std::numeric_limits
|   Defined in header  
<limits>
  | 
||
|   template< class T > class numeric_limits; 
 | 
||
The numeric_limits class template provides a standardized way to query various properties of arithmetic types (e.g. the largest possible value for type int is std::numeric_limits<int>::max()). 
This information is provided via specializations of the numeric_limits template. The standard library makes available specializations for all arithmetic types:
|   Defined in header  
<limits>
  | 
||
|   template<> class numeric_limits<bool>; 
template<> class numeric_limits<char>;  | 
||
Additionally, a specialization exists for every cv-qualified version of each arithmetic type, identical to the unqualified specialization, e.g. std::numeric_limits<const int>, std::numeric_limits<volatile int>, and std::numeric_limits<const volatile int> are provided and are equivalent to std::numeric_limits<int>.
The standard library types that are aliases of arithmetic types (such as std::size_t or std::streamsize) may also be examined with the std::numeric_limits type traits.
Non-arithmetic standard types, such as std::complex<T> or std::nullptr_t, do not have specializations.
Implementations may provide specializations of std::numeric_limits for implementation-specific types: e.g. GCC provides std::numeric_limits<__int128>. Non-standard libraries may add specializations for library-provided types, e.g. OpenEXR provides std::numeric_limits<half> for a 16-bit floating-point type.
Contents | 
[edit] Template parameters
| T | - | a type to retrieve numeric properties for | 
[edit] Member constants
|    [static] 
 | 
   identifies types for which std::numeric_limits is specialized  (public static member constant)  | 
|    [static] 
 | 
   identifies signed types   (public static member constant)  | 
|    [static] 
 | 
   identifies integer types   (public static member constant)  | 
|    [static] 
 | 
   identifies exact types   (public static member constant)  | 
|    [static] 
 | 
   identifies floating-point types that can represent the special value "positive infinity"   (public static member constant)  | 
|    [static] 
 | 
   identifies floating-point types that can represent the special value "quiet not-a-number" (NaN)   (public static member constant)  | 
|    [static] 
 | 
   identifies floating-point types that can represent the special value "signaling not-a-number" (NaN)  (public static member constant)  | 
|    [static] 
 | 
   identifies the denormalization style used by the floating-point type   (public static member constant)  | 
|    [static] 
 | 
   identifies the floating-point types that detect loss of precision as denormalization loss rather than inexact result   (public static member constant)  | 
|    [static] 
 | 
   identifies the rounding style used by the type  (public static member constant)  | 
|    [static] 
 | 
   identifies the IEC 559/IEEE 754 floating-point types  (public static member constant)  | 
|    [static] 
 | 
   identifies types that represent a finite set of values   (public static member constant)  | 
|    [static] 
 | 
   identifies types that handle overflows with modulo arithmetic   (public static member constant)  | 
|    [static] 
 | 
   number of radix digits that can be represented without change  (public static member constant)  | 
|    [static] 
 | 
   number of decimal digits that can be represented without change  (public static member constant)  | 
|    [static] (C++11) 
 | 
   number of decimal digits necessary to differentiate all values of this type   (public static member constant)  | 
|    [static] 
 | 
   the radix or integer base used by the representation of the given type  (public static member constant)  | 
|    [static] 
 | 
   one more than the smallest negative power of the radix that is a valid normalized floating-point value  (public static member constant)  | 
|    [static] 
 | 
   the smallest negative power of ten that is a valid normalized floating-point value  (public static member constant)  | 
|    [static] 
 | 
   one more than the largest integer power of the radix that is a valid finite floating-point value   (public static member constant)  | 
|    [static] 
 | 
   the largest integer power of 10 that is a valid finite floating-point value  (public static member constant)  | 
|    [static] 
 | 
   identifies types which can cause arithmetic operations to trap  (public static member constant)  | 
|    [static] 
 | 
   identifies floating-point types that detect tinyness before rounding  (public static member constant)  | 
[edit] Member functions
|    [static] 
 | 
   returns the smallest finite value of the given type   (public static member function)  | 
|    [static] (C++11) 
 | 
   returns the lowest finite value of the given type   (public static member function)  | 
|    [static] 
 | 
   returns the largest finite value of the given type   (public static member function)  | 
|    [static] 
 | 
   returns the difference between 1.0 and the next representable value of the given floating-point type (public static member function)  | 
|    [static] 
 | 
   returns the maximum rounding error of the given floating-point type   (public static member function)  | 
|    [static] 
 | 
   returns the positive infinity value of the given floating-point type  (public static member function)  | 
|    [static] 
 | 
   returns a quiet NaN value of the given floating-point type  (public static member function)  | 
|    [static] 
 | 
   returns a signaling NaN value of the given floating-point type  (public static member function)  | 
|    [static] 
 | 
   returns the smallest positive subnormal value of the given floating-point type  (public static member function)  | 
[edit] Helper classes
|    indicates floating-point rounding modes  (enum)  | 
|
|    indicates floating-point denormalization modes  (enum)  | 
[edit] Relationship with C library macro constants
| Specialization | Members | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
 min()
 | 
 lowest()(C++11)  | 
 max()
 | 
 epsilon()
 | 
 digits
 | 
 digits10
 | 
 min_exponent
 | 
 min_exponent10
 | 
 max_exponent
 | 
 max_exponent10
 | 
 radix
 | 
|
 numeric_limits< bool >
 | 
2 | ||||||||||
 numeric_limits< char >
 | 
CHAR_MIN | CHAR_MIN | CHAR_MAX | 2 | |||||||
 numeric_limits< signed char >
 | 
SCHAR_MIN | SCHAR_MIN | SCHAR_MAX | 2 | |||||||
 numeric_limits< unsigned char >
 | 
0 | 0 | UCHAR_MAX | 2 | |||||||
 numeric_limits< wchar_t >
 | 
WCHAR_MIN | WCHAR_MIN | WCHAR_MAX | 2 | |||||||
 numeric_limits< char16_t >
 | 
0 | 0 | UINT_LEAST16_MAX | 2 | |||||||
 numeric_limits< char32_t >
 | 
0 | 0 | UINT_LEAST32_MAX | 2 | |||||||
 numeric_limits< short >
 | 
SHRT_MIN | SHRT_MIN | SHRT_MAX | 2 | |||||||
 numeric_limits< signed short >
 | 
|||||||||||
 numeric_limits< unsigned short >
 | 
0 | 0 | USHRT_MAX | 2 | |||||||
 numeric_limits< int >
 | 
INT_MIN | INT_MIN | INT_MAX | 2 | |||||||
 numeric_limits< signed int >
 | 
|||||||||||
 numeric_limits< unsigned int >
 | 
0 | 0 | UINT_MAX | 2 | |||||||
 numeric_limits< long >
 | 
LONG_MIN | LONG_MIN | LONG_MAX | 2 | |||||||
 numeric_limits< signed long >
 | 
|||||||||||
 numeric_limits< unsigned long >
 | 
0 | 0 | ULONG_MAX | 2 | |||||||
 numeric_limits< long long >
 | 
LLONG_MIN | LLONG_MIN | LLONG_MAX | 2 | |||||||
 numeric_limits< signed long long >
 | 
|||||||||||
 numeric_limits< unsigned long long >
 | 
0 | 0 | ULLONG_MAX | 2 | |||||||
 numeric_limits< float >
 | 
FLT_MIN | -FLT_MAX | FLT_MAX | FLT_EPSILON | FLT_MANT_DIG | FLT_DIG | FLT_MIN_EXP | FLT_MIN_10_EXP | FLT_MAX_EXP | FLT_MAX_10_EXP | FLT_RADIX | 
 numeric_limits< double >
 | 
DBL_MIN | -DBL_MAX | DBL_MAX | DBL_EPSILON | DBL_MANT_DIG | DBL_DIG | DBL_MIN_EXP | DBL_MIN_10_EXP | DBL_MAX_EXP | DBL_MAX_10_EXP | FLT_RADIX | 
 numeric_limits< long double >
 | 
LDBL_MIN | -LDBL_MAX | LDBL_MAX | LDBL_EPSILON | LDBL_MANT_DIG | LDBL_DIG | LDBL_MIN_EXP | LDBL_MIN_10_EXP | LDBL_MAX_EXP | LDBL_MAX_10_EXP | FLT_RADIX | 
[edit] Example
#include <limits> #include <iostream> int main() { std::cout << "type\tlowest\thighest\n"; std::cout << "int\t" << std::numeric_limits<int>::lowest() << '\t' << std::numeric_limits<int>::max() << '\n'; std::cout << "float\t" << std::numeric_limits<float>::lowest() << '\t' << std::numeric_limits<float>::max() << '\n'; std::cout << "double\t" << std::numeric_limits<double>::lowest() << '\t' << std::numeric_limits<double>::max() << '\n'; }
Possible output:
type lowest highest int -2147483648 2147483647 float -3.40282e+38 3.40282e+38 double -1.79769e+308 1.79769e+308