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This  technical  note describes the data structures in the C# and 
Java implementations of the compiler generator Coco/R. The major 
data structures are:

 The Symbol table (Classes:  Symbol). All terminals, pragmas and 
nonterminals in linear sequence. This data structure is trivial and 
therefore not further described.

 The Syntax graph (Classes:  Node,  Graph). The productions of the 
grammar  as  separate  subgraphs.   For  every  nonterminal  sym 
there is a pointer sym.graph to the root of this symbol's syntax 
graph. A snapshot of this data structure is described in Section 1.

 The Scanner  automaton (Classes:  State,  Action,  Target,  Melted). 
The  DFA  generated  from  token  declarations.  The  token 
declarations are first translated to a syntax graph which is then 
transformed into a  deterministic  finite  automaton.  These steps 
are shown in Section 2.

 The  Character  classes (Class:  CharClass).  The  character  sets 
declared  in  the  grammar  stored  as  a  linear  list.  This  data 
structure is trivial and therefore not further explained.

 The literals table (Class: Tab). A mapping between token names 
and their literal representation.

1. Syntax Graph

Production: A = (a {b} c | d [e] f | ) g.

Graph:
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Gray lines denote next pointers that point upwards. For any node n, 
if n.next points upwards, then n.up is true.





Operations to build the syntax graph
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Tab.MakeSequence(g1, g2)
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Tab.MakeOption(g)
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Tab.MakeIteration(g)
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2. Scanner automaton

Declarations
CHARACTERS

digit= '0'..'9'.
hex = digit + 'a'..'f'.

TOKENS
number = digit {digit}.
hexnum = digit {digit} 'H'.
special = "0x".

Syntax graph for the tokens
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The  bold  numbers  denote  the  states  that  were  assigned  to  the 
nodes by the method  DFA.NumberNodes.  They are used to derive the 
automaton from the graph as follows: if a node for a character or a 
character class c has the number n and its  next pointer points to a 
node with a number m, then this leads to a transition

 n m c 

If there is no next node, the transition leads to a new state.

Nondeterministic automaton
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The automaton is nondeterministic since there are three transitions 
with  '0' in state 0 and two with  digit in state 0. The first step in 
making  the  automaton  deterministic  is  to  split  overlapping 
character ranges. This is done by DFA.MakeUnique.



After MakeUnique
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The next step is to melt those states that can be reached by a 
transition with the same symbol from the same state. This is done 
in DFA.MeltStates.

After MeltStates
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The only remaining task now is to delete the redundant states (here 
1, 2 and 4).

After DeleteRedundantStates
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This is the resulting deterministic finite automaton from which the 
scanner is generated.



Concrete data structures

Nondeterministic automaton
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After MakeUnique
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This means: from state 0 one can go with the characters 1..9 to 
state 1 and 2, and with the character 0 to state 1, 2 and 4.



After MeltStates
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The states 1 and 2 have been "melted" into a new state 6, the states 
1, 2 and 4 have been melted into a new state 7. This information is 
kept in class Melted using the following data structure:
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The literals table

If a token is explicitly declared as a string, e.g.:
TOKENS
  while = "while".
  ...

it can be referenced in the productions both by its name (while) and 
by its literal representation ("while"). The symbol table just stores 
the names of such tokens. The hash table Tab.literals is used to map 
their literal representation to their node in the symbol table.
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