output.

This allows fine-grained control of activation or deactivation,

Parameters
nt_max_absmaximum time step number
nt_cur_abscurrent time step number
t_cur_absabsolute time at the current time step

◆ cs_user_postprocess_meshes()

void cs_user_postprocess_meshes ( void  )

Define post-processing meshes.

The main post-processing meshes may be configured, and additional post-processing meshes may be defined as a subset of the main mesh's cells or faces (both interior and boundary).

◆ cs_user_postprocess_probes()

void cs_user_postprocess_probes ( void  )

Define monitoring probes and profiles.

Profiles are defined as sets of probes.

◆ cs_user_postprocess_values()

void cs_user_postprocess_values ( const char *  mesh_name,
int  mesh_id,
int  cat_id,
cs_probe_set_t probes,
cs_lnum_t  n_cells,
cs_lnum_t  n_i_faces,
cs_lnum_t  n_b_faces,
cs_lnum_t  n_vertices,
const cs_lnum_t  cell_list[],
const cs_lnum_t  i_face_list[],
const cs_lnum_t  b_face_list[],
const cs_lnum_t  vertex_list[],
const cs_time_step_t ts 
)

User function for output of values on a post-processing mesh.

Parameters
[in]mesh_namename of the output mesh for the current call
[in]mesh_idid of the output mesh for the current call
[in]cat_idcategory id of the output mesh for the current call
[in]probespointer to associated probe set structure if the mesh is a probe set, NULL otherwise
[in]n_cellslocal number of cells of post_mesh
[in]n_i_faceslocal number of interior faces of post_mesh
[in]n_b_faceslocal number of boundary faces of post_mesh
[in]n_verticeslocal number of vertices faces of post_mesh
[in]cell_listlist of cells (0 to n-1) of post-processing mesh
[in]i_face_listlist of interior faces (0 to n-1) of post-processing mesh
[in]b_face_listlist of boundary faces (0 to n-1) of post-processing mesh
[in]vertex_listlist of vertices (0 to n-1) of post-processing mesh
[in]tstime step status structure, or NULL

◆ cs_user_postprocess_writers()

void cs_user_postprocess_writers ( void  )

Define post-processing writers.

The default output format and frequency may be configured, and additional post-processing writers allowing outputs in different formats or with different format options and output frequency than the main writer may be defined.

◆ cs_user_rad_transfer_absorption()

void cs_user_rad_transfer_absorption ( const int  bc_type[],
const cs_real_t  dt[],
cs_real_t  ck[] 
)

Absorption coefficient for radiative module.

It is necessary to define the value of the fluid's absorption coefficient Ck.

This value is defined automatically for specific physical models, such as gas and coal combustion, so this function should not be used with these models.

For a transparent medium, the coefficient should be set to 0.

In the case of the P-1 model, we check that the optical length is at least of the order of 1.

Parameters
[in]bc_typeboundary face types
[in]dttime step (per cell)
[out]ckmedium's absorption coefficient (zero if transparent)

◆ cs_user_rad_transfer_net_flux()

void cs_user_rad_transfer_net_flux ( const int  bc_type[],
const cs_real_t  dt[],
const cs_real_t  coefap[],
const cs_real_t  coefbp[],
const cs_real_t  cofafp[],
const cs_real_t  cofbfp[],
const cs_real_t  twall[],
const cs_real_t  qincid[],
const cs_real_t  xlam[],
const cs_real_t  epa[],
const cs_real_t  eps[],
const cs_real_t  ck[],
cs_real_t  net_flux[] 
)

Compute the net radiation flux.

The density of net radiation flux must be calculated consistently with the boundary conditions of the intensity. The density of net flux is the balance between the radiative emiting part of a boudary face (and not the reflecting one) and the radiative absorbing part.

Parameters
[in]bc_typeboundary face types
[in]dttime step (per cell)
[in]coefapboundary condition work array for the luminance (explicit part)
[in]coefbpboundary condition work array for the luminance (implicit part)
[in]cofafpboundary condition work array for the diffusion of the luminance (explicit part)
[in]cofbfpboundary condition work array for the diffusion of the luminance (implicit part)
[in]twallinside current wall temperature (K)
[in]qincidradiative incident flux (W/m2)
[in]xlamconductivity (W/m/K)
[in]epathickness (m)
[in]epsemissivity (>0)
[in]ckabsorption coefficient
[out]net_fluxnet flux (W/m2)

◆ cs_user_radiative_transfer_bcs()

void cs_user_radiative_transfer_bcs ( int  nvar,
const int  bc_type[],
int  icodcl[],
int  isothp[],
cs_real_t tmin,
cs_real_t tmax,
cs_real_t tx,
const cs_real_t  dt[],
cs_real_t  rcodcl[],
const cs_real_t  thwall[],
const cs_real_t  qincid[],
cs_real_t  hfcnvp[],
cs_real_t  flcnvp[],
cs_real_t  xlamp[],
cs_real_t  epap[],
cs_real_t  epsp[],
cs_real_t  textp[],
cs_real_t  tintp[] 
)

User definition of radiative transfer boundary conditions.

See Examples of data settings for radiative transfers for examples.

Warning
the temperature unit here is the Kelvin

Zone definitions

For each boundary face face_id, a specific output (logging and postprocessing) class id may be assigned. This allows realizing balance sheets by treating them separately for each zone. By default, the output class id is set to the general (input) zone id associated to a face.

To access output class ids (both for reading and modifying), use the cs_boundary_zone_face_class_id function. The zone id values are arbitrarily chosen by the user, but must be positive integers; very high numbers may also lead to higher memory consumption.

Wall characteristics

The following face characteristics must be set:

  • isothp(face_id) boundary face type = itpimp -> Gray wall with fixed inside temperature = ipgrno -> Gray wall with fixed outside temperature = iprefl -> Reflecting wall with fixed outside temperature = ifgrno -> Gray wall with fixed conduction flux = ifrefl -> Reflecting wall with fixed conduction flux
  • tintp(face_id) inside wall temperature (Kelvin) initialize thwall at the first time step. If isothp = itpimp, the value of thwall is fixed to tintp In the other case, tintp is only for initialization.

Depending on the value of isothp, other values may also need to be set:

  • rcodcl = conduction flux
  • epsp = emissivity
  • xlamp = conductivity (W/m/K)
  • epap = thickness (m)
  • textp = outside temperature (K)
Parameters
[in]nvartotal number of variable BC's
[in]bc_typeboundary face types
[in]icodclboundary face code
  • 1 -> Dirichlet
  • 2 -> convective outlet
  • 3 -> flux density
  • 4 -> sliding wall and u.n=0 (velocity)
  • 5 -> friction and u.n=0 (velocity)
  • 6 -> roughness and u.n=0 (velocity)
  • 9 -> free inlet/outlet (velocity) inflowing possibly blocked
[in]isothpboundary face type for radiative transfer
  • itpimp -> Gray wall with fixed inside temp
  • ipgrno -> Gray wall with fixed outside temp
  • iprefl -> Reflecting wall with fixed outside temp
  • ifgrno -> Gray wall with fixed conduction flux
  • ifrefl -> Reflecting wall with fixed conduction flux
[out]tminmin allowed value of the wall temperature
[out]tmaxmax allowed value of the wall temperature
[in]txrelaxation coefficient (0 < tx < 1)
[in]dttime step (per cell)
[in]rcodclboundary condition values rcodcl(3) = flux density value (negative for gain) in W/m2
[in]thwallinside current wall temperature (K)
[in]qincidradiative incident flux (W/m2)
[in]hfcnvpconvective exchange coefficient (W/m2/K)
[in]flcnvpconvective flux (W/m2)
[out]xlampconductivity (W/m/K)
[out]epapthickness (m)
[out]epspemissivity (>0)
[out]textpoutside temperature (K)
[out]tintpinitial inside temperature (K)

◆ cs_user_radiative_transfer_parameters()

void cs_user_radiative_transfer_parameters ( void  )

User function for input of radiative transfer module options.

◆ cs_user_saturne_coupling()

void cs_user_saturne_coupling ( void  )

Define couplings with other instances of Code_Saturne.

This is done by calling the cs_sat_coupling_define function for each coupling to add.

◆ cs_user_scaling_elec()

void cs_user_scaling_elec ( const cs_mesh_t mesh,
const cs_mesh_quantities_t mesh_quantities,
cs_real_t dt 
)

Define scaling parameter for electric model.

Define scaling parameter for electric model.

Parameters
[in]meshpointer to a cs_mesh_t structure
[in,out]mesh_quantitiespointer to a cs_mesh_quantities_t structure
[in]dtpointer to a cs_real_t

These options allow defining the time step synchronization policy, as well as a time step multiplier.

◆ cs_user_solver()

void cs_user_solver ( const cs_mesh_t mesh,
const cs_mesh_quantities_t mesh_quantities 
)

Main call to user solver.

Parameters
[in]meshpointer to a cs_mesh_t structure
[in,out]mesh_quantitiespointer to a cs_mesh_quantities_t structure

◆ cs_user_solver_set()

int cs_user_solver_set ( void  )

Set user solver.

Returns
1 if user solver is called, 0 otherwise

◆ cs_user_source_terms()

void cs_user_source_terms ( cs_domain_t domain,
int  f_id,
cs_real_t st_exp,
cs_real_t st_imp 
)

Additional user-defined source terms for variable equations (momentum, scalars, turbulence...).

Parameters
[in,out]domainpointer to a cs_domain_t structure
[in]f_idfield id of the variable
[out]st_expexplicit source term
[out]st_impimplicit part of the source term

This function is called at each time step, for each relevant field. It is therefore necessary to test the value of the field id or name to separate the treatments of the different variables.

The additional source term is decomposed into an explicit part (st_exp) and an implicit part (st_imp) that must be provided here. The resulting equation solved by the code for a scalar f is:

\[ \rho*volume*\frac{df}{dt} + .... = st\_imp*f + st\_exp \]

Note that st_exp and st_imp are defined after the Finite Volume integration over the cells, so they include the "volume" term. More precisely:

  • st_exp is expressed in kg.[var]/s, where [var] is the unit of the variable. Its dimension is the one of the variable (3 for vectors)
  • st_imp is expressed in kg/s. Its dimension is 1 for scalars, 3x3 for vectors.

The st_exp and st_imp arrays are already initialized to 0 (or a value defined through the GUI or defined by a model) before entering the function. It is generally not useful to reset them here.

For stability reasons, Code_Saturne will not add -st_imp directly to the diagonal of the matrix, but Max(-st_imp,0). This way, the st_imp term is treated implicitely only if it strengthens the diagonal of the matrix. However, when using the second-order in time scheme, this limitation cannot be done anymore and -st_imp is added directly. The user should therefore check for the negativity of st_imp.

When using the second-order in time scheme, one should supply:

  • st_exp at time n
  • st_imp at time n+1/2
Warning

If the variable is a temperature, the resulting equation solved is:

rho*Cp*volume*dT/dt + .... = st_imp*T + st_exp

Note that st_exp and st_imp are defined after the Finite Volume integration over the cells, so they include the "volume" term. More precisely:

  • st_exp is expressed in W
  • st_imp is expressed in W/K
Steep source terms

In case of a complex, non-linear source term, say F(f), for variable f, the easiest method is to implement the source term explicitly.

df/dt = .... + F(f(n)) where f(n) is the value of f at time tn, the beginning of the time step.

This yields: st_exp = volume*F(f(n)) st_imp = 0

However, if the source term is potentially steep, this fully explicit method will probably generate instabilities. It is therefore wiser to partially implicit the term by writing:

df/dt = .... + dF/df*f(n+1) - dF/df*f(n) + F(f(n))

This yields: st_exp = volume*( F(f(n)) - dF/df*f(n) ) st_imp = volume*dF/df

Parameters
[in,out]domainpointer to a cs_domain_t structure
[in]f_idfield id of the variable
[out]st_expexplicit source term
[out]st_impimplicit part of the source term

◆ cs_user_syrthes_coupling()

void cs_user_syrthes_coupling ( void  )

Define couplings with SYRTHES code.

This is done by calling the cs_syr_coupling_define function for each coupling to add.

◆ cs_user_time_moments()

void cs_user_time_moments ( void  )

Define time moments.

This function is called at the setup stage, once user and most model-based fields are defined, and before fine control of field output options is defined.

◆ cs_user_turbomachinery()

void cs_user_turbomachinery ( void  )

Define rotor/stator model.

◆ cs_user_turbomachinery_rotor()

void cs_user_turbomachinery_rotor ( void  )

Define rotor axes, associated cells, and rotor/stator faces.

◆ cs_user_turbomachinery_set_rotation_velocity()

void cs_user_turbomachinery_set_rotation_velocity ( void  )

Define rotation velocity of rotor.

◆ cs_user_zones()

void cs_user_zones ( void  )

Define volume and surface zones.

Variable Documentation

◆ distpa

void cs_real_t* distpa

◆ eh

void cs_real_t* eh

◆ enthal

void cs_real_t* enthal

◆ f1mc

◆ f2mc

◆ h_b

void const cs_lnum_t const cs_real_t cs_real_t* h_b

◆ lstcel

void const cs_int_t const cs_int_t const cs_int_t const cs_int_t const cs_int_t lstcel[]

◆ lstfac

void const cs_lnum_t* lstfac

◆ lstfbr

void const cs_int_t const cs_int_t const cs_int_t const cs_int_t const cs_int_t const cs_int_t lstfbr[]

◆ ncel

void const cs_int_t* ncel

◆ ncelps

void const cs_int_t const cs_int_t const cs_int_t* ncelps

◆ ndrang

void const cs_int_t const cs_real_t const cs_real_t const cs_real_t const cs_real_t cs_int_t cs_int_t* ndrang

◆ nfbrps

void const cs_int_t const cs_int_t const cs_int_t const cs_int_t* nfbrps

◆ node

void const cs_int_t const cs_real_t const cs_real_t const cs_real_t const cs_real_t cs_int_t* node

◆ nrgpar

void const cs_int_t* nrgpar

◆ numtyp

void const cs_int_t* numtyp

◆ nvar

void const cs_int_t const cs_int_t* nvar

◆ t

void cs_real_t* t

◆ t_b

void const cs_lnum_t const cs_real_t* t_b

◆ temper

void cs_real_t cs_real_t* temper

◆ tp

◆ tracel

void const cs_int_t const cs_int_t const cs_int_t const cs_int_t const cs_int_t const cs_int_t cs_real_t tracel[]

◆ trafbr

void const cs_int_t const cs_int_t const cs_int_t const cs_int_t const cs_int_t const cs_int_t cs_real_t cs_real_t trafbr[]

◆ xesp

void cs_real_t cs_real_t* xesp

◆ xx

void const cs_int_t const cs_real_t const cs_real_t* xx

◆ xyzcen

void const cs_int_t const cs_real_t* xyzcen

◆ yy

void const cs_int_t const cs_real_t const cs_real_t const cs_real_t* yy

◆ zz

void const cs_int_t const cs_real_t const cs_real_t const cs_real_t const cs_real_t* zz