The serially-sampled coalescent

Alexei J. Drummond

July 12, 2007

1 A simple example

Consider the situation in which there are 4 individuals sampled, two in the present (A, B) and two sampled τ time units in the past. Going back in time, the probability that there is no coalescent between A and B before time τ is:

$$
\begin{equation*}
p_{n c}=e^{-\tau / \theta} \tag{1}
\end{equation*}
$$

And consequently the probability of coalescence is:

$$
\begin{equation*}
p_{c}=1-p_{n c} \tag{2}
\end{equation*}
$$

If there is a coalescence before time τ then the tree must be one of the following topologies: $((\mathrm{A}, \mathrm{B}),(\mathrm{C}, \mathrm{D})),(((\mathrm{A}, \mathrm{B}), \mathrm{C}), \mathrm{D}),(((\mathrm{A}, \mathrm{B}), \mathrm{D}), \mathrm{C})$.

Now consider the topology $((A, B),(C, D))$. Conditional on coalescence of (A,B) before time τ it has a probability of $\frac{1}{3}$. However if there is no coalescence before time τ it has it normal coalescent probability of $\frac{1}{9}$ (being a symmetrical tree shape). This gives a total probability for this tree shape of:

$$
\begin{equation*}
p_{((A, B),(C, D))}=\frac{p_{c}}{3}+\frac{p_{n c}}{9} \tag{3}
\end{equation*}
$$

Likewise the probability of topologies $(((\mathrm{A}, \mathrm{B}), \mathrm{C}), \mathrm{D})$ and $(((\mathrm{A}, \mathrm{B}), \mathrm{D}), \mathrm{C})$ can be calculated as:

$$
\begin{align*}
& p_{(((A, B), C), D)}=\frac{p_{c}}{3}+\frac{p_{n c}}{18} \tag{4}\\
& p_{(((A, B), D), C)}=\frac{p_{c}}{3}+\frac{p_{n c}}{18} \tag{5}
\end{align*}
$$

The probability of the two remaining symmetrical trees are:

$$
\begin{align*}
& p_{((A, C),(B, D))}=\frac{p_{n c}}{9} \tag{6}\\
& p_{((A, D),(B, C))}=\frac{p_{n c}}{9} \tag{7}
\end{align*}
$$

The probability of each of the remaining asymmetric trees is:

$$
\begin{equation*}
\frac{p_{n c}}{18} \tag{8}
\end{equation*}
$$

Taking $\tau / \theta=0.5$ then $p_{n c}=0.607$ and $p_{c}=0.393$ giving a probability of ((A,B),(C,D)) of:

$$
\begin{equation*}
p_{((A, B),(C, D))}=0.199 \tag{9}
\end{equation*}
$$

the probability of $(((\mathrm{A}, \mathrm{B}), \mathrm{C}), \mathrm{D})$ is:

$$
\begin{equation*}
p_{(((A, B), C), D)}=0.165 \tag{10}
\end{equation*}
$$

the probability of $((\mathrm{A}, \mathrm{C}),(\mathrm{B}, \mathrm{D}))$ is:

$$
\begin{equation*}
p_{((A, C),(B, D))}=0.0674 \tag{11}
\end{equation*}
$$

and the probability of $(((\mathrm{C}, \mathrm{D}), \mathrm{B}), \mathrm{A})$ is:

$$
\begin{equation*}
p_{(((C, D), B), A)}=0.0337 \tag{12}
\end{equation*}
$$

Work out the rest :-) Check out examples/testCoalescent.xml to see these results from an MCMC run.

