
Data Structures in Coco/R
Hanspeter Mössenböck

Johannes Kepler University Linz
Institute of System Software

April 2005

This technical note describes the data structures in the C# and
Java implementations of the compiler generator Coco/R. The major
data structures are:

 The Symbol table (Classes: Symbol). All terminals, pragmas and
nonterminals in linear sequence. This data structure is trivial and
therefore not further described.

 The Syntax graph (Classes: Node, Graph). The productions of the
grammar as separate subgraphs. For every nonterminal sym
there is a pointer sym.graph to the root of this symbol's syntax
graph. A snapshot of this data structure is described in Section 1.

 The Scanner automaton (Classes: State, Action, Target, Melted).
The DFA generated from token declarations. The token
declarations are first translated to a syntax graph which is then
transformed into a deterministic finite automaton. These steps
are shown in Section 2.

 The Character classes (Class: CharClass). The character sets
declared in the grammar stored as a linear list. This data
structure is trivial and therefore not further explained.

 The literals table (Class: Tab). A mapping between token names
and their literal representation.

1. Syntax Graph

Production: A = (a {b} c | d [e] f |) g.

Graph:

alt

alt

ntsym.graph

a iter

b

c

d opt

e

f

alt

eps

g
next

down
sub

Gray lines denote next pointers that point upwards. For any node n,
if n.next points upwards, then n.up is true.

Operations to build the syntax graph

Tab.MakeFirstAlt(g)

 g.r g.l

alt

g.l g.r

connects right
open ends
of a graph

Tab.MakeAlternative(g1, g2)

 g1.r g1.l

alt

g2.l g2.r

+
alt

g1.l g1.r

alt

Tab.MakeSequence(g1, g2)

 g2.r g2.l

+
alt

g1.l g1.r

alt

alt

g1.l g1.r

alt

Tab.MakeOption(g)

 g.r g.l

opt

g.l g.r

Tab.MakeIteration(g)

 g.r g.l

iter

g.l g.r

Tab.Finish(g)

alt

g1.l g1.r

alt

iter

alt

g1.l g1.r

alt

iter

2. Scanner automaton

Declarations
CHARACTERS

digit= '0'..'9'.
hex = digit + 'a'..'f'.

TOKENS
number = digit {digit}.
hexnum = digit {digit} 'H'.
special = "0x".

Syntax graph for the tokens

 digit iter
0

number

digit
1

1

digit iter
0

hexnum

digit
2

2

H
2

0
0

special x
4

The bold numbers denote the states that were assigned to the
nodes by the method DFA.NumberNodes. They are used to derive the
automaton from the graph as follows: if a node for a character or a
character class c has the number n and its next pointer points to a
node with a number m, then this leads to a transition

 n m c

If there is no next node, the transition leads to a new state.

Nondeterministic automaton

 digit 0 1 digit

digit 2 digit

3

H

0 4 x
3

The automaton is nondeterministic since there are three transitions
with '0' in state 0 and two with digit in state 0. The first step in
making the automaton deterministic is to split overlapping
character ranges. This is done by DFA.MakeUnique.

After MakeUnique

 0, 1..9 0 1 digit

0, 1..9 2 digit

3

H

0 4 x
3

The next step is to melt those states that can be reached by a
transition with the same symbol from the same state. This is done
in DFA.MeltStates.

After MeltStates

1..9

0 1

digit 2

H

4 x

6
digit

7

3

5
0

digit H

H
x

digit

The only remaining task now is to delete the redundant states (here
1, 2 and 4).

After DeleteRedundantStates

 1..9 0 6
digit

7

3

5
0

digit H

H
x

This is the resulting deterministic finite automaton from which the
scanner is generated.

Concrete data structures

Nondeterministic automaton

nr
firstAction
...
next

0

States

typ
sym
target
next

clas
digit

typ
sym
target
next

clas
digit

typ
sym
target
next

clas
digit

state
next

to state 1

state
next

to state 2

state
next

to state 2

Actions

Targets

nr
firstAction
...
next

1
...

...

After MakeUnique

nr
firstAction
...
next

0

States

typ
sym
target
next

clas
1..9

typ
sym
target
next

chr
'0'

state
next

to state 1

state
next

to state 1

Actions

Targets

state
next

to state 2

state
next

to state 2

state
next

to state 4

...

This means: from state 0 one can go with the characters 1..9 to
state 1 and 2, and with the character 0 to state 1, 2 and 4.

After MeltStates

nr
firstAction
...
next

0

States

typ
sym
target
next

clas
1..9

typ
sym
target
next

chr
'0'

state
next

to state 6

Actions

Targets

state
next

to state 7

...

The states 1 and 2 have been "melted" into a new state 6, the states
1, 2 and 4 have been melted into a new state 7. This information is
kept in class Melted using the following data structure:

state
set
next

6
{1, 2}

state
set
next

7
{1, 2, 4}

Melted.first

The literals table

If a token is explicitly declared as a string, e.g.:
TOKENS
 while = "while".
 ...

it can be referenced in the productions both by its name (while) and
by its literal representation ("while"). The symbol table just stores
the names of such tokens. The hash table Tab.literals is used to map
their literal representation to their node in the symbol table.

	1. Syntax Graph
	2. Scanner automaton

